关于平行四边形教案汇编7篇
作为一名老师,有必要进行细致的教案准备工作,教案是教学蓝图,可以有效提高教学效率。那么问题来了,教案应该怎么写?下面是小编精心整理的平行四边形教案7篇,希望对大家有所帮助。
平行四边形教案 篇1
活动一、创设情境
引入:首先我们来看几道练习题(幻灯片)
(复习:平行线及三角形全等的知识)
下面我们一起来欣赏一组图片(幻灯片)
[学生活动]观看后答问题:你看到了哪些图形?
(各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)
[学生活动]小组合作交流,拼出图案的类型。
同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)
活动二、合作交流,探求新知
问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)
[学生活动]认真观察、讨论、思考、推理。
鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。
学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。
并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。
平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)
问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?
[学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。
小结平行四边形的`性质:
平行四边形的对边相等
平行四边形的对角相等(这里要弄清对角、对边两个名词)
你能演示你的结论是如何得到的吗?(学生演示)
你能证明吗?(幻灯片出示证明题)
[学生活动]先分析思路尤其是辅助线,请学生上黑板证明。
自己完成性质2的证明。
活动三、运用新知
性质掌握了吗?一起来看一道题目:
尝试练习(幻灯片)例1
[学生活动]作尝试性解答。
平行四边形教案 篇2
教学目标:
1。经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;
2。索并掌握平行四边形的性质,并能简单应用;
3。在探索活动过程中发展学生的探究意识。
教学重点:平行四边形性质的探索。
教学难点:平行四边形性质的理解。
教学准备:多媒体课件
教学过程
第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的.本质特征。)
1。小组活动一
内容:
问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。
(1)你拼出了怎样的四边形?与同桌交流一下;
(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。
2。小组活动二
内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?
第二环节 探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)
小组活动3:
用 一张半透明的纸复制你刚才画的平行四边形,并将复制 后的四边形绕一个顶点旋转180,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?
(1)让学生动手操作、复制、旋转 、观察、分析;
(2)学生交流、议论;
(3)教师利用多媒体展示实践的过程。
第三环节 推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)
实践 探索内容
(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。
(2)可以通过推理来证明这个结论,如图连结AC。
∵ 四边形ABCD是平行四边形
AD // BC, AB // CD
2,4
△AB C和△CDA中
1
AC=C A
4
△ABC≌△CDA(ASA)
AB=DC, AD=CB,B
又∵2
4
3=4
即BAD=DCB
第四环节 应用巩固 深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)
1。活动内容:
(1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?
A(学生思考、议论)
B总结归纳:可以确定其它三个内角的度数。
由平行四边形对 边分边平行 得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。
(2)练一练(P99随堂练习)
练1 如图:四边形ABCD是平行四边形。
(1)求ADC、BCD度数
(2)边AB、BC的度数、长度。
练2 四边形ABCD是平行四边形
(1)它的四条边中哪些 线段可以通过平移相到得到?
(2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。
归 纳:平行四边形的性质:平行四边形的对角线互相平分。
第五环节 评价反思 概括总结(8分钟,学生踊跃谈感受和收获)
活动内容
师生相互交流、反思、总结。
(1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。
(2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?
(3)本节学习到了什么?(知识上、方法上)
考一考:
1。 ABCD中,B=60,则A= ,C= ,D= 。
2。 ABCD中,A比B大20,则C= 。
3。 ABCD中,AB=3,BC=5,则AD= CD= 。
4。 ABCD中,周长为40cm,△ABC周长为25,则对角线AC=( )cm。
布置作业
课本习题4。1
A组(学优生)1 、2
B组(中等生)1、2
C组(后三分之一生)1、2
教学反思
平行四边形教案 篇3
一、素质教育目标
(一)知识教学点
1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.
2.使学生理解判定定理与性质定理的区别与联系.
3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.
(二)能力训练点
1.通过“探索式试明法”开拓学生思路,发展学生思维能力.
2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.
(三)德育渗透点
通过一题多解激发学生的学习兴趣.
(四)美育渗透点
通过学习,体会几何证明的.方法美.
二、学法引导
构造逆命题,分析探索证明,启发讲解.
三、重点·难点·疑点及解决办法
1.教学重点:平行四边形的判定定理1、2、3的应用.
2.教学难点:综合应用判定定理和性质定理.
3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理
(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理).
平行四边形教案 篇4
一、 教学目标:
1.掌握用一组对边平行且相等来判定平行四边形的方法.
2.会综合运用平行四边形的四种判定方法和性质来证明问题.
3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.
二、 重点、难点
1.重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.
2.难点:平行四边形的判定定理与性质定理的综合应用.
三、例题的意图分析
本节课的两个例题都是补充的题目,目的是让学生能掌握平行四边形的第三种判定方法和会综合运用平行四边形的判定方法和性质来解决问题.学生程度好一些的学校,可以适当地自己再补充一些题目,使同学们会应用这些方法进行几何的推理证明,通过学习,培养学生分析问题、寻找最佳解题途径的能力.
四、课堂引入
1. 平行四边形的性质;
2. 平行四边形的判定方法;
3. 【探究】 取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?
结论:一组对边平行且相等的四边形是平行四边形.
五、例习题分析
例1(补充)已知:如图, ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.
分析:证明BE=DF,可以证明两个三角形全等,也可以证明
四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.
证明:∵ 四边形ABCD是平行四边形,
AD∥CB,AD=CD.
∵ E、F分别是AD、BC的`中点,
DE∥BF,且DE= AD,BF= BC.
DE=BF.
四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).
BE=DF.
此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.
例2(补充)已知:如图, ABCD中,E、F分别是AC上两点,且BEAC于E,DFAC于F.求证:四边形BEDF是平行四边形.
分析:因为BEAC于E,DFAC于F,所以BE∥DF.需再证明BE=DF,这需要证明△ABE与△CDF全等,由角角边即可.
证明:∵ 四边形ABCD是平行四边形,
AB=CD,且AB∥CD.
BAE=DCF.
平行四边形教案 篇5
教学内容:国标苏教版数学第八册P43-45。
教学目标:
1、学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征,认识平行四边形的高。
2、学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。
3、学生感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣。
教学重点:进一步认识平行四边形,发现平行四边形的基本特征,会画高。
教学难点:引导学生发现平行四边形的特征。
教学准备:配套多媒体课件。
教学过程:
一、生活导入。
1、(课件出示学校大门关闭和打开的录象,最后定格成放大的图片)教师谈话:同学们每天都要经过校门进入校园,但是你们注意观察我们的校门了吗?从图片中你们能找到一些平面图形吗?根据回答,教师板书:平行四边形。
2、你们还能找出我们生活中见过的一些平行四边形吗?学生回答后,教师课件出示一些生活中的平行四边形:如活动衣架、风筝、楼梯栏杆等。
3、今天这节课我们一起来进一步研究平行四边形,相信通过研究,我们将有新的收获。板书完整课题:认识平行四边形。
[评:《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”选择学生熟悉和感兴趣的素材,吸引学生的注意力,激发学生主动参与学习活动的热情,让学生初步感知平行四边形。]
二、探究特点。
1、刚才同学们已经能找出生活中的一些平行四边形了,那我们能不能利用身边的一些物品,自己来想办法来制作一个平行四边形呢?你们可以先看一看材料袋中有哪些材料,再独立思考一下准备怎么做;如果有困难的可以先看看学具袋中的平行四边形再操作。
2、大家已经完成了自己的创作,现在请你们和小组的同学交流一下,说说自己的做法和为什么这样做,然后派代表上来交流。
学生小组交流,教师巡视,并进行一定的辅导。
3、哪个小组派代表上来交流?注意把你的方法展示在投影仪上,然后说说这么做的理由,其他小组等他们说完后可以进行补充。
(1)方法一:用小棒摆。请你说说你为什么这么做?要注意些什么呢?
(2)方法二:在钉子板上面围一个平行四边形。你介绍一下,在围的时候要注意些什么?怎样才能做一个平行四边形?
(3)方法三:在方格纸上画一个平行四边形。你能提醒一下大家吗?应该怎样才能得到一个平行四边形?
(4)用直尺画一个平行四边形。
……
(评:这个个环节的设计,本着学生为主体的思想,敢于放手,让学生的多种感官参与学习活动,让学生在操作中体验平行四边形的一些特点;既实现了探究过程开放性,也突出了师生之间、学生之间的多向交流,体现那了学生为本的理念。)
4、刚才我们已经能用多种方法来制作平行四边形,现在请大家在方格纸上独立在方格纸上画一个平行四边形,想想应该怎么画?注意些什么?
(评:本环节的设计,通过在方格纸上画,让学生再次感知平行四边形的一些特点,为下面的猜想、验证和画高作了铺垫。)
5、我们已经能够用不同的方法制作平行四边形,并且能够在方格纸上话一个平行四边形。那么这些大小不同的平行四边形到底有什么共同特点呢?下面我们一起来研究。
根据你们在制作平行四边形的时候的体会,你们可以猜想一下:平行四边形有哪些特点?(友情提示:课件中出示提示:我们可以从平行四边形的那些方面来猜想它的特征呢?边?角?)
6、学生小组讨论后提问并板书猜想:
对边可能平行;
对边可能相等;
对角相等;
……
7、你们真行,有了这么多的猜想,那我们能够自己想办法来证明这些猜想是否正确呢?请每个小组先认领一条,时间有多余可以再研究其他的猜想。
学生每小组上台认领一条猜想,学生分组验证猜想。
8、经过同学们的努力,我们已经自己验证了其中一条猜想,现在我们旧来交流一下,其他小组认真听好,他们的回答是否正确,你觉得怎样?
9、小组派代表上来交流自己小组的验证方法,其他小组在其完成后进行评价。
(1) 两组对边分别相等:学生介绍可以用对折或用直尺量的方法来验证对边相等后,教师用课件直观展示。
(2) 两组对边分别平行:学生汇报的时候如果不一定很完整,教师用课件展示:两条对边分别延伸,然后显示不相交。
(3) 对角相等:学生说出方法后,教师让学生再自己量一量。
……
最后,教师板书出经过验证特点:
两组对边分别平行并且相等;
对角相等;
内角和是360°
(评:这个环节的设计蕴涵了“猜想-验证-结论”这样一个科学的探究方法。给学生提供了充分的自制探索的空间,引导学生先猜测特点,再放手让学生自己去验证和交流,使学生在碰撞和交流中最后的出结论。在这个过程中,学生充分展示了自己的思维过程,在交流中与倾听中把自己的方法与别人的'想法进行了比较。)
10、完成“想想做做1”。学生独立完成后说说理由。
三、认识高、底。
1、出示一张平行四边形的图,介绍:这是一个平行四边形,你能量出平行四边形两条红线间的距离吗?应该怎么量?把你量的线段画出来。
学生自己尝试后交流。
2、老师刚才发现,大家画的高位置都不一样,你们想想这是为什么呢?这样的线段到底有多少条呢?(一组平行线之间的距离处处相等,有无数条。)
说明:从平行四边形一条边上的一点到它对边的垂直线段是平行四边形的高,这条对边是平行四边形的底。
3、你能画出另一组对边上的高,并量一量吗?学生继续尝试。
完成后,让学生指一指:两次画的高分别垂直于哪一组对边。板书:高和一组对边对应。
4、完成“试一试”:(1)先指一指高垂直于哪条边;(2)量出每个平行四边形的底和高各是多少厘米。
5、想想做做5,先指一指平行四边形的底,再画出这条底边上的高,注意画上直角标记。如果有错误,让学生说说错在哪里。
(这个环节的设计,通过学生自己去量、去画,从而很方便得到了平行四边形的高和底的概念,在的出高和底对应的时候比较巧妙,学生学得轻松、明了。设计的练习也遵循循序渐进的原则,很好地让学生领悟了高的知识。)
四、练习提高。
1、想想做做1,哪些图形是平行四边形,为什么。
2、想想做做2,用2块、4块完全一样的三角尺分别拼成一个平行四边形,在小组里交流是怎样拼的。
3、想想做做3,用七巧板中的3块拼成一个平行四边形。
出示,你能移动其中的一块将它改拼成长方形吗?
4、想想做做4,想把一块平行四边形的木板锯开做成一张尽可能的的长方形桌面,该从哪里锯开呢?找一张平行四边形纸试一试。
5、想想做做6,用饮料管作成一个长方形,再拉成平行四边形,比一比长方形和平行四边形的相同点和不同点。
(评:在巩固练习中,注意通过学生动手、动脑来进一步掌握平行四边形的特点。来年系的层次清楚、逐步提高,学生容易接受,并且注意了引导学生去自主探索、合作交流。)
五、阅读调查
自主阅读“你知道吗?”,说说有什么收获,再到生活中去找找类似的例子。
六、全课小结
今天我们重点研究了哪种平面图形?它有什么特点?回想一下,我们通过哪些活动进行研究?
平行四边形教案 篇6
教学目标:
知识与技能
1.探索并掌握平行四边形、矩形、菱形、正方形的定义
2.掌握它们之间的区别与联系
过程与方法
在观察、操作的探索过程中,发展学生的合情推理能力。
教学重点:平行四边形的定义
教学难点:平行四边形、特殊平行四边形彼此之间的关系
教学过程:
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线。
强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
边角
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示四边形与特殊四边形的关系,如图.
3.对比引出平行四边形的概念.
(1)引导学生根据上图,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(特性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:
①∵ABCD,
∴AD//BC,AB//CD(平行四边形的定义)
②∵AD//BC,AB//CD,
∴四边形ABCD是平行四边形(平行四边形的定义)
二、讲授新课
议一议:
用教具演示如图,从平行四边形到矩形的演变过程,得到矩形的概念,并理解矩形与平行四边形的关系.
1.矩形的定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形)。
注意:用定义判定一个四边形是矩形必须同时满足:①有一个角是直角②是平行四边形,两个条件缺一不可。
思考:
(1)如果把“平行四边形”换成“四边形”或去掉“有一个角是直角”能保证是矩形吗?
(2)增加条件行不行?如“有四个角是直角的'平行四边形叫做矩形”可以吗?
引导学生思考后,进一步明确定义的内涵。
类比“平行四边形演变成矩形”而得到菱形。强调平行四边形增加一个特定条件“一组邻边相等”就得到菱形
可以发现:随着AB的运动,它仍然保持平行四边形的形状,但BC的长度却在不断地改变当BC恰好与AB相等时,就得到一种特殊的四边形———菱形。
2.菱形的定义:有一组邻边相等的平行四边形叫做菱形。
想一想:平行四边形是否可能有一组邻边相等并且有一个角是直角呢?这时,平行四边形演变成什么图形?
学生思考后回答。师生共同总结得出:
3.正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
试一试:正方形、、矩形、菱形与平行四边形之间存在“特殊”与“一般”的关系,正方形、、矩形、菱形之间也存在“特殊”与“一般”的关系,你能用一张图来表示它们之间的关系吗?把你设计的图和同学们讨论,并写下来。
引导学生思考后,进行小组讨论。归纳如下:
集合表示,突出关系
平行四边形
矩形正方形菱形
三、练习巩固概念P54
四、课堂小结:
师生共同总结本节课内容。
矩形
有一个角是直角,
平行四边形且有一组邻边相等正方形
菱形
五、课后作业
六、课后反思
平行四边形教案 篇7
【教学内容】
人教版《义务教育课程标准实验教科书数学》四年级上册70页至71页。
【教学目标】
1、通过操作和讨论掌握平行四边形和梯形的特征。
2、通过活动,在对各种四边形分类整理中,了解平行四边形与长方形和正方形的关系。
3、注意培养学生的空间观念和想像力。
【教学重点】
通过操作和讨论掌握平行四边形和梯形的特征。
【教学难点】
了解平行四边形与长方形和正方形的关系。
【教学准备】
教师准备:直尺,三角板,课件。
学生准备:直尺,三角板,白纸,铅笔。
【教学过程】
一、通过观察,加深学生对四边形特点的了解。
1、用课件出示一组(三角形和四边形)平面图形,让学生认识四边形的特点。
(1) (2) (3)
(4) (5) (6)
师:请同学们看电脑,上面有6个图形,你知道它们叫什么图形吗?
生:(1)、(4)、(5)是三角形(同学们很熟悉),(2)、(3)(6)是四边形(部分学生回答不出来,原因是对四边形的概念不怎么理解)。
师:你知识三角形和四边形有什么特点吗?
生1:三角形有三条边,三个角。
生2:四边形有四条边,四个角。
师:对,今天我们来学习两种特殊的四边形。
[设计说明:通过这部分的教学活动,加深学生对三角形和四边形的理解,为下一步学习平行四边形和梯形作准备。]
二、通过观察讨论,让学生发现平行四边形和梯形的特点。
1、通过让学生观察讨论,认识平行四边形和长方形的定义。
出示课件:在电脑上出示一组四边形。
(1) (2) (3)
(4) (5) (6)
师:电脑上的这组图形都是什么图形?
生:四边形。(有前面的知识作铺垫,学生很容易回答出来)
师:你能把它们分类吗?
生:能。(引导学生思考问题,从而发现平行四边形和梯形的特征。)
生1:我觉得图(1)、(3)、(6)可以分为一组,图(2)、(4)、(5)可以分为一组。
师:你能说说把图(1)、(3)、(6)分为一组道理吗?
生1:因为图(1)、(3)、(6)有两组平行线。
师:同学们,这位同学说得有道理吗?用你学过的方法验证图(1)、(3)、(6)这三个图形有两组平行线吗?(通过学生发现、验证、得出结论这三个步聚,使学生探索中发现平行四边形的特点,并复习了平行线的画法。)
生:确实有两组平行线。
师:回答得好,我们把有两组对边分别平行的四边形叫做平行四边形。(揭示平行四边形的'定义,并板书)
师:谁能说说把图(2)、(4)、(5)分为一组的道理?
生2:它们只有一组平行线。
师:对,我们把只有一组对边平行的四边形叫做梯形。(揭示梯形的定义,并板书)
2、通过学生讨论,发现长方形和正方形是特殊的平行四边形。
师:同学们,我们已学习了平行四边形的定义,请问长方形和正方形是不是平行四边形呢?
生1:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形应该是斜的。
生2:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形的四个角大小应该是不一样的。
生3:我觉得长方形和正方形是平行四边形,根据平行四边形的定义,只要有两组对边平行的四边形就是平行四边形,
师:赞成第一位同学的举手,赞成第二位同学的举手,赞成第三位同学的举手。看来赞成第三个同学的人比较多。
师:只要符合有两组对边分别平行的四边形这个条件就是平行四边形。长方形和正方形符合了有两组对边分别平行的四边形这个条件,所以长方形和正方形也是平行四边形,只是它有点特殊吧了。我们把长方形和正方形叫做特殊的平行四边形。
师:你们能说说长方形和正方形特殊的地方吗?
生:它的四个角都是直角。
师:对,这说是平行四边形特殊的地方。
(通过学生的讨论,使学生认识到长方形和正方形是特殊的平行四边形,同时更进一步理解平行四边形的定义。)
3、进一步认识平行四边形和梯形的特点。
师:请大家看一看这几个平行四边形,它们还有什么特点,同学们可留意它的边和角。(老师提示,让学生进一步发现平行四边形的特点)
生1:我发现平行四边形对边是相等的。
师:请同学们用尺子量一量。
生2:我发现平行四边形的对角相等。
师:请同学们用量角器量一量。
师:这两位同学的发现正确吗?
生:完全正确。
师:梯形有这些特点吗?请同学们量一量。
生:没有,梯形的对边不相等,对角也不相等。
(通过学生的操作,进一点了解平行四边形和梯形的特点)
师:下面我们可以用图表表示平行四边形和梯形的特点。
图形对边平行对边对角
平行四边形有两组对边平行相等相等
梯形只有一组对边平行不相等不相等
(用图表表示平行四边形的特点,使学生更好地理解平行四边形和梯形的区别和联系。)
三、认识四边形之间的关系。
师:同学们,平行四边形和梯形是不是四边形?
生:是。
师:我们可以用这个图来表示:
平行四边形
梯形
四边形
师:长方形和正方形应怎样表示呢?
生1:应在平行四边形圈内画圈表示,因为它们是特殊的平行四边形。
师:对,应这样表示:
平行四边形
长方形 梯形
正方形
四边形
四、巩固练习。
1判断下面那些图形的平行四边形,那些图形的梯形。
(1) (2) (3)
(4) (5) (6)
(7) (8) (7)
(使学生运用平行四边形和梯形的定义,判断那些图形是平行四边形和梯形,那些是梯形。增强学生对定义的理解)
2填空。
1、两组对边( )的四边形叫做平行四边形。
2、( )的四边形叫做梯形。
3、长方形和正方形都有两组对边分别( )且( ),所以它们是特别的( )。
4、平行四边形和梯形都是( )形,它们都有( ),( )个角。
(通过练习,使学生更深刻理解平行四边形和梯形的定义和特点)
五、全课小结。
师:今天你们学到了什么?
生:我们今天学习了平行四边形和梯形,并了解它们的特点。并了解到长方形和正方形是特殊的平行四边形。
[设计说明:本设计通过学生对平行四边形和梯形的观察和探索,发现平行四边形和梯形的特点,并动手验证所发现的观点,从而了解平行四边形和梯形的定义。再通过学生的讨论,得出长方形和正方形是特殊的平行四边形的结论。本设计体现了探索-发现-验证的学习过程,使学生在动手、动脑和动口的过程中掌握本节课的重点和难点。]
【平行四边形教案】相关文章:
平行四边形教案优秀01-22
认识平行四边形教案03-05
《平行四边形的面积》教案01-02
平行四边形的认识教案07-30
《平行四边形的认识》教案03-15
平行四边形面积教案03-09
平行四边形的面积教案07-24
平行四边形教案四篇05-24
平行四边形和梯形教案12-14
精选平行四边形教案4篇05-21