教案

分数除法教案

时间:2025-10-28 10:05:19 晓映 教案 我要投稿

分数除法教案范文(通用15篇)

  作为一名默默奉献的教育工作者,总不可避免地需要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。教案要怎么写呢?下面是小编整理的分数除法教案,仅供参考,希望能够帮助到大家。

分数除法教案范文(通用15篇)

  分数除法教案 1

  教学目标:

  1、知识目标:体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

  2、能力目标:培养学生动手动脑能力,以及判断、推理能力。

  3、情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

  教学重点:

  能求一个数的倒数。

  教学难点:

  分数除以整数计算法则的推导过程。

  教学准备:

  长方形纸片。

  教学过程:

  一、创设情景,教学分数除法的意义

  1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

  (1)每人吃1/2块饼,4个人共吃多少块饼?

  (2)把2块饼平均分给4个人,每人吃了多少块饼?

  (3)有2块饼,分给每人1/2块,可分给几个人?

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的'意义。

  师:讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1) 引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/7。

  师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

  请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

  方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

  师:对这种做法大家有什么疑问吗?

  生:这儿是除法怎么变成了乘法?

  师:老师也有这个疑问,你能讲讲吗?

  师:谁能结合图来讲一讲呢?

  师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……

  (2)质疑问难,理解新知

  ①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  ②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

  ③通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为: 上一题的时候,分子4是2的倍数,4÷2能得到整数商。而 4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

  能再讲讲这样做的道理吗?

  师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/7的多少?

  通过直观图理解4/7的1/3是4/21

  (3)比较归纳,发现规律。

  ①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

  ②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

  ③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

  小组活动,说算法。

  ④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

  出示:分数除以整数,等于分数乘这个整数的倒数。

  还有需要注意的地方吗?

  生:有,除数不能为0。

  师:谁能把分数除以整数的计算法则用自己的话来说一说?

  完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

  ⑥那象这样的分数除以整数的题目在计算时要注意些什么?

  生:要约分!结果最简。除号要变成乘号!

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)

  板书设计:

  分数除以整数

  分数除法教案 2

  教学目标:

  1、运用所学知识解决一些生活中的实际问题。

  2、加强列方程的思维训练。

  3、培养学生分析问题解决问题的`能力。

  教学过程:备注

  活动一:复习与准备

  1、爸爸的体重75千克,小明的体重是爸爸的7/15。

  (1)、小明的体重是多少千克?

  (2)、小明体内水份的质量占小明体重的4/5,小明体内有多少千克水份?

  (3)让学生说出数量关系并列式计算

  活动二:出示例1

  1、与复习题比较有什么不同?

  2、要求小明的体重应该知道什么条件?为什么?

  3、以知小明体内有水份28千克,要求小明的体重,需用到哪个数量关系?

  4、学生自己列式计算

  5、与复习题比较有什么相同点和不同点?你发现了什么?

  小结:(略)

  1、要求学生自己做第二问

  (1)、要求画图分析

  (2)、与第一问比有什么不同?

  (3)、根据什么等量关系列方程?

  小结:

  活动三:巩固练习

  1、38页做一做

  2、40页1、2

  板书设计

  分数除法教案 3

  教学目标

  1.通过一组习题,学生能够理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。

  2.通过学生试做例1,在理解算理的基础上总结出分数除以整数的计算法则,并能正确地进行计算。

  3.培养学生分析能力、知识的迁移能力和语言表达能力。

  教学重点和难点

  正确的归纳出分数除以整数的计算法则,并能正确地进行计算。

  教学过程设计

  (一)复习导入

  1.投影,看乘法算式写出两道除法算式。

  67=42

  ( )( )=( )

  ( )( )=( )

  问:谁还记得整数除法的意义是什么?

  板书:积 一个因数 另一个因数

  师:这节课我们来学习分数除法的意义和计算法则。(板书课题)

  首先研究分数除法的意义。(板书:意义)

  (二)新授教学

  1.分数除法的意义。

  我们来看下面的问题。(投影出示)

  (1)每人吃半块月饼,5人一共吃几块月饼?

  问:谁会列式计算?

  问:你是怎么想的?

  (2)两块半月饼,平均分给5个人,每人分得多少月饼?

  问:怎样列式计算呢?

  问:没有学过分数除法,得数怎么得来的?

  (3)两块半月饼,分给每人半块,可分给几个人?

  问:谁会列式计算?

  问:为什么这样列式,怎样算出的得数?

  观察这三个算式,它们之间有什么联系?

  同桌讨论,指名回答。

  生:后两道除法是根据第一道乘法变化而来的,被除数相当于乘法中的积,除数是乘法中的一个因数,商是乘法中的另一个因数。

  板书:积 一个因数 另一个因数

  问:与整数除法对比一下,分数除法的意义是什么?

  同桌互相说一说,指定2~3名学生说。

  板书:已知两个因数的积与其中的一个因数,求另一个因数的运算。

  师:同学们说得好极了!书上是怎么说的?打开书第30页看下面几行字,边读边画出来。

  做一做:(同学们做在书上。投影订正。)

  根据下面的乘法算式和分数除法的意义,写出两个除法算式的得数。

  问:你根据什么写出得数的?

  师:分数除法中的商可以根据与它有关的乘法得出。但是不能每道除法都这么做,下面我们来研究分数除以整数的计算法则。(板书:法则)

  2.分数除以整数的计算法则。

  为什么这样列式?

  (2)根据题意画出线段图。

  生:把1米平均分成7份,取其中的6份。

  (3)4人一组讨论:怎样计算出每段长多少米呢?试说一说算理。

  师:有道理,结果也正确,还有别的方法吗?

  师:这种方法也有道理,分数除以整数到底哪种方法好呢?同学们任选一种方法做下面一题。

  学生做完后提问:你们用的哪种方法?有用第一种方法的吗?为什么不用?

  师:看来第一种方法不能解决所有的分数除以整数的题。第二种方法是可以的.。

  (4)观察第二种方法,看哪儿没变,哪儿变了?是怎么变的?

  生:被除数不变,除号变乘号,除数变成了它的倒数。

  (5)试着说一说分数除以整数的计算法则。

  板书:分数除以整数( )等于分数乘以这个整数的倒数。

  想:为什么要空几个字的地方?为什么要加0除外三个字?(补充板书:0除外)

  问:谁再来说一说分数除以整数的计算法则。同桌互相说一说。要真正理解。

  计算法则是否会用呢?我们来自测一下。

  投影做一做,学生做在书上,投影订正。

  (三)巩固练习

  1.计算下面各题。(投影)

  2.判断下面的计算过程是否正确。对的举,错的举,并说明理由。(投影出示)

  (2)题为什么对?举错的说说你的想法?1的倒数是几?

  (3)错在被除数变倒数了,而除数没有变。问:这道怎么改?

  (4)错在除号没有变成乘号。怎么改?

  (5)错在除数没有变成倒数。怎么改?

  去计算。)

  师:同学们审题非常认真,判断力很强。我们做题时就不应该出现上面的错误了。

  下面我们计算几道题,看谁能正确运用计算法则。

  3.计算:

  4.想一想:如果a是一个自然数,

  (3)用一个数检验上面的结果是否对。

  (四)课堂总结

  这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

  (五)作业

  课本32页第3,4,5,6题。

  课堂教学设计说明

  这节课有两部分内容。第一部分是分数除法的意义。在处理这部分内容时,首先出示一组整数乘除法的复习题,复习整数除法的意义,然后通过书中一组分数乘除法题,让学生观察三个算式之间的关系,再与整数一组题比较,发现道理完全一样,从而很自然得出分数除法的意义。第二部分内容是分数除以整数的计算法则,这是本节课的重点和难点。通过画图帮助学生理解题意,让学生讨论试做例1的方法,引导学生自己说出两种不同的思路,老师都加以肯定,然后让学生任选一种方法计算。

  分数除法教案 4

  教学目标

  1.使学生理解两个整数相除的商可以用分数来表示.

  2.明确分数与除法的关系,加深学生对分数意义的理解.

  教学重点

  理解、归纳分数与除法的关系.

  教学难

  用除法的意义理解分数的意义.

  教学步骤

  一、铺垫孕伏.

  1.读题说得数.

  3.2+1.680.8×0.514-7.40.3÷1.54.8×0.02

  7.8+0.91.53-0.70.35÷150.4×0.80.8-0.37

  2.口述表示的意义.

  3.列式计算.

  (1)把40棵树苗平均分给5个小组栽,每组栽多少棵?

  (2)把8米长的钢管平均分成2段,每段长多少米?

  二、探究新知.

  1.新课导入.

  出示例2:把1米长的钢管平均截成3段,每段长多少米?

  板书:1÷3

  教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)

  2.教学例2.

  (1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数来表示,1米的就是米.(板书米)

  (2)学生完整叙述自己想的过程.

  (3)反馈练习.

  ①把1米长的钢管,平均分成8段,每段长多少?

  ②把1块饼平均分给5个同学,每个同学得到多少块?

  3.教学例3.

  出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?

  (1)读题列式:3÷4

  (2)动手操作:怎样把3块饼平均分给4个同学呢?

  (3)学生交流.

  甲生:先把每个圆剪成4个块,然后把12个平均分成4份,再把3个拼在一起,每份是块.

  乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个拼在一起,得到每个分块.(在3÷4后板书块)

  (4)看图根据乙生分饼的过程说出表示的意义.

  ①乙生把3块饼平均分成了4份,这样的一份是3块饼的,即

  ②甲生把1块饼平均分成了4份,表示这样的3份的数是.

  (5)都是,意义有何不同?(结合算式说出的两种意义)

  明确:表示把3平均分成4份,取其中的1份;

  还表示把单位“1”平均分成4份,取这样的3份.

  (6)反馈练习:说说下面分数的两种意义

  4.归纳分数与除法的关系.

  (1)教师提问:怎样用分数来表示整数除法的商呢?

  学生归纳:可以用分数表示整数除法的'商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.

  (板书:)

  教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数.

  (2)讨论:用字母表示分数与除法的关系有什么要求?

  (3)反馈练习.

  三、全课小结.

  通过今天的学习,你明白了什么?

  四、随堂练习.

  1.填空.

  分数可以用来表示除法算式的().其中分数的分子相当于(),分母相当于().

  2.用分数表示下列各式的商.

  4÷511÷1327÷35

  9÷913÷1633÷29

  3.列式计算.

  (1)把5米长的绳子,平均分成12段,每段长多少米?

  (2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  (3)小明用15分钟走了1千米路,平均每分走几分之几千米?

  五、布置作业.

  用分数表示下面各式的商.

  3÷47÷1216÷4925÷249÷9

  分数除法教案 5

  教学目标:

  1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

  教学重点:弄清单位1的量,会分析题中的'数量关系。

  教学难点:分析题中的数量关系。

  教学过程:

  一、复习

  小红家买来一袋大米,重40千克,吃了,还剩多少千克?

  1、指定一学生口述题目的条件和问题,其他学生画出线段图。

  2、学生独立解答。

  3、集体订正。提问学生说一说两种方法解题的过程。

  4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新授

  1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?

  (1)吃了是什么意思?应该把哪个数量看作单位1?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量

  (4)指名列出方程。解:设买来大米X千克。x-x=15

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

  (2)学生试画出线段图。

  (3)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (4)根据等量关系式解答问题。解:设航模小组有人。

  三、小结

  1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

  四、练习

  练习十第4、12、14题。

  教学追记:

  本堂课,我吸取上节课对线段图不够重视导致学生解题困难的教训,在基本了解题意之后,就和全班学生一起画出相关的线段图,引导学生看懂线段图,在此基础上再列出数量关系式。由于有了上节课的模式,再加上本节课我对线段图比较重视,因而学生在列数量关系式时顺利多了。

  分数除法教案 6

  教学目标

  1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

  2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商

  3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

  教学重难点

  教学重点:

  掌握分数与除法的关系,会用分数表示两个数相除的商。

  教学工具

  多媒体课件,圆形纸片,剪刀

  教学过程

  一、创设情境,导入新课,

  师:同学们过生日都要吃生日蛋糕,喜欢吃吗?(生:喜欢)

  1.师:今天老师就带来了8个小蛋糕把8个小蛋糕平均分给4个人吃,每人分得多少个?

  怎么列式?生:8÷4=2(个)

  2.师:把8个小蛋糕变成1个大蛋糕把1个大蛋糕平均分给4个人吃,每人分得多少个?

  怎么列式?生:1÷4=

  二、动手操作,探索新知

  1、探索一个物体平均分,体会分数与除法的关系。

  (1)师:每人分得多少个?请同学们利用这张白色的圆形纸片,折一折,分一分,看看到底是多少个?生动手折纸,思考

  生:把1个蛋糕看作单位“1”,把它平均分给4个人,也就是平均分成4份,每人分得其中的一份,也就是这1个蛋糕的1/4,就是1/4个蛋糕

  (2)师:把1个蛋糕平均分给3个人,每人分得多少多少个?怎么列式?

  生独立思考并回答。

  全班交流,明确:求每人分得多少个,要把1个蛋糕平均分成3份,用除法计算;而把“1”平均分成3份,表示这样一份的数,可以用分数()来表示。所以1÷3=()(个)

  2、探索多个物体平均分,体会分数与除法的关系。

  师:把3个蛋糕平均分给4个人,每人分得多少个?

  师:怎样分公平?每人分得多少个?下面,利用你手中的学具3张圆形纸片,小组合作,分一分,剪一剪。

  (1)充分交流、展示学生的想法与做法(可能出现以下几种情况)。

  方法一:一张一张分,把每个蛋糕分别平均分成4份,共12份,每人分到3份,3个(1/4)张拼在一起得到(3/4)个。

  方法二:三个蛋糕摞在一起,平均分成4份,每人分到1份,1份中有3个(1/4)个,拼在一起得到(3/4)个。

  (2)演示:(突出方法二中3个的1/4就是1个的3/4,深化3/4的意义)无论哪一种方法我们都得到:3个蛋糕平均分给4个人,每人分到的就是3/4个蛋糕。即:3÷4=()(个)(板书)

  (3)在这里,3/4就有两层含义:既表示1个的蛋糕的3/4,又表示3个蛋糕的`1/4

  (4)师:同学们真了不起,老师还想考考你们:如果把5个蛋糕平均分给7个人,每人分得多少个呢?你能想象一下分的过程吗?好好想一想,并和同学交流一下。

  学生汇报,明确:5个蛋糕的1/7就是1个蛋糕的5/7,即:5÷7=5/7(个)(板书)(5)师:刚才我们是分的蛋糕,现在我们来分分绳子。把3根绳子平均分成5份,每份是多少根?怎么列式?学生思考后回答:3÷5=3/5(根)(课件演示)

  3、总结概括分数与除法之间的关系。

  1÷4=(个)3÷4=(个)

  5÷7=(个)3÷5=(个)

  师:观察黑板上的这些算式,你发现了什么?

  三、观察算式,概括分数与除法的关系。

  (1)请同学们观察这两组算式,你发现分数与除法有什么关系?请观察思考一下,并把你的发现和同学交流一下。

  (2)生汇报:我发现除法算式中的被除数相当于分数的分子,除法算式中的除数相当于分数的分母,除法算式的除号相当于分数的分数线。师补充:除法算式的商相当于分数的分数值。

  师强调:相当于

  (3)师:请每个同学看着这些算式说一说分数与除法的关系。

  (师板书):被除数÷除数=被除数/除数

  提问:我们能不能反过来说,分数的分子相当于什么?谁来说一说?

  生:分数的分子相当于除法算式中的被除数,分数的分母相当于除数,分数线相当于除号。

  (4)师:如果用a表示被除数,b表示除数,二者的关系可以用字母表示成:a÷b=a/b

  讨论:用字母表示分数与除法的关系,b是否可以是任何数?为什么?补充板书(b≠0)师板书:a÷b=a/b(b≠0)提问:为什么b≠0?(因为除数不能为0,所以b不能为0。)

  师:分数与除法有着如此紧密的联系,那么它们之间有没有区别呢?(学生说不出可以引导)

  小组议一议再全班交流,明确:分数是一种数,也可以表示两数相除;而除法是一种运算。

  三、练习巩固应用

  1、你能很快说出这些算式的商吗?3÷8=5÷9=7÷13=4÷7=40÷56=12÷61=

  2、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?怎么列式?

  把1千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

  把2千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

  四、全课小结今天这堂课你有什么收获?还有什么问题吗?

  分数除法教案 7

  说课内容:

  九年义务教育六年制小学数学人教版第十册第65页。

  教学地位:

  分数与除法是在学生学习分数的产生和分数的意义基础上学习的。教材讲分数的产生时,学生认识到在整数计算中往往不能得到整数的结果,要用分数表示,初步涉及分数与除法的关系。学习分数的意义时,认识到把一个物体或一个整体平均分成若干份,蕴含着分数与除法的关系,但是没有明确点出分数与除法的关系。教材在学生理解了分数的意义之后,让学生学习分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数表示商,这样可以加深和扩展学生对分数意义的理解,同时也为学生进一步学习假分数以及假分数与整数、带分数的互化做好准备。

  教学目标:

  1、通过分数与除法的学习,渗透事物是互相联系的、变化的、发展的辩证的唯物主义的基本观点。

  2、使学生通过观察与操作,探索分数与除法的关系,会用分数表示两个数相除的商。

  3、使学生在自主探索、合作交流的过程中,进一步发展数感,培养观察、比较、分析、推理等能力。

  教材分析:

  首先,认真钻研教材正确把握教学内容,明确教学目标是正确选择教法的前提。把握教学内容一要全面、二要具体、三要恰当。所谓全面指从思想教育、能力、非智力的心理品质等全面考虑(见教学目标);所谓具体指在40分钟内实现知识领域,能力领域,情意领域的各项任务;所谓恰当,指教法的选择符合教材的内容要求,学生的知识水平,认识能力以及教学内容的阶段性,注意不随意拔高和降低教学要求。避免重点不突出,难点过分集中,以及贪多求快偏差,教师在选择教法前,要深刻地钻研教材,领会编者意图,合理组织教材内容。教师要从具体教材中选择本质的、区别于其他事物的特有属性,也就是了解概念的本质特征和这一概念所反映的对象的全体。例如,分数与除法的概念教学,要明确其本质特征,一是计算整数除法不能整除的时候,可以用分数表示除法的商。以1/3个为例,按照分数的意义,把一个蛋糕平均分成3份,其中的一份是一个的1/3,就是1/3个,还可以这样理解1/3个,表示把一个平均分成3份,每份是1/3米。二是分数与除法的关系可以用用文字表示,即被除数÷除数=被除数/除数,在分数中分母不能是零;还可以用字母表示a÷b=a/b(b≠0)。三是分数与除法的关系,表述为除法与分数的比较:被除数相当于分子,除号相当于分数线,除数相当于分母,商相当于分数值。

  其次,选择教法必须符合小学生的年龄特点和认知规律。小学生形成概念必须经过思维的加工,逐步完成从具体形象到抽象化的过渡。由于学生知识和思维能力的局限,实现这一过渡需要有一定的阶段性和层次性。为此,要帮助学生形成分数与除法关系的概念拟分五个层次(一)复习旧知,引进新课;(二)启思讨论,探求新知;(三)实际操作,寻找规律;(四)比较分析,发现规律;(五)多层练评,反馈总结。

  第三,选择教学必须考虑结合教学内容侧重培养学生某一方面的能力和智力,受到思想品德教育。“分数与除法”这节概念课要侧重引导学生对教学内容进行分析、综合、比较、抽象、概况,并运用所学知识进行简单的推理和判断。例如,在寻找规律,这一层次安排4个步骤:(1)分析题意列出算式(2)实际操作:让学生拿出同样大小的三个圆形纸片,把3个月饼看作单位“1”,把它平均分成4份,求一份是多少,你们能分吗?(3)展示分法:出示3种,有一种是把3个饼叠在一起,平均分成4份,取出一份,这一份是3个饼的几分之几?把3个1/4拼在一起看看拼成了一个饼的几分之几?(4)初步抽象:从图中可以看出:一个饼的3/4就是3个饼的1/4,3/4个饼表示什么意思?把3个饼平均分成4份表示这样1份的数;把一个饼平均分成4份,表示这样3份的数。这样,通过教学使学生既增长知识又长智慧,同时,结合教学内容渗透事物是相联系的辩证唯物主义的基本观点。

  教学学法:

  教学是师生的双边活动,现代教育理论重视课堂教学以学生为主体,重视学生学习方法的指导。叶圣陶先生说过:“教是为了用不着教”,为了“不教”,教师要充分调动学生的'积极性和主动性,让学生参与数学概念形成的过程。初步掌握概念教学的基本程序:通常是引入概念,理解概念,巩固概念,应用概念,遵循学生建立和形成数学概念的基本规律:感知表象——建立概念——巩固概念——应用概念等基本环节,通过数学内容的学习逐渐掌握上述的“程序”与“规律”,以提高数学概念的自学能力。

  在“分数与除法”的教学中,学法指导体现于(1)抓要点,促联系;(2)抓理解,促深化;(3)抓方法,寻策略;(4)抓整理,促记忆。在教学中,让学生参与概念的形成过程。在这个过程中,让学生对一组对象中的每个事物的个别属性进行了解,(例1、例2)对对象间的属性异同进行剖析,接着通过比较,采取异中求同的方法抽象出分数与除法的共同属性即分数与除法的关系式:a÷b=a/b(b≠0),同时引导学生探索分数与除法关系的外延,强调b≠0,弄清其道理;最后,引导学生将新概念与已有的相关的概念联系起来,并进行适当划分从中渗透比较、对应等数学思想,指导学生学习方法策略,进而构建新概念系统。如设计通过填表,让学生进一步了解分数与除法各部分间的联系与区别。

  这样,帮助学生将所学感念纳入知识系统,形成良好稳定的认知结构。

  分数除法教案 8

  教学目标

  (一)理解分数与除法的关系。

  (二)学会用分数表示两个数的商。

  (三)培养学生动手操作的能力。

  教学重点和难点

  (一)分数与除法的关系。

  (二)整数除法的结果用分数表示。

  教学用具

  教具:教学课件

  学具:3张同样大小的圆形纸片,剪刀。

  教学过程设计(一)复习准备

  复习:把6块饼平均分给2个同学,每人分得多少块?

  6÷2=3 思考:把1块饼平均分给2个同学,每人分得多少块?

  1÷2=

  (块)

  把1块饼平均分给3个同学,每人分得多少块?

  1÷3= 6÷2=3(块)1÷2= (块)

  1÷2

  =

  1/2(块)1÷3

  = 1/3

  (块)

  教师:上面的这几道除法题,它的商可以用分数来表示。今天我们就来学习分数与除法的关系。板书课题:分数与除法。

  (二)学习新课

  出示 例6

  例6,把3块饼平均分给4个孩子,每个孩子分得多少?

  教师:怎样列式?列式的依据是什么?

  学生口答后老师板书出列式:3÷4。

  教师:3÷4的计算结果用分数表示是多少呢?请同学取出自己准备的3张圆形纸片,动手分一分看该得多少?

  学生动手剪分,教师巡视,巡视中可提示:该把谁拿来平均分?谁是单位“1”?平均分几份?

  学生剪分完,汇报答案。(答案不统一。)

  (2)教师:照你们说的,把3个饼作为单位“1”,平均分4份。我们看看下面的剪分图。展示电脑动画图像:

  教师:请看一看自己的拼法是不是与图像上的相同。

  问:取出的这一份是多少?

  (3)老师:请观察板书:(前面的`)

  能看出分数与除法有怎样的关系?

  学生口答后,教师说明:除法是一种运算,分数是一个数,所以被除数与分子,除数与分母之间是“相当”的关系,而不说“等于”。所以分数与除法的关系,准确的说法是:被除数相当于分子,除数相当于分母,除号相当于分数线。

  教师:能用式子把这种关系表示出来吗? 学生口答,老师板书: 被除数÷除数=被除数/除数

  用字母a表示被除数,b表示除数,分数与除法的关系可以如何表示?

  教师:在整数除法中除数不能为零,那么在分数中,分母有什么限制没有?

  学生口答后,老师板书补充:(b≠0)(三)。巩固反馈

  1.(口答)用分数表示下面各题的商:

  3÷7

  9÷14

  42÷75

  m÷n(n≠0)

  B÷A(A≠0)

  2.口答填空。(投影片)3. 动脑筋想一 4.明辨是非

  5.看看你学得怎样?

  列式计算:

  1.把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  4/5 2.小明用45分钟走了3千米路,平均每分钟走多少千米?(用分数表示)

  3/45 每千米需要多少时间? 45÷3=15(分钟)(四)课堂总结与课后作业

  1.分数与除法的关系。

  2.作业:课本46页练习八,第1,2,3题。

  分数除法教案 9

  【学习目标】

  1、掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、培养并提高分析、判断、探索能力及初步的逻辑思维能力。

  3、提高解答应用题的能力。

  【学习重难点】

  1、重点是弄清单位“1”的量,会分析题中的数量关系。

  2、难点是分析题中的数量关系。

  【学习过程】

  一、复习题:

  小红家买来一袋大米,重40千克,吃了5,还剩多少千克?

  1、分析题目的条件和问题,画出线段图。

  2、交流讨论并解答。组内检查核对,提出质疑。

  比如如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、探索新知

  1、补充例题:

  (1)小红家买来一袋大米,吃了5千克,还剩15千克。买来大米多少千克?

  (2)理解题意,画出线段图。

  (3)根据线段图,分析数量关系式:____________________________

  (4)根据等量关系式解答问题。___________________________

  2、学习例2

  (1)阅读例5的主题图及题目,用自己的话表述题意,说一说“美术小组的人数比航模小组多“1”的含义,把谁看作单位“1”?_________________________________

  (2)自己动手,画线段图表示两个小组的`人数,将已知条件和问题标注在线段图上,图中的未知数可以用X表示。

  (3)结合线段图,写出等量关系________________________________________________

  (4)列出方程式并解答,算完后梳理一下自己整道题的解题思路?(注意解题格式)

  三、知识应用:

  独立完成P40练习十第4题,组长检查核对,提出质疑。

  四、层级训练:

  1、巩固训练:完成练习十第10——13题

  2、拓展提高:练习十第14题以及P42最后一题“思考练习”。

  五、总结梳理:回顾本节课的学习,说一说你有哪些收获?

  学习心得__________( a、我很棒,成功了; b、我的收获很大,但仍需努力。)

  自我展示台:(写出你的发现或见解)

  分数除法教案 10

  教学目标:

  1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

  2、培养学生的语言表达能力和抽象概括能力。

  3、培养学生良好的计算习惯。

  教学重点:

  总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

  教学难点:

  利用法则正确、迅速地进行计算,并能解决一些实际问题。

  教具准备:多媒体课件、实物投影。

  教学过程:

  一、旧知铺垫(课件出示)

  1、计算下面,直接写出得数

  ×4 ×3 ×2 ×6

  ÷4 ÷3 ÷2 ÷6

  2、列式,说清数量关系

  小明2小时走了6 km,平均每小时走多少千米?

  (速度=路程÷时间)

  二、新知探究

  (一)、例3,

  1、实物投影呈现例题情景图。

  理解题意,列出算式:2÷ ÷

  2、探索整数除以分数的计算方法

  (1)2÷如何计算?引导学生结合线段图进行理解。

  (2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)

  (3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

  (4)根据学生的`回答把线段图补充完整,并板书出过程。

  先求小时走了多少千米,也就是求2个,算式:2×

  再求3个小时走了多少千米,算式:2× ×3

  (5)综合整个计算过程:2÷ =2× ×3=2×

  (二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

  (三)、计算÷,探索分数除以分数的计算方法

  1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

  ÷ = × =2(km)

  2、学生用自己的方法来验证结果是否正确。

  3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

  三、当堂测评

  1、P31“做一做”的第1、2题。

  2、练习八第2、4题。

  学生独立完成,教师巡回指点,帮助学困生度过难关。

  小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

  四、课堂总结

  1、这节课你们有什么收获呢?

  2、在这节课上你觉得自己表现得怎样?

  设计意图:

  这两节课的教学我从以下着手:

  1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

  2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

  分数除法教案 11

  教学目标

  1、使学生明确分式的约分概念和理论依据,掌握约分方法;

  2、通过与分数的约分作比较,学习分式的约分,渗透“类比”的思想方法、

  教学重点和难点

  重点:分式约分的方法、

  难点:分式约分时分式的分子或分母中的因式的符号变化、

  教学过程设计

  一、导入新课

  问:下面的等式中右式是怎样从左式得到的?这种变换的理论根据是什么?

  答:

  (1)式中的左边分式的分子与分母都除以2a2b2,得到右式,这里a≠0,b≠0

  (2)式中的左边分式的分子与分母都除以(x+y),得到右式,这里(x+y)≠0、这种变换的根据是分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变、

  本性质、

  问:什么是分数的约分?约分的方法是什么?约分的目的是什么?

  答:把一个分数化为与它相等,但是分子、分母都比较小的分数,这种运算叫做约分、对于一个分数进行约分的方法是:把分子、分母都除以它们的公约数(1除外)、约分的目的是把一个分数化为既约分数、分式的约分和分数的约分类似,下面讨论分式的约分、

  二、新课

  我们观察:

  (1)中左式变为右式,是把左式中的分子与分母都除以2a2b2得到的,它是分式的`分子与分母的公因式、

  (2)中左式变为右式,是把左式中的分子与分母都除以它们的公因式(x+y)而得到的、像(1),(2)中分式的运算就是分式的约分、即把一个分式的分子与分母的公因式约去,叫做分式的约分、

  一个分式的分子与分母没有公因式时,这个分式叫做最简分式、

  把一个分式进行约分的目的,是使这个分式变为最简分式、

  为了把上述分式约分,应该先确定分式的分子与分母的公因式,那么分式的分子与分母的公因式是什么?

  答:因为分式的分子与分母都是单项式,取分子、分母中相同因式的最低次幂和分子、分母的系数的最大公约数,把它们的积作为这个分式的分子与分母的公因式、

  指出:分子或分母的系数是负数时,一般先把负号移到分式本身的前边、这就同时改变了分式本身与分子或分母的符号,所以分式的值不变、

  例2约分:

  分析:(1),(2)的分子、分母都是多项式,并且都能分解因式,可以先分解因式,再分别确定分子与分母的公因式、

  请同学说出解题思路、

  答:分式的分子、分母都是多项式,可以先分别因式分解,约分,把分式化为最简分式,再求值、

  当x=45时,请同学概括分式约分的步骤、

  答:

  1、如果分式的分子、分母是单项式,约去分子、分母的系数的最大公约数和相同因式的最低次幂、

  2、如果分式的分子与分母都是多项式时,可先把分子、分母分解因式,然后约去分子与分母的公因式、

  3、当分式的分子或分母的系数是负数时,应先把负号提到分式的前边、

  请同学思考一个问题:将分式约分时,约去分式中的分子与分母的公因式,为什么分式的值不变?

  答:因为所给的分式都是有意义的,也就是说,分母的值不等于零、而分式的分子与分母的公因式一定是分式的分母的一个因式,根据分式的基本性质,约分后分式的值不变、

  三、课堂练习

  1、约分:

  2、指出下列分式运算中的错误,并把它改正、

  四、小结

  把一个分式的分子与分母的公因式约去,叫做分式的约分、

  分式进行约分的目的是要把这个分式化为最简分式、

  如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式、如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分、

  分式约分中注意正确运用乘方的符号法则,如:x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3、

  五、作业

  1、约分:

  2、约分:

  3、先约分,再求值:

  课堂教学设计说明

  1、分式的约分和分数的约分有很多类似之处,在导入分式约分时,先充分复习分数约分的概念、方法、目的,引导学生用类比的方法学习分式的约分,从中促使学生发现新旧知识间的联系与发展,让学生在类比、概括中主动获取知识、通过讨论例题,引导学生概括分式约分的步骤、

  分数除法教案 12

  教学内容:《分数除法(一)》(教科书55~56页)

  教学目标:

  1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。探索并掌握分数除以整数的计算方法的推导过程,并能正确计算分数除以整数。

  2、能够运用分数除以整数的方法解决简单的实际问题。

  3、感受到数学与生活的联系,能运用所学知识解决生活问题,激发学生的数学学习兴趣。

  学情分析:分数除以整数这部分内容是学生学习了分数乘法和认识了倒数的基础上进行的。学生之前已掌握了分数乘以分数的计算方法,为本节课的新知学习起到了良好的铺垫作用。

  教学重点:分数除以整数的计算方法的推导过程。

  教学难点:在涂一涂、算一算等活动中,探索并理解分数除法的意义。

  教学准备:学生:1、纸片。2、彩色笔。

  教师:多媒体

  教学过程:

  一、复习导入

  1、说说下面各数的倒数分别是什么?

  7/8 4 / 1 1/6

  2、举例说明分数乘整数的意义和一个数乘分数的意义。

  举例说明整数除法的意义。如30÷3表示什么?

  3、揭示课题:同学们,前面我们学过了分数乘法,那么分数除法你们想不想学呢?今天我们就学习分数除法,你们喜欢吗?

  二、探究新知

  1、涂一涂,理解分数除以整数的意义。

  (1)把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

  提问:4/7表示什么意思?(是把单位1平均分成7份,取其中的4份)(边说边画阴影)

  提问:把4/7平均分成2份,也就是把图上的哪一个部分平均分成2份?(让学生指、涂一涂)出示多媒体课件。

  师:谁来说说你是怎样想的?怎样列式呢?(板书:4/7÷2=2/7)

  (2)小结:分数除法的意义同整数除法的意义相同,都是已知两个乘数的积和其中一个乘数,求另一个乘数的运算。

  2、算一算,探索分数除以整数的计算方法

  (1)提问:怎样计算分数除法呢?下面请同学们和老师一起来探索分数除法的计算方法。(板书课题:分数除法(一))

  (2)师:想一想,如果不看图,你会计算4/7÷2=2/7吗?(在小组内先交流、集体反馈)(板书)

  (3)师:如果要算4/7÷3呢?把这4份平均分成3份,每份是这张纸的几分之几呢?(分一分、涂一涂)。

  (4)师:把4/7平均分成3份,就相当于求4/7的1/3,结果都是4/21。因此,中间我们可以用等号连起来。这样,原来的除法算式就转化成了什么算式?什么变了?什么没变?出示多媒体课件。

  探究过程中要让学生说说“把4/7平均分成3份”怎样画图?

  师:被除数没变,除号改成了乘号(板书),除数2改成了2的倒数1/2(板书)。分数除以整数,就等于分数乘以整数的'倒数。

  3、小结:谁来说一说这种算法是怎样的?0能不能作除数呢?所以,这里还要补上一个条件(补)。

  在今后的分数除法计算中,我们常用这种方法。因为无论分数的分子能否被整数都可以进行计算,不受限制,它的应用更普遍。

  三、知识应用

  1、完成56页练一练1,想一想。先独立完成,再引导学生借助图形说一说分数除以整数的意义和算理。

  2、完成56页的练一练2。独立完成,集体讲评时重点沟通分数除法与分数乘法的联系。

  3、练一练的第3题。独立完成。

  4、练一练的第4题。分析题意,学生独立解决。

  5、练一练的第5题。学生自己尝试填一填,并说一说:分数除法和分数乘法之间的联系。

  四、课堂总结:

  师:分数除法的意义是什么?分数除以整数的计算方法是什么?

  五、课堂练习

  1、计算

  9/10÷30 15/16÷20 14/14÷21 8/9÷6 2/3÷6 5/6÷15

  2、把5/ 6千克苹果平均分给5个小朋友,每个小朋友分到多少千克?

  3、某工程队需完成一项工程的2/3,要求6天完成任务,平均每天需要完成这项工程的几分之几?

  板书设计:

  分数除法

  分数除法的意义:已知两个乘数的积和其中一个乘数,求另一个乘数的运算。

  (1)把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

  4/7÷2=(2)/7

  (2)把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

  4/7÷3

  = 4/7×1/3

  = 4 / 21

  分数除以整数的计算方法:分数除以整数,就等于分数乘这个整数的倒数。

  分数除法教案 13

  教学内容:

  教科书第62页例5及“试一试”“练一练”,练习十二第1~3题。

  教学目标:

  1、使学生联系对“求一个数的几分之几是多少”的已有认识,学会“已知一个数的几分之几是多少求这个数”的简单实际问题,进一步体会分数乘、除法之间的内在的联系,加深对分数表示的数量关系的理解。

  2、使学生在探索解决问题方法的过程中,进一步培养学生独立思考等能力。

  重难点:

  使学生联系对“求一个数的几分之几是多少”的已有认识,学会“已知一个数的几分之几是多少求这个数”的简单实际问题,进一步体会分数乘、除法之间的内在的联系,加深对分数表示的数量关系的理解。

  教学过程:

  一、导入

  出示例题5的图,小瓶标注600ml,大瓶标注?ml

  启发:这两瓶果汁,从图中你知道了什么?

  学生口答后,追问:根据图中的已知条件,你能求出一大瓶果汁有多少毫升吗?为什么?

  提出要求:如果让你补充一个条件表示这两瓶果汁数量关系,你打算怎么样补充条件?

  学生可能补充:大瓶的果汁比小瓶多300毫升,大瓶是小瓶的3/2等等,教师参与学生的交流并出示:小瓶里果汁是大瓶的2/3

  引导:根据老师补充的这个条件,你能求“一大瓶果汁有多少ml吗?

  二、探究

  1、教学例题5

  提问:小瓶里的果汁是大瓶的2/3,这个条件中的2/3是哪两个数量比较的结果?

  提问:把哪个数量看做单位1,单位1的2/3是哪个数量?

  提出要求:你能根据上面的讨论,找出题目中的数量之间的相等的关系吗?

  先请学生互相说,再请全班说。

  板书:大瓶果汁量×2/3=小瓶果汁的量

  启发:现在你准备如何来进行解决?

  在学生回答:可以列方程后,追问:可以怎么样列方程?

  根据学生的回答,板书:

  解:设:一大瓶果汁有x毫升。

  x×2/3=600

  学生完成课本上的解方程,并指名板演

  启发:x=900是不是正确的解呢?你会进行检验吗?

  让学生进行检验,并交流检验的方法

  2、教学试一试

  学生读题后,提问:你能根据题目意思说出两个分数之间的含意吗?在讨论中明确:1/2表示已经喝的是一盒的1/2;而2/5l表示已喝的.牛奶升数。

  启发:根据对题意的理解,你能先把数量关系补充完整吗,再解答吗?

  学生解答以后,再让学生说说怎么想的?

  三、练习

  1、做练一练

  要求学生独立的做,提问:你是怎么样想的?

  2、作练习十二的第1题

  先让学生把数量关系补充完成,再解答。学生完成以后,指名说说思考的过程。

  3、做练习十二的2、3题

  先让学生独立的解答,再根据完成情况进行点评。

  四、小结

  今天这节课,你学到了什么内容?

  课前思考:

  例题5是已知一个量的几分之几是多少,求这个量。这类实际问题的顺向思维是根据关键句写出数量关系式,再列方程解决。但由于用方程解答需要写出“解设------为x”,解方程的过程也比较麻烦,所以如果让学生自由选择的话,估计很多学生会选择用算术方法解答。如何让学生从一开始就体会到用算术解的优越性?我想对本课的教学做如下调整:

  一、找找“1”的量是什么?再将数量关系式补充完整。

  1、男生的人数是女生的4/5

  ( )的人数×4/5=( )的人数

  2、一条路,已经修好了1/5。

  ( )的长度×1/5=( )的长度

  3、9月份实际用电量比8月份少1/4

  ( )用电量×1/4=( )用电量

  4、小瓶里的果汁是大瓶的2/3

  ( )的果汁量×2/3=( )的果汁量

  二、新授

  1、接着复习题,如果小瓶里的果汁有600毫升,那么大瓶里的果汁有多少毫升?你准备怎样解答?你是怎样想的?引导学生发现此时根据数量关系的分析,应该采用方程解很好理解。

  2、让学生独立解答,指名板演。

  3、评价板演题,分析情况。

  4、再出示:如果知道大瓶里的果汁是900毫升,怎样求小瓶里有多少毫升?你是怎样想的?为什么现在直接用算术方法解答。

  5、总结解决分数实际问题的思考过程:

  (1)找关键句,分析单位“1”的量,找到数量关系式。

  (2)根据数量关系分析,确定解答方法。(方程解还是算术方法解)

  (3)列式解答。

  (4)检验。

  三、巩固练习

  (同潘老师设计)

  课前思考:

  找数量关系式——列方程解题的关键

  本课时教学的这道例题的教学重点是为什么用方程解答,以及怎样列出方程。分析数量关系是解决实际问题的一个重要步骤。解答分数应用题,要抓住分数的意义分析数量关系。学生读题后要思考 “大瓶和小瓶的果汁量有什么关系”,要仔细领会“小瓶的果汁量是大瓶的2/3”的含义。联系“求一个数的几分之几是多少,用乘法计算”这个概念,写出数量关系式。在“大瓶的果汁量×2/3=小瓶的果汁量”这一数量关系式中,小瓶果汁量已知,求大瓶的果汁量,显然可以列方程解答。但实际教学中如果有学生想到用除法计算也要加以肯定。因为相对于学习困难生来讲,用列方程的方法便于思考和理解。所以不能把这类题规定学生一定要用方程解,这违背了编者的意图。

  “试一试”和练习十二第1题,都要求学生先把数量关系式补充完整,再解答。在教学列方程解决实际问题的起始阶段,提出这样的要求是必要的。能进一步突出解决实际问题要分析数量关系,帮助学生掌握分析数量关系的方法,体会列方程解决实际问题的特点。在基本掌握了思考的要领和方法之后,有些学生如果感悟到求单位“1”的量应用除法计算也未尝不可。

  课后反思

  这节课学习的分数除法应用题是在学生掌握了分数乘法应用题以及分数除法的意义和计算法则之后进行教学的,通过对分数乘法应用题的转化,使学生了解分数除法应用题的特征,并借助线段图,分析题目中的数量关系(这是本节课的重点也是难点),根据数量关系列出方程。

  在巩固练习中,我通过鼓励学生根据条件把数量关系补充完整,增加了对同一个问题根据算式补充条件的练习,拓展了学生的思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新思维。

  课后反思:

  例题5是典型的分数除法应用题,但现在的新教材屏弃了原老教材对单位“1”已知还是未知的判断,从而确定解答方法是乘法还是除法的思考方法。引导学生对关键句分析,找“单位1”的量,分析数量关系,这样将分数乘除法应用题统一为一种思考方法,学生的思维难度降低了。

  从今天课堂表现看,思考解答方法学生能掌握了,但从对关键句的分析中,发现部分学生根据关键句找数量关系有一些困难,直接导致解答方法不正确。

  课后反思:

  因为昨天的数学课上,我安排了分析数量关系式的练习,为学习今天的内容做了一些准备,所以今天的数学课上,一开始,我就将例题5改编为“大瓶里有果汁900毫升,小瓶里的果汁是大瓶的2/3,小瓶里有果汁多少毫升?”,然后让学生写出数量关系式并列式解答。接着,我再将这一题改为例题5,并组织学生再次分析数量关系式,学生们发现和刚才一题的数量关系式相同,但是这一题中已知小瓶果汁量,要求大瓶果汁量,我问学生“你会解决这个问题吗?”学生独立尝试解答这一题,在交流时大部分学生根据刚才分析的数量关系式列出了方程。在随后的练习中,我再次要求学生先根据题中的关键句分析数量关系式再解答,巡视学生练习情况时也特别关注学生分析数量关系式的正确率。

  课堂作业中,学生们完成得不错,都能先写出数量关系式再列方程解答。看来,明天的课上可以让他们学习用除法直接解决这类数学问题。

  分数除法教案 14

  教学目标:

  能力目标:培养学生动手动脑能力,以及解决实际问题的能力。

  知识目标:提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。

  情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。

  教学重点:

  解决实际问题。

  教学策略:

  在小组间交流合作的基础上,提高计算能力和计算速度。

  教学准备:

  小黑板

  教学过程:

  一、导入新课。

  同学们,我们数学是从生活中得出的经验和结晶,又服务于生活,那么我们的分数除法能解决什么问题呢,这节课我们就学习分数出发的应用。板书课题:分数除法(三)

  二、实施目标。

  1、出示题目:

  跳绳的小朋友有6人,是操场上参加活动总人数的。操场上有多少人参加活动?

  2、指名学生读题,并说出题目中分率的单位“1”的量是谁?知道不知道?

  3、先让学生试着做一做。

  4、交流作法。(根据学生做题情况导入方程的方法)

  5、教师指导学生用方程的方法解题。对用其它方法解答的'同学,只要合理进行表扬。

  6、渗透用算术法解答此题。

  7、教师:只要单位“1”的量不知道,可以用两种方法解答题目,一种是方程;一种是算数法。

  三、巩固目标

  1、试一试第一题。

  指名学生读题,独立解答。针对学生做题情况,进行辅导后进生。

  指导学生分清两问的不同,认清乘法和除法的区别。

  2、试一试第二题。

  独立解答,全班订正。

  四、课堂,教师和学生自评。

  板书设计:

  解:设操场上有x人参加活动。

  X×=6

  X×÷=6÷

  X=6×

  X=27

  分数除法教案 15

  【教学目标】

  使学生在具体情景中,感知分数除法的意义,掌握分数除以整数的计算方法,能正确地用口算或笔算的方法进行分数除以整数的计算.

  【教学重点】

  1、理解分数除法的意义与整数除法的意义相同。

  2、学会分数除以整数的计算法则,并能应用法则正确计算。

  【教学过程】

  一、创设情景导入:

  同学们,前面我们学习了分数乘法,掌握了它的意义和计算法则,并用它解决了相应的实际问题。这节课开始老师将和你们一起去逐步探究分数除法的意义和计算法则,还要解决相应的实际问题。本节课我们先探究分数除法的意义和分数除以整数。

  二、学一学

  (一)分数除法的意义

  1、出示学习目标:在具体情景中,感知分数除法的意义,掌握分数除以整数的计算方法,能正确地用口算或笔算的方法进行分数除以整数的计算.

  出示学习提示:

  (1)观察例1的插图,观察图意,同桌口头说图意然后列式.

  (2)、你能把上面的问题改编成用除法计算的问题吗?(学生独立思考,口述问题并列式)

  (3)、100g=1/10kg,你能将上面的问题改成用kg作单位的吗(意图:引导学生将整数乘除法应用题改变成分数乘除法应用题)

  (4)、引导学生观察比较整数乘除法的问题和改写后的问题,分析得出整数除法和分数除法的联系以及分数除法的意义.

  (5)、练习:课本28页做一做.学生独立练习,订正时让学生说明为什么这样填.

  三[议一议]

  分数除以整数

  1、小组学习活动提示:

  (1)把一张纸的4/5平均分成2份,每份是这张长方形纸的几分之几?

  (2)把一张纸的4/5平均分成3份,每份是这张长方形纸的几分之几?

  ①先独立动手操作,再在组内交流,

  ②讨论:通过折纸操作和计算,你发现了几种折纸方式,每种方式应怎样列式计算?你发现了什么规律?

  (3)汇报学习结果:

  四、练一练

  ①把7/8平均分成4份,每份是多少?什么数乘6等于3/17?

  ②如果a是一个不等于0的自然数,1/3÷a等于多少?1/a÷3等于多少?你能用一个具体的数检验上面的结果吗

  五、小结:

  这节课你们学会了什么?

  指导学生归纳出:分数除以一个不等于0的整数,等于分数乘以这个整数的倒数.

  第二课时一个数除以分数

  【教学目标】

  使学生理解整数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的'计算,并培养学生的推理归纳能力。

  【教学重点】

  1、一个数除以分数的算理。

  2、掌握分数除法的统一法则。

  【教学难点】

  1、引导学生推导出整数除以分数的方法。

  2、对于一个数除以分数的算理的理解。

  【教学过程】:

  一、复习巩固上节知识,导入新课

  1、怎样计算分数除以整数?

  2、口算下面各题

  1/6÷34/7÷23/5÷26/7÷2

  二、学一学

  出示【学习目标】

  使学生理解整数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。

  出示【自学提示】

  1、认真阅读例三:小明2/3小时走了2千米,小红5/12小时走了5/6千米,谁走的快些?

  2、思考:

  (1)谁走得快是比两人的什么?(速度)

  (2)怎样求二人的速度?(自己列出算式,并想一想你的列式依据准备交流)

  (3)你能直接求出这两个算式商的大小吗?

  (4)你会求出这两个算式的商吗?为什么?

  我们这一节就来探究一个数除以分数的计算的方法(板书:一个数除以分数)

  三[议一议]

  探究计算2÷2/3

  (1)画线段示意图提示:

  ①你能用线段图表示这道题的信息吗?试试看(由于用2/3小时行2千米,求1小时行多少千米,学生在画图时有一定困难,画图前可让学生讨论以下问题

  a、2/3小时表示什么?(1小时的2/3)

  b、2/3小时行驶的路程和1小时所行路程有什么关系?(2/3小时行的路程=1小时所行路程的2/3即:1小时所行路程的2/3是2千米)

  此时学生就可根据乘法应用题画图的方法画出线段图了。

  ②把你的画图与同组同学交流一下,看是否相同。如果不同,比比谁的画图能更好的反映信息。

  ③打开教材第30页,看看你们的图与教材的图是否相同。

  (2)探究怎样计算2÷2/3

  独立阅读教材第30页,体会教材中的推导过程,并在小组内说一说

  (3)师生互动

  师生共同探究计算过程,分析算理

  ①1小时走多少千米就是求3个1/3小时走多少千米,必须先求1个1/3小时走多少千米

  ②由2/3小时行2千米,即2个1/3小时行2千米,可求1个1/3小时走多少千米,也就求2千米的1/2是多少?2×1/2

  ③3个1/3就行2×1/2×3千米

  ④由此推出2÷2/3=2×1/2×3

  ⑤由于1/2中的分母2和第三个因数恰好是原来除法算式中的数,为了便于分析,可用乘法结合律让它先算,即

  2÷2/3=2×1/2×3=2×(1/2×3)=2×3/2

  ⑥分析2÷2/3和2×3/2的特征,你们有什么发现?(引导学生得出除以一个不等于0的数,等于乘以这个数的倒数。)

  4、你们能用这个规律计算5/6÷5/12吗?试一试,并把你的计算与同组人交流。

  四、做一做:

  1、教材第31页“做一做”

  2、练习八第4题

  五、小结

  这节课你有什么收获?

  六、课后反思

  第三课时分数四则混合运算

  教学目标

  使学生掌握分数四则混合运算顺序与整数四则混合运算顺序相同,能正确地进行计算,并培养学生的推理归纳能力。

  教学重点:分数四则混合运算顺序

  教学难点:正确进行带括号分数四则混合运算

  教学过程:

  一、复习导入:

  1、一个数除以一个不等于0的数应怎样计算?

  2、计算:

  24÷5/62/3÷3/45/7÷25/14

  二、学一学

  出示学习目标

  出示自学提示

  1、自学例4(1):混合运算应用题

  小红用长8米的彩带做了一些花,每朵花用2/3米的彩带。他把其中的4朵送给了同学,小红还剩几朵花?

  (1)讨论问题

  ①你从题中获得了哪些信息?

  ②要求小红还剩几朵花,先应求什么?

  ③怎样列式?

  (2)讨论要求:

  ①先在小组内讨论问题

  ②独立列算式,并在小组内交流

  (3)汇报讨论结果并板书

  8÷2/3-4

  =8×3/2-4

  =12-4

  =8(朵)

  答:小红还剩8朵花。

  三.做一做

  例四(2)四则混合运算题

  (2)计算1/5÷(2/3+1/5)×15

  ①先按运算顺序计算出题目的得数

  ③在上面的算式里。如果要先计算(2/3+1/50×15,就要用到中括号“[]”。在用到中括号后,就成了新算式,试一试,写出这个新算式。学生写出后教师板书:

  1/5÷[(2/3+1/5)×15]

  (1)先议一议运算顺序,再独立计算,较差学生演板。

  四.议一议:一个算式里,如果既有小括号,又有中括号,应怎样计算?

  五.归纳小结在学生充分讨论归纳后,教师板书:

  先算小括号里面的,再算中括号里面的。

  六、练一练:

  教科书第34页“做一做”

  七、小结:

  第2课时解决问题

  【教学目标】:

  1、使学生初步掌握分数除法应用题的数量关系,学会应用一个数乘以分数的意义解答“已知一个数的几分之几是多少,求这个数”的应用题,能熟练地列方程解答这类应用题。

  2、使学生进一步掌握分数除法应用题的数量关系,加深对分数除法应用题的理解,学会用一个数乘以分数的意义解答“稍复杂的已知一个数的几分之几是多少,求这个数”的应用题。提高学生解答应用题的能力。

  【教学重点】

  1、会用线段图分析数量关系。

  2、使学生理解并掌握“已知一个数的几分之几是多少,求这个数”的应用题。

  3、会解答“稍复杂的已知一个数的几分之几是多少,求这个数”的应用题。

  4、掌握列方程解答文字题的分析方法。

  5、能用方程解答分数除法应用题。

  【教学难点】

  1、解答“稍复杂的已知一个数的几分之几是多少,求这个数”的应用题。

  2、如何分析数量关系。

  第一课时

  已知一个数的几分之几是多少,求这个数”的应用题

  【教学目标】:

  使学生初步掌握分数除法应用题的数量关系,学会应用一个数乘以分数的意义解答“已知一个数的几分之几是多少,求这个数”的应用题,能熟练地列方程解答这类应用题。

  【教学重点】

  1、会用线段图分析数量关系。

  2、使学生理解并掌握“已知一个数的几分之几是多少,求这个数”的应用题。

  【教学过程】

  一、复习导入

  1、说一说分数除法的计算方法

  2、计算25/36÷30

  3、用等式表示下列数量关系

  ①鸡的只数是鸭的3/4

  ②女生是男生的一半

  ③梨重量的3/5相当于苹果的重量

  ④儿童体内的水分占体重的4/5

  二、学一学:

  出示学习提示:

  1、找出例1的条件和问题

  (成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5。

  小明体内有28千克水分,小明的体重才是爸爸的7/15,小明的体重是多少千克?)

  2、思考:

  问题:①题中有几个等量关系?各是哪两个量之间的关系?

  ②所求问题在哪个或哪几个等量关系中?

  ③哪个等量关系中只有所求问题是未知的?

  ④找出这个关系式后用线段图表示它们的数量关系

  小明体重×4/5=小明体内的水分质量

  ?×4/5=28

  三.做一做如果用方程解这道题,你会吗?试一试

  爸爸体重是多少千克?

  四.议一议

  ①爸爸的体重在哪一个关系式里?写出这个关系式

  ②怎样用线段图表示它们的关系。

  ③如果用方程解答这道题该怎样做?

  (学生讨论结束后独立完成后,让组长检查后汇报)

  (4)、学生独立阅读教材并填充教材。

  五.练一练

  (1)教科书第38页“做一做”

  (2)一条裤子75元,是一件上衣价格的2/3。一件上衣多少元?

  六、小结:

  本节课你有什么收获?

  第二课时

  教学内容:稍复杂的“已知一个数的几分之几是多少,求这个数”的应用

  【教学目标】:

  使学生进一步掌握分数除法应用题的数量关系,加深对分数除法应用题的理解,学会用一个数乘以分数的意义解答“稍复杂的已知一个数的几分之几是多少,求这个数”的应用题。提高学生解答应用题的能力。

  【教学重点】

  1、会用线段图分析数量关系。

  会解答“稍复杂的已知一个数的几分之几是多少,求这个数”的应用题。

  3、掌握列方程解答文字题的分析方法。

  4、能用方程解答分数除法应用题。

  【教学难点】

  1、解答“稍复杂的已知一个数的几分之几是多少,求这个数”的应用题。

  2、如何分析数量关系。

  【教学过程】

  一、复习导入

  写出下面数量关系(用等式)

  (1)裤子价钱是上衣的2/3

  (2)裤子的价钱比上衣少1/3

  二、学一学

  出示【学习目标】:

  进一步掌握分数除法应用题的数量关系,加深对分数除法应用题的理解,学会用一个数乘以分数的意义解答“稍复杂的已知一个数的几分之几是多少,求这个数”的应用题。提高解答应用题的能力。

  出示【自学提示】

  阅读例2爱华小学的同学非常喜欢课外兴趣小组,他们学校参加美术小组的有25人,比航模小组人数多1/4,算一算,航模小组有多少人?

  思考:

  (1)题中告诉了我们哪些信息?(条件和问题)

  (2)怎样用线段图表示它们之间的数量关系?

  (3)问题和条件之间有怎样的数量关系?

  (4)这道题用什么方法解答?理由是什么?

  三.做一做

  学生独立解答例2,较差学生演板

  四、议一议

  要求:

  ①重点以学一学中的4个问题为依据在小组内充分讨论

  ②由组长或小组学生代表准备汇报讨论结果,对演板情况以及出现的问题进行分析。

  五、练一练

  1、教科书练习十第4题

  2、小红家买来一袋大米,吃了5/8,还剩15千克。这袋大米重多少千克?

  3、修一条公路,修了200米,还剩2/3没有修。这条路长多少米?

  六、小结:

  本节课你有什么收获?

【分数除法教案】相关文章:

分数除法教案10-25

分数除法教案(精选10篇)10-22

有关分数除法教案5篇06-16

分数除法教案范文8篇04-01

【精华】分数除法教案3篇03-28

分数除法教案模板七篇06-15

有关分数除法教案范文汇编七篇10-29

分数乘除法知识点总结11-08

小学五年级数学分数除法教案09-25