教案

数学《比例尺》教学教案

时间:2023-01-31 09:29:27 如意 教案 我要投稿
  • 相关推荐

数学《比例尺》教学教案(通用19篇)

  作为一位杰出的老师,编写教案是必不可少的,教案是教材及大纲与课堂教学的纽带和桥梁。那么你有了解过教案吗?下面是小编精心整理的数学《比例尺》教学教案,仅供参考,大家一起来看看吧。

数学《比例尺》教学教案(通用19篇)

  数学《比例尺》教学教案 篇1

  教学内容

  六年制小学数学第十二册课本第55页例1.例2.作业本第31(29)。

  教学目标

  1.使学生理解比例的意义。

  2.使学生能应用比例尺的知识求平面图的比例尺,以及根据比例尺求图上距离和实际距离。

  3.培养学生分析问题、解决问题的能力和创新能力。

  教学重点:

  理解比例尺的意义。

  教学难点

  根据比例尺求图上距离和实际距离。

  教具准备

  多媒体课件一套。

  教学过程:

  一、问题的情景:

  1. 出示邮票。问:你能同样大小的把它画在图纸上吗?

  让同学们画一画,再拿出邮票的长,比一比,怎么样?

  归纳:(同样长)得:图上的长和实际的长的比是1:1。

  2. 教室的.长是9米,你能同样长的画在图纸上吗?更大一些呢?

  如果操场的长,整个中华人民共和国,能完全一样画在平面图上吗?(不能),想个什么方法(窍门)可画上去了?

  3. 让生猜想:(出示学校平面图)图上操场的长和实际长的比,还会是1:1吗?大约是几比几?

  4. 导入新课:人们在绘制地图和平面图时,往往因为纸的大小有限,不可能按实际的大小画在图纸上,经常需要把实际距离缩小一定的倍数以后再画成图。象手表等机器零件比较小,又得把实际长度扩大一定的倍数以后,才能画到图纸上去。这就.需要涉及到一种新的知识。也就是今天我们一起来研究比例尺的问题。

  板书:比例尺

  二、问题解决:

  5. 一个教室长是9米,如果我们要画这个教室的平面图,为了看图和携带方便,就需要把实际距离缩小一定的倍数后画在平面图上,缩小多少倍由你自己决定,你打算设计:用几厘米表示9米。请四人小组讨论并设计。

  6. 小组回报设计方案,教师选择以下四种方案。

  (1).用9厘米表示9米

  (2).用4.5厘米表示9米

  (3).用3厘米表示9米

  (4).用1厘米表示9米

  7. 说说以上方案是图上距离比实际距离缩小了多少倍?

  算一算,每幅图 图上距离和实际距离的比。

  (1).9厘米9米=9900=1100

  (2).4.5厘米9米=4.5900=1200

  (3).3厘米9米=3900=1300

  (4).1厘米9米=1900

  8. 这四个比的前项代表什么?(图上距离),后项代表什么?(实际距离),我们把这样的比,叫比例尺。

  齐读:比例尺是图上距离与实际距离的比,化简后得到最简整数比。

  比例尺怎样求:(看上述四个比例式得出):

  图上距离实际距离=比例尺 或 图上距离

  实际距离

  9. 讨论汇报:上面四幅图,比例尺是多少图最大?

  比例尺是多少图再小?为什么?

  10. 练习:

  (1).甲、乙两座城市相距120千米,在地图上量得两城市的距离是4厘米。求这幅地图的比例尺。

  (2).学校里修建运动场,在设计图上用25厘米长线段来表示操场的实际长度150米。求图上距离和实际距离的比。

  (3).一张中国图,图上4厘米表示实际距离1040千米,求这幅地图的比例尺?

  (4).一张紧密图纸中,图上1厘米表示实际1毫米,求这幅精密图纸的比例尺?

  (观察精密零件如果要画在图纸上,怎么办?(放大)。那这幅精密图纸的比例尺会求吗?

  上述四题分层练习,后讲评。

  11. 比较(3)、(4)两题的比例尺有什么不同?

  教师小结:一般把缩小图的比例尺写成前项是1的比,而把放大图的比例尺写成后项是1的长。

  12. 比例尺有多少种表示方法?让生说一说

  (常见的有:比的形式 分数的形式 线段形式)

  三、问题的应用:

  根据比例尺的关系式,求实际距离。

  (1).出示例2 在比例尺是130000000的地图上,量得上海到北京的距离是3.5厘米。上海到北京的实际距离大约是多少千米?

  (学生独立解答,同时抽一生板演)

  解:设上海到北京的实际距离为x厘米,

  x=105000000

  105000000厘米=1050千米。

  答:上海到北京的实际距离大约是1050千米。

  (2).分析讲述:

  根据比例尺的计算公式,已知图上距离和比例尺求实际距离,用方程解。

  (先设x,再根据比例尺的计算公式列出方程。)

  (3).图上距离和实际距离的单位要统一,一般都统一为低级单位厘米。

  (4)怎样设x,.教师指出:设未知数时,单位要与已知单位统一,后再化聚到问题单位。

  (5)尝.试练习第57页试一试。

  河西村到汽车站的实际距离是20千米,图上距离是5厘米,算出这幅地图的比例尺。汽车站到县城的图上距离是15厘米,实际距离是多少千米?

  数学《比例尺》教学教案 篇2

  一、教学内容:

  人教版六年级下册《比例尺》。

  二、教学目标:

  1、使学生理解比例尺的意义,掌握求比例尺的方法,并能用以解决简单的求比例尺的实际问题。

  2、通过小组合作研讨,实践操作,培养学生的合作意识和创新思维能力。

  3、体验数学与生活的联系,培养用数学眼光观察生活的习惯。

  三、教学重点:

  理解比例尺的意义。

  四、教学难点:

  掌握求比例尺的方法,并能熟练解答比例尺的有关问题。

  五、教法要素:

  1、已有的知识和经验:

  ﹙1﹚比的意义

  ﹙2﹚化简比

  2、原型:

  ﹙1﹚分别画出5厘米和10米长的线段。

  ﹙2﹚插图内容:中国地图、机器零件图。

  ﹙3﹚例1将线段比例尺改写成数值比例尺。

  3、探究的问题:

  ﹙1﹚为什么要确定图上距离与实际距离的比?什么叫比例尺?

  ﹙2﹚线段比例尺怎样改写成数值比例尺?

  ﹙3﹚怎样求一幅图的比例尺?

  六、教学过程:

  (一)情境导入

  1脑筋急转弯

  北京到上海的距离是1200千米,可是一只蚂蚁从北京到上海只用5秒钟,这是为什么?

  生:它是在地图上爬的

  出示一幅中国地图引出图上距离和实际距离。

  2、让学生画一条长5厘米的线段。﹙学生很快画完﹚

  3、再画一条长10米的线段。﹙学生迟疑﹚

  师:你有什么疑问吗?

  生:本子没有那么长,画不出来。

  师:那该怎么办呢?

  小组讨论,然后在练习本上画一画

  组织汇报交流,让学生说说自己画的线段是多少厘米,它是把10米长的线段进行怎样变化得到的。

  师:由于你们的标准不一样,因此大家画的线段长度不一样,所以画图时应该有个统一的标准,这个标准就叫比例尺,今天我们就来研究比例尺的内容,板书:比例尺

  二)探究与解决

  1、探究比例尺的.意义

  (1)阅读课本53页上面的内容

  (2)你认为什么叫比例尺?

  让生说出自己画图的标准即比例尺,并分别说出1:100和1:200的意思。再用自己的语言叙述什么叫比例尺。

  师:一幅图的图上距离与实际距离的比,叫做这幅图的比例尺。

  板书:图上距离:实际距离=比例尺﹙或分数形式的比例尺﹚

  2、认识数值比例尺和线段比例尺

  师:有关比例尺的知识在生活中有很多的用处。

  ﹙1﹚出示:标有数值比例尺的中国地图

  让生说出比例尺1:100000000的意思。﹙当学生回答出图上1厘米表示实际距离100000000厘米。师可引导学生说出也就是图上1厘米表示实际距离1000千米。﹚

  ﹙2﹚出示:机器零件图

  说出图中的2:1表示什么意思。﹙图上2厘米表示实际距离1厘米,由于机器零件较小,需要把实际尺寸扩大。﹚

  师:像1:100、1:100000000、2:1…这些比例尺有个特点,前项或后项都是1。为什么不是2或3或其他数呢?﹙生…﹚为了计算方便,一般都把前项或后项写成是1的比。像这样用数字比的方式表示的比例尺我们把它叫做数值比例尺。

  ﹙3﹚出示:标有线段比例尺的北京市地图

  让生讨论线段比例尺表示的意思,并介绍线段比例尺。

  过渡:那怎样将线段比例尺改写成数值比例尺呢?

  3、线段比例尺改写成数值比例尺

  学习例1:小组的同学互相讨论尝试改写。师板书例1。

  师:谁能说说改写时要注意什么?

  师生共同小结:

  (1)图上距离与实际距离的单位不同,要把不同单位化成相同单位,50千米改写成用厘米作单位的量时,50后面应补5个0

  比例尺是一个比,不带单位名称

  (3)比的前项为1。

  过渡:通过刚才的学习,我们认识了什么叫比例尺,还知道了有数值比例尺和线段比例尺,那你知道怎么算比例尺吗?

  4、完成53页“做一做”

  学生试做后,小组内交流做法。

  全班交流,总结方法。﹙首先依据比例尺的意义确定比例尺的前项和后项,写出比,图上距离与实际距离的位置不要写错;前后项单位名称要统一;最后化简比,变成前项是1的比。﹚

  (三)训练与应用

  1、我会判断

  ﹙1﹚比例尺是一种测量长度的尺子。﹙﹚

  ﹙2﹚一幅图的比例尺是80:1,表示把实际距离扩大80倍。﹙﹚

  ﹙3﹚比例尺的后项一定比前项大。﹙﹚

  2、完成练习十第1、2题

  学生完成后,让生说一说是怎样想的。

  3、完成练习十第3题

  学生完成后,让生说说自己的想法。并观察这个比例尺是将实际距离扩大。

  (四)小结与提高

  引导学生谈谈本节课的收获并对自己的学习表现进行评价。

  数学《比例尺》教学教案 篇3

  教学内容:

  教科书30到32页。

  教学目标:

  1、使学生理解比例尺的意义,并能求出平面图的比例尺和根据比例尺求出实际距离。并能应用解决生活中的实际问题。

  2、 通过小组合作研讨、实践操作,培养学生的合作意识和创新思维的能力。

  3、 通过教学情境,培养学生热爱祖国的思想感情。

  教学过程

  一、 导入新课

  1、 同学们,今天老师请你们当回设计师,请大家将我们教室占地的平面图画在白纸上。(长8米、宽6米)

  2、 请画好的将自己的作品贴在黑板上。有不一样的请你贴上来。

  3、 按大小分类。(讨论后说明随意画的长方形不是教室的平面图)

  4、 讨论:将这么大的教室画到图上你采用了什么办法?(缩小)。为什么这些图有大有小呢?

  5、 分别请同学说说自己画的设想。

  6、 在同学们贴上的纸上介绍图上距离、(画在图上的8厘米、6厘米就是图上距离)。实际距离(同学们量出的教室的长8米,宽6米就是实际距离。同学们缩小的倍数就是你这幅图的比例尺。请你写上自己的比例尺。

  7、 板书课题。“认识比例尺”

  二、 新课展开

  1、自学课文

  让学生看课本上的第56页,初步接触图上距离和实际距离的比叫做比例尺。比例尺=图上距离比实际距离

  说明:我们所缩小的倍数,一般取图上距离与实际距离的比,为计算方便通常把比例尺写成前项是1的'比。

  改写自己所画的图的比例尺。

  2、出示中国地图(投影)

  <1>找出这幅地图的比例尺:1:30000000

  讨论:比例尺1:30000000表示什么实际意义?(图上距离1厘米表示实际距离300000000厘米)。

  <2>观察这幅图的比例尺你还发现了什么?

  (电脑演示放大效果)

  介绍线段比例尺。你能看懂它的意思吗?与数值比例尺比较。(线段比例尺操作性强的,便于估计)。

  <3>你能从地图上大致的估计上海到北京的距离吗?小组讨论、反馈。评价各种计算的方法。板书:图上距离∶比例尺=实际距离

  <4>同学们,阳春三月正是春游的好季节,假如我们602班准备两天的行程出去旅游,请你设计一条合适的路线。(拿出自己准备的地图,四人小组讨论)

  <5>小组反馈,评比优秀方案。

  3、再次认识比例尺

  <1>出示一个手表的零件,这些零件如果要你画出来,你觉得有什么困难。你有什么办法吗?

  <2>电脑课件演示。

  <3>求出这幅图的比例尺。说说与一般的地图上的比例尺有什么不同。

  <4>根据讨论板书:

  比例尺 把实际距离缩小一定的倍数 如1:30000000

  把实际距离扩大一定的倍数 如200:1

  <5>引导讨论要将钢笔或杯子的设计图画出来,你选择怎么样的比例尺?

  补充板书:

  把实际距离按原来的大小画出来,比例尺就是1:1

  三、 练习

  1|试一试。

  四、 作业:31页练一练。

  数学《比例尺》教学教案 篇4

  一、教学目标:

  1、让学生在实践活动中体验生活中需要比例尺。

  2、通过观察、操作与交流,体会比例尺实际好处,了解比例尺的含义,并且明白什么是图上距离,什么是实际距离。

  3、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

  4、学生在自主探索,合作交流中,逐步构成分析问题、解决问题的潜力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

  二、教学重点:

  1、正确理解比例尺的含义。

  2、利用比例尺的知识,解决生活中的实际问题。

  三、教学难点:

  运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

  四、教学准备:

  多媒体课件,地图,简易建筑图纸。

  五、教学过程:

  (一)激趣导入

  1、教师:这天,老师要测试一下同学们的反应潜力,你们准备好了

  吗?请看大屏幕?(课件出示“单位转换”)

  2、学生群众回答。(个别难题,教师引导计算,并且提问学生:你是怎样想的?注意学生的鼓励表扬)

  3、创设情境

  (1)师:这天我们班的两位同学产生了一场争论,你们想明白是怎样回事吗?

  (2)学生情景表演。(师播放动画)

  (3)通过刚才的观看,你们会支持哪一位同学呢?你有什么办法把操场画进本子吗?

  生:按照必须的比例缩小。

  (4)教师:你的想法很对,那你打算在本子上用多长的距离表示操场的长80米,用多长的距离表示操场的宽60米?

  生1:用8厘米表示80米,用6厘米表示60米。(板书)

  (5)其他同学认为他说的对吗?我们一起来表扬他。

  4、师:此刻,在我们的黑板上出现了两组量,这两组量中,哪组是我们画在图上的距离?(8厘米和6厘米)哪组是实际生活中的距离?(80米和60米)

  5、小结:我们把画在图上的距离叫图上距离,把实际生活中的距离叫实际距离。(板书)

  6、师:当我们用8厘米表示80米时,实际上把80米缩小了多少倍?(自由回答)我们一起来看看他们的比是多少?

  (引导:比的前项和后项单位要统一,再划成最简整数比)

  板书:8cm:80m=8cm:8000cm=1:1000

  7、继续引导,并板书:6cm:60m=6cm:6000cm=1:1000

  8、师:那里的1:1000说明我们用图上距离1cm表示了实际距离多少厘米?(1000厘米)

  9、小结:像这种图上距离与实际距离的比,就叫比例尺。我们这天要学习的就是比例尺。(板书:比例尺)

  (二)探索发现

  1、揭示比例尺的好处。(课件播放)

  教师补充板书:图上距离/实际距离=比例尺

  公式转换:实际距离=图上距离÷比例尺

  (板书)图上距离=实际距离×比例尺

  2、补充说明比例尺的特点:比的前项与后项单位要统一,并且是最简整数比。例如:1:100或1/100说明用图上距离1cm表示实际距离100cm。

  3、小组比赛,说一说:以上比例尺分别说明了什么意思?

  举例:1:200说明用图上距离1cm表示实际距离200cm。

  (分组回答)

  4、师:仔细观察,这些比例尺有什么相同之处?

  生:比例尺的前项都是“1”。

  师:为什么要写成前项是“1”,而不写成前项是别的数字呢?

  生:这样能够清楚的看出图上距离代表实际距离多少厘米。

  师:真了不起,真是一针见血。

  5、师:同学们此刻看到的是老师的房屋平面图,你能从看到哪些呢?(课件出示房屋图,生自由回答)

  生1:父母卧室……

  生2:比例尺1:100.

  6、师:你观察真仔细!比例尺1:100是什么意思?

  (学生讨论、汇报,教师引导)

  学生1:图上1厘米长的线段表示实际100厘米。

  学生2:表示实际距离是图上距离的100倍。

  7、运用知识,尝试解决问题:

  教师:此刻请大家量一量,图中我的卧室,长是()厘米,宽是()厘米。()

  算一算我的卧室,实际的长是()米,宽是()米,面积是()平方米。(生汇报,教师在课件上记录)

  8、说一说:你是怎样算的?(板书:黑板左侧)

  生1:先量出卧室的长4厘米,实际长=4厘米×100=400厘米=4米

  生2:再量出卧室的宽5厘米,实际宽=5厘米×100=500厘米=5米

  生3:卧室的实际面积是5×4=20平方米

  9、师:谁能算一算我家的总面积是多少?10×11=110平方米

  (三)解决问题、巩固提高

  1、师:我打算在父母卧室北墙正中开一扇宽为2米的窗户,在平面图上就应画多长距离呢?

  2、引导计算

  (1)题目中,2米是什么距离?(实际距离)比例尺是多少?(1:100)

  (2)根据实际距离和比例尺,我们就应如何计算图上距离?

  板书:2米=200厘米200×1/100=2(厘米)

  3、师:笑笑在本子上用8厘米表示了我的卧室的长,图上1厘米表示了实际距离多少厘米?你是怎样算的?

  板书:4米=400厘米400÷8=50(厘米)

  4、她画的平面图的比例尺是多少?(1:50)

  5、(课件出示:北京到上海的情景)

  师:题目中,已知哪些条件?(图上距离6厘米,比例尺1/)

  师:根据以上条件,北京到上海的实际距离是多少?

  (生独立计算,群众回报)

  (四)总结深化、拓展延伸

  1、师:这天我们主要学习并认识了比例尺,明白图上距离与实际距离的比叫比例尺。这天所学的比例尺主要是把大的距离缩小,我们能够把它叫做缩小比例尺,为了计算方便,前项一般为1。但是有时我们也需要把一些小的东西放大,因此我们把这样的比例尺叫做放大比例尺,后项一般为1。

  2、师:通过这天的学习,你们还学会了哪些?

  六、板书设计

  比例尺

  图上距离:实际距离=比例尺……2米=200厘米

  实际长……8cm:80m=8cm:8000cm=1:1000

  200×1/100=2(厘米)

  实际宽……6cm:60m=6cm:6000cm=1:1000

  4米=400厘米

  图上距离=比例尺×实际距离400÷8=50(厘米)

  实际距离=图上距离÷比例尺答:比例尺1:50

  七、课后反思

  《比例尺》是在学生已经掌握了化简比以及比例的知识的基础上进行教学的'。我在设计教学环节时,仔细分析了教材的设计意图,同时又思考如何将概念教学恰到好处的与学生的生活实际联系起来。反思整个教学过程,我认为成功的关键有以下几点:

  1、情境再现,建立数学与生活的紧密联系。

  本课资料距离学生生活较远,虽然在今后的地理,制图等知识中,会有所体现,但是以目前六年级学生的生活经验来讲,却不会接触。所以,我将导入情境设置在学校的范围内,通过让学生表演谈话情境,引出问题:“你能把学校的操场画进本子吗?”利用这样的导入,很快拉近了本课教学与学生生活经验之间的距离。在讲授知识的时候,教师又以卧式的建筑图引出了计算练习,有一次加深了数学与生活的联系。

  2、在动手操作中得出概念。

  通过让学生设计制作校园平面图,亲身体验设计师的感觉,让他们在实践中体会如何确定比例尺的大小,如何计算数据,如何作图等。在汇报交流时,恰当的传授知识。这一环节让学生充分总结出比例尺的定义,认识缩小比例尺,针对学生们得到的很多结论,我将他们的作品一一展示给同学们看,课堂充满了探索的气息。

  3、适当点拨,大胆放手。

  新课标提倡把课堂还给学生,让学生成为课堂的主人。而教师只是教学活动的组织者、引导者和参与者,教师如何充当号者一主角呢?我认为,教师既然是引导者,教学中的讲解和点拨是必需的,教师既然是组织者、参与者,讲解和点拨又应是适时适度的。在将本课概念讲授清楚以后,教师大胆放手,引导学生通过独立思考,小组讨论的方式,自主完成任务,而教师的大胆放手也取得了很好的效果。在交流汇报的过程中,教师再进行一些适当地点拨,即实现了教学目标,又使教师的教学过程变得简单自如。

  4、对于学生的理解要及时给予肯定和评价。

  以人为本是新课标的基本理念,在这一理念指引下,数学课堂教学中应重视数学学习的个性化发展,教师要尊重学生的学习,既要尊重学生的数学的不同理解,又要尊重学生的数学思维成果。

  在教学中,求比例尺时,学生出现了多种求法,我就循着学生的思路展开教学,我和学生在认真倾听学生讲解的同时,对不同的方法加以肯定与评价,得出求比例尺的基本方法,并且说明,学生能够有自己不一样的解法,但要注意书里的规范与完整。

  总之,要遵循学生学习心理规律,就要尊重学生的理解,让学生在不断的体验和感悟中总结和调整自己的学习,在掌握知识,提高潜力的同时,学会学习。

  数学《比例尺》教学教案 篇5

  教学目标:

  1、知识与技能:使学生理解比例尺的意义,学会求比例尺、实际距离和图上距离。

  2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。

  3、情感态度与价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。

  教学重点:

  理解比例尺的意义,根据比例尺的意义求比例尺、实际距离和图上距离。

  教学难点:

  运用比例尺的有关知识,学会解决生活中的一些实际问题。

  教学准备:多媒体课件。

  教学过程:

  一、展示目标,引入本课。

  二、探究新知,意义建构

  1、看一看

  下面几幅地图的比例尺分别是多少。①中华人民共和国这幅地图的比例尺是多少?(1:6000000)②安庆市这幅地图的比例尺是多少?(1:2500000)③笑笑家的平面图按照一定的比例画在纸上,这幅平面图的比例尺是多少?(1:100)

  2、说一说

  (1)比例尺1:100表示什么意思呢?

  生:图上1厘米长的线段表示实际距离100厘米。

  (2)在比例尺1:2000的地图上,图上距离1厘米,表示实际距离(2000)厘米。

  (3)在比例尺1:40000的地图上,实际距离是图上距离的(40000)倍。

  3、议一议

  (1)什么是比例尺呢?

  图上距离和实际距离的比,叫做比例尺。

  (2)比例尺怎样表示呢?

  比例尺=图上距离:实际距离或比例尺=图上距离/实际距离(板书:比例尺=图上距离:实际距离:)

  (3)比例尺有什么特征呢?

  ①比例尺与一般的尺子不同,它是一个比,不带计量单位;②图上距离和实际距离的单位是统一的;③比例尺的前项,一般应化简成“1”,如果写成分数的形式,分子也是“1”。

  【意图】数学概念不是老师灌输给学生的,而是在学生有了感性认识之后,自己总结和概括出来的,自己发现特征的,不仅知其然,还要知其所以然,学生只有经历知识和概念的'形成过程,才能真正理解。

  三、拓展延伸,巩固新知

  1、有时,比例尺的图上距离比实际距离大。一个精密零件的长度只有3.5毫米,画在一张图纸上是70毫米,这幅设计图纸的比例尺是多少?

  70:3.5=700:35=20:1

  答:这幅设计图纸的比例尺是20:1。

  2、有的地图上的比例尺用线段来表示。小明家在学校的正西方,到学校的实际距离是900米。你有办法找到小明家在图上的位置吗?1厘米相当于实际距离300米。(在学校正西方向900米。)

  3、这位老师从广州坐飞机到北京开会,实际距离是多少千米呢?

  32×6000000=192000000(厘米)192000000厘米=1920(千米)

  答:广州到北京实际距离是1920千米。

  五、总结新课,整理知识

  通过今天的学习,你有什么收获呢?

  板书设计:比例尺

  比例尺=图上距离:实际距离

  实际距离=图上距离×1厘米表示的实际距离

  图上距离=实际距离÷1厘米表示的实际距离

  数学《比例尺》教学教案 篇6

  教学目的

  1.使学生了解地图及其重要性,了解比例尺、方向和图例的重要意义,学会在地图上判断方向及计算两点间的距离;使学生掌握三种比例尺形式的互换,明确比例尺大小的含义。

  2.通过本节课知识的学习,培养学生初步掌握读图和用图的基本方法。

  3.在使用地图的过程中,让学生体会地理知识在实际生活中意义,进而引起他们学习地理的兴趣。

  课型讲授新课

  教学方法讲述与问题相结合的方法。

  教学重点和难点:

  本节课知识都是重点,难点是地图上方向的判断。

  教学用具自制投影片:

  某动物园导游图,带有经纬网的三幅图。

  教学提纲

  第一节地图上的比例尺、方向和图例

  一、地图的用途

  二、地图上的比例尺

  1.比例尺

  2.比例尺的三种形式

  3.比例尺的大小

  三、地图上的方向

  1.地平面上的八个方向

  2.地图上的方向判断

  四、图例和注记

  教学过程

  [展示投影片]某动物园导游图

  提问引入这是某动物园的导游图,请你认真观察并回答:金丝猴馆在熊猫馆的什么方向?虎山在熊猫馆的什么方向?假如要依次参观长颈鹿、熊猫、老虎应选择哪条路线最近?(同学回答后教师给出正确答案。)

  [使用地图册]将地图册翻到世界地形。

  [教师讲述]这幅导游图是一幅平面图,它非常直观、形象,制作起来比较简单。而这幅世界地形图,是一幅地图,比起平面图来它复杂得多。它是把全球,或一个地区的地理事物,按一定比例缩小后,用不同的颜色和符号表示出来的。人们根据地图,就可以了解一个地区、一个国家、乃至整个世界的面貌。

  [练习]比较平面图与地图的异同。(引导同学从范围大小、信息量多少等方面比较。)

  那么地图有什么用途呢?它是怎样绘制的呢?我们怎么使用地图呢?从今天开始,我们就来学习这些知识。

  [提问]请同学举例说明,地图有什么用途?(教师广泛引导,最后总结概括。)

  可见,地图在生产生活中有着多种多样的用途,在我们学习知识时,地图也是重要的工具,我们一定要学会经常使用它。要想使用地图,首先要知道地图上的比例尺、方向和图例。

  第一节地图上的比例尺、方向和图例(板书)

  一、地图的用途(板书)

  二、地图上的比例尺(板书)

  1.比例尺(板书)

  [教师讲述]地图上的比例尺,表示图上距离比实际距离缩小的程度。所以比例尺也叫缩尺。用公式表示就是:

  比例尺=图上距离/实际距离

  [练习]教师给出数据,进行比例尺、图上距离、实际距离的计算。

  [教师讲述]地图上的比例尺,通常用三种形式表示。

  2.比例尺的.三种形式(板书)

  ①数字式②文字式③直线式(教师讲清三种形式的具体表示方法。强调三种形式各自的优点并说明三种形式的比例可以互相转换表示。)

  [展示投影片]比例尺的三种形式

  [练习]将写出的比例尺改写成另外两种形式并填在表中

  3.比例尺的大小(板书)

  [教师讲述]比例尺是个分式,分母愈大,比例尺愈小。

  [练习]下列四种比例尺中,最大的是______。A:1∶500000B:

  (答案是:A)

  [练习]将教材翻至17页,比较北京市地图和中国地图,请问哪一幅地图的比例尺大?哪一幅地图表示的范围大?哪一幅图表示的内容更详细?

  [提问]图幅大小相同的两幅地图,比例尺大小跟表示范围的大小、内容的详细程度有什么关系?(引导学生从刚才的练习中归纳)

  [教师总结]在地图上所表示的范围愈小,要表示的内容愈详细,选用的比例尺应愈大;反之,选用的比例尺应愈小。

  除了比例尺外,地图另外一个要素是方向。

  三、地图上的方向(板书)

  1.地平面上的八个方向(板书)

  [练习](教师先在黑板上画出未标明方向名称的地平面的八个方向图。)根据“上北下南”的规定,标出地平面上的八个方向。

  对于一幅地图,我们怎么来判断方向呢?

  2.地图上方向的判断(板书)

  [教师讲述]

  (1)一般的地图,通常是按“上北下南,左西右东”的规定确定方向的。

  (2)有指向标的地图,应按指向标规定的方向判断。

  [提问]请读教材第18页“想一想”中看图2.6,请回答:

  图中公路方向是怎样变化的?

  (3)有经纬网的地图,要根据经纬网定方向。经线指示南北方向,经纬指示东西方向。

  [展示投影片]带有纬线网的三幅图(见课本18页“做一做”中各图。)

  [练习]请学生完成教材第18页“做一做”。(之后教师总结在经纬网上方向判断的方法。)

  在地图上有各种符号和文字,这是图例和注记。

  四、图例和注记

  [教师讲述]讲述图例和注记的基本知识,引导学生读教材19页“常用图例”。并以某一幅地图为例练习。

  [教师总结]比例尺、方向和图例被称为地图的三要素。学会在地图上辨方向、量距离、识图例,也就是初步学会使用地图了。这样,你就能从地图上学到很多知识。

  布置作业(略)

  数学《比例尺》教学教案 篇7

  教学资料:

  《义务教育课程标准实验教科书数学》(人教版)六年级下册第47、48页,练习八第1—3题。

  设计理念:

  数学程标准指出,“数学课程不仅仅要思考数学自身的特点,更就遵循学生学习数学的心理规律”。学生数学概念的获得要在观察、比较、概括、归纳等数学活动中才能构成。对于“比例尺”这样的数学概念,抓住其外延和内涵设计有效的数学活动是促进学生发展的主要途径。

  学情与教材分析:

  “比例的应用”是在学生已经学习了比和比例的好处、比例的基本性质之后的一个教学资料。“比例尺”是运用数学解决生活问题的一个典型范例之一。本节课,要通过在生活中的应用,把握比例尺的内涵――图上距离与实际距离的比,认识两种不同的比例尺――数值比例尺和线段比例尺。比例尺的内涵是教学的一个重点,学生在学习时,对于比例尺的本质――比例尺是一个比,往往容易因为名称的误导产生歧义,对于由比例尺的规定形式――前项或后项为1,而产生的计算上的易错点,都是教学中需要个性关注的。

  教学目标:

  1、在实践活动中体验生活中需要的比例尺,能读懂两种形式的比例尺。

  2、在操作、观察、思考、归纳等学习活动中理解比例尺的好处,正确计算比例尺,了解比例尺在实际生活中的各种用途。

  3、感受数学在解决问题中的作用,培养亲近数学的良好情感。

  教学准备:

  多媒体课件

  教学重点:

  理解比例尺的好处

  教学难点:

  把线段比例转换成数值比例尺

  教学过程:

  一、激发兴趣,引入比例尺

  (脑筋急转弯)

  师:同学们,你们必须去过漳州,那你们坐车从华安到漳州大约需要多长时间?(1个多小时),但是有只蚂蚁却只用了4秒钟。你明白是怎样回事吗?

  生猜:蚂蚁可能在从华安到漳州的地图上爬。

  师:对了。蚂蚁爬的是地图上的图上距离,(板书:图上距离)而我们坐车所行的是从华安到漳州的实际距离。(板书:实际距离)

  师:看,在这幅地图上(出示第一幅地图)从华安到漳州蚂蚁只用了4秒钟,(出示第二幅地图)在这幅地图上蚂蚁用4秒钟还能到达吗?(出示第三幅地图)在这幅地图上呢?

  师:为什么同样是从华安到漳州,有的只需4秒钟就能到达,而有的却到达不了呢?(地图有大有小)

  请同学们观察这几幅地图,它们虽然大小不同,但形状却一样,这是什么原因呢?(让学生思考片刻后才说,可先让学生说)是因为人们在制作这三幅地图时所用的比例尺不同,这就是我们这天要学习的资料:比例尺(板书课题)

  【设计意图:脑筋急转弯意在激趣引出地图,对学生都比较熟悉的地图,通过“这几幅地图,它们虽然大小不同,但形状却一样,这是什么原因呢?”这个问题来引导学生思考,通过三张地图大小不一样,而表示的实际距离却相同,引起学生认知冲突,聚焦依据比例不同,表示的大小也不相同,从而引出比例尺,引导学生从生活中学习有关比例尺的资料。】

  二、自主学习,认识比例尺

  1、什么叫比例尺?它是尺吗?是比例吗?请同学们打开课本48页,自学48页的资料。

  2、揭示比例尺的好处。

  你们从书上了解到什么叫比例尺?(嗯,是个比板书于课题后)

  前项是什么?后项呢?(在板书的图上距离与实际距离中加入“:”)

  那就是说只要用图上距离比实际距离就能求出比例尺,还能写成什么形式?

  你能说说这些比例尺的好处吗?

  请同学们仔细观察这几个比例尺上的数字的变化以及这几幅地图的大小变化,你又有什么发现,同桌交流一下

  比例尺前项都是1,后项数字越大,图上1厘米所表示的实际距离越长,所画出的图形就越小,后项数字越小,图上1厘米所表示的实际距离越短,所画出的图形就越大

  【设计意图:学生自学可能因为自身学习潜力的差异而产生不同的效果,如何让不同学力的学生在自学中都能真正学有所获?问题引领是一个比较有效的方法。因此,我设计了以上三个问题,聚焦比例尺的内涵,帮忙学生清晰把握。】

  3、练习:

  明白了什么是比例尺,如果我想求一幅图的比例尺,那要怎样办呢?老师给你们数据你们会求出一幅图的比例尺吗?

  ①、一张桌子画在图纸上的高度是8厘米,实际高度是80厘米,求这幅图纸的比例尺是多少?

  ②、一栋楼房东西方向长40m,在图纸上的长度是50cm、这幅图纸的比例尺是多少

  ③、在一幅地图上,量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是160千米,这幅地图的比例尺是多少?

  注意:单位统一

  要化简结果不带单位(因为它表示的是两个量之间的关系)

  【设计意图:在学生理解比例尺的好处之后立刻呈现三道不同梯度的习题,一是让学生进一步理解掌握比例尺的实际好处,二是让学生正确计算比例尺,了解比例尺在实际生活中的各种用途。并能用自己的语言正确说明比例尺所表示的具体好处。】

  4、认识放大比例尺

  观察这三个比例尺,你有什么发现?(前项为1)也就是说图上距离比实际距离小,其实现实中还能见到这样的比例尺(课件出示一些精密零件的图纸)

  看,把比例尺读出来,你有什么发现?(选一个说好处)

  小结:比例尺根据它的作用可分为缩小比例尺和放大比例尺。(板书)通常状况下,为了计算的方便,把比例尺写成前项或后项是1的比。

  5、认识线段比例尺

  刚才我们认识的比例尺都是用数字来表示的,它们都叫做数值比例尺。请同学们再来看这幅比例尺(出示线段比例尺)它与数值比例尺有什么不同?

  学会看线段比例尺。图上每一段都是长1厘米,每一厘米都相当于实际多少千米?

  用线段来表示图上距离与实际距离的关系,这叫做线段比例尺

  区别:形式不同,但都表示图上距离与实际距离的倍数关系

  小结:比例尺根据表现形式的`不同分为数值比例尺和线段比例尺。(板书)

  6、把上面的线段比例尺改写成数值比例尺

  (1)这个线段比例尺它表示图上1厘米相当于实际50千米,那你们会将它改写成数值比例尺吗?

  (2)1厘米:50千米=1厘米:5000000厘米=1:5000000

  (3)根据数值比例尺标出线段比例尺

  小结:线段比例尺和数值比例尺是比例尺的两种基本形式、它们之间能够进行转换、把线段比例尺转换成数值比例尺只要把写出图上距离与实际距离的比再化简就能够了、

  【设计意图:在具体情景中,通过操作、观察、思考、归纳等学习活动中理解放大比例尺、线段比例尺的好处以及线段比例尺和数值比例尺两种比例尺基本形式之间的转换,并准确理解比例尺的书写特征。】

  三、巩固练习,灵活运用

  (一)填一填

  1、在比例尺是1:2000的地图上,图上距离1厘米表示实际距离()厘米或()米

  2、在比例尺是1:250000的地图上,图上距离1厘米表示实际距离(千米。

  3、在比例尺是1:4000000的地图上,图上距离是实际距离的(),实际距离是图上距离的()倍,把这个数值比例尺该成线段比例尺是

  (二)辨一辨

  1、所有的比例尺的前项都是1。()

  2把一个电脑零件放大到原先的100倍画在图纸上,应选用1:100的比例尺。()

  3、比例尺就是一把尺子。()

  4、一幅地图的比例尺是1:50000厘米。()

  5、一幅图的比例尺是8:1,这幅图所表示的实际距离大于图上距离。()

  (三)、选一选

  1、用图上距离5厘米,表示实际距离200米,这幅图的比例尺是()

  5:200B、C、1:4000厘米

  2、长4厘米的零件,画在图纸上是40毫米,这幅图的比例尺是()

  1:10B、10:1C、1:1D、1

  3、线段比例尺改成数值比例尺是()

  A、1:23B、1:2300000C、1:2300000km

  【设计意图:通过填一填、辨一辨、选一选等不同形式的练习让学生体会比例尺在生活中的应用,能够解决实际问题。同时通过具体情景,感受数学与生活的紧密联系】

  四、课后延伸

  选取适宜的比例尺画图

  红光小学有一块长方形草坪,长85米,宽30米,把这块草坪按必须的比缩小,你能在纸上画出这个长方形草坪的平面图形吗?(1:1000、1:5001:10000)

  结论:一幅图的比例尺由纸张的大小来决定。

  【设计意图:让学生选用比例尺解答,以此培养学生思维的灵活性、这样让孩子在获得知识的同时,培养了潜力,让学生真真切切的感受到生活中有数学,生活中处处有数学,提高了学生学数学用数学的意识。】

  五、谈学后体会。这节课你学到了什么?

  【设计意图:让学生回顾学习过程,反思评价,再一次体验学习经历,促进学生对知识的掌握。】

  数学《比例尺》教学教案 篇8

  教学目标

  1. 通过学习,初步了解比例尺的意义。

  2. 认识数值比例尺和线段比例尺两种不同表现形式,学会求出平面图的比例尺。

  3. 能运用所学的比例尺的知识解决生活中的问题,并在小组合作中培养合作意识和创新思维能力。

  4.情感、态度、价值观:体会数学与日常生活的密切联系。

  教学重、难点:

  (1)理解比例尺的含义。

  (2)能根据图上距离、实际距离、比例尺中的两个量求第三个量。

  教具学具

  小黑板、课件、备一幅地图

  教学过程

  一、导入新课

  同学们,昨天老师请大家自己动手测量了我们教室的长和宽。现在老师提议大家以小组为单位,当一名绘图师,利用你们手里的材料,画出我们教室的平面图。再动手之前,先考虑这两个问题:

  1. 要把教室的平面图画在纸上,你有这么大的纸吗?那怎么办?

  2. 随便在纸上画一个长方形,这一定是教室的平面图吗? 小组合作并完成汇报,在实物展示台上展示自己的作品。

  教师总结:同学们都很聪明,你们都把实际的长和宽缩小了,画出了教室的平面图,其实就是用到了今天我们要学习的知识――比例尺,也就是把实际距离按一定的倍数缩小。

  揭示课题:今天我们一起来学习比例尺的知识。

  二、学习新课

  1.学习比例尺的意义。

  (1)动手操作

  请学生在小组内算一算自己所画的教室平面图的长和宽各缩小了多少倍。

  学生们计算并汇报,集体订正。

  一个教室长8米,宽7米,如果我们要画这个 教室的平面图,就需要把实际距离同时缩小一定的倍数后,画在平面图上,缩小多少倍由你自己决定,你打算设 计:

  1、用几厘米表示8米和7米。

  2、你设计的方案是图上距离比实际距离缩小了 多少倍?

  3、算一算、每幅图的图上距离与实际距离的比。

  同学们刚才算出的各幅图的图上距离和实际距离的比就叫做这幅图的比例尺。我们把教室实际的长和宽叫做实际距离,把画在纸上的教室的长和宽叫做图上距离。

  请学生重复说一遍什么叫做比例尺。

  板书:图上距离:实际距离=比例尺

  请每个人算一算自己所画的教室的平面图的比例尺是多少。

  (2)观察地图,自由交流。

  课件出示世界地图、中国地图和学校的平面图,再请同学拿出自己事先准备的地图,在小组内观察、交流并思考:不同地图的比例尺有什么不同的`地方?

  引导学生充分发表意见,教师辅助讲解:

  1比较出比例尺的两种不同表现形式――数值比例尺和线段比例尺 2比例尺的大小不同,同样的佛山市在中国地图、广东地图和佛山地图上的大小都不一样,这就是采用了大小不同的比例尺。

  (3)学习不同的比例尺。

  课件出示教材第49页的机器零件图,引导学生观察后提问:请你观察这幅图的比例尺,和我们刚才所观察的比例尺有什么不同之处?

  在生产中,有时由于机器的零件比较小,这是就需要把实际的距离扩大一定的倍数以后,再画在图纸上这幅图就是这样的,比例尺2:1,你知道是什么意思吗?

  补充说明:为了计算方便,我们通常把比例尺改写成前项或后项是1的比。

  (4)学习例1。

  课件出示例1的题目,提问:线段比例尺怎么改写成数值比例尺?数值比例尺是怎么求的?图上距离和实际距离的单位不同该怎么办?

  板书:图上距离:实际距离

  =1cm:50km

  =1cm:cm

  =1:

  请学生根据刚才的解答,说说求比例尺需要知道哪些条件,怎样求比例尺,谁是前项,谁是后项。

  2.知识运用。

  (1)即时训练。

  学生独立完成教材第49页的“做一做”,教师巡视指导,帮助个别有困难的学生。

  集体订正后引导学生通过交流讨论,明确根据图上距离与实际距离求比例尺的方法:首先依据比例尺的意义写出比的前项后项,写出比,图上距离与实际距离位置不要写错;接着把两项化成相同的单位;最后化简比,变成前项或后项是1的比。

  (2)拓展训练。

  课件出示下列四个问题:

  1每年十月,莫斯科红场将举行盛大的阅兵仪式,以庆祝“十月革命”的胜利,如果我们坐飞机前去观看,请你仔细观察手中的世界地图,算出首都北京到俄罗斯首都莫斯科的距离。

  2天津是2008北京奥运会足球赛区城市之一,如果你是设计师,请你设计出足球场的平面图,并标出比例尺。(足球场的长是90~120米,宽是60~90米)

  3眼镜上的螺丝钉长是3毫米,螺帽宽1毫米,假如你是技术员,请你画出它的平面图,你有什么困难?怎么办?

  4这里有比例尺1:20、20:1和1:1,它们的意义相同吗?请举例说明。

  请学生在这四个问题中任选一个,给充足的时间独立思考,也可以在四人小组内选择其中一个问题合作研究,小组长做好分工。完成任务后,集体汇报,教师根据学生完成的情况进行小结,并给予适当的指导。

  3.教学例2。

  多媒 图上距离 15cm 实际距离 450km

  回家找一找自己或爸爸妈妈今年的全身照片,算一算照片的比例尺。

  数学《比例尺》教学教案 篇9

  教学内容:

  义务教育课程标准实验教科书数学六年级下册P48“练一练”和练习十一的第1、2题

  教学目标:

  1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺,会求一幅图上的比例尺,会把数值比例尺与线段比例尺进行转化。

  2、使学生在观察、比较、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

  教学重点:

  使学生理解比例尺的意义,能看懂线段比例尺,会求一幅图的比例尺。

  教学难点:

  使学生理解比例尺的意义,会求一幅图的比例尺。

  设计理念:

  本课设计结合具体的`情境,出示不同地图,引发学生思考。再通过比的有关知识介绍比例尺的意义,利用具体生活实例引导学生建构比例尺这一概念,为强化对比例尺的认识,设计中,通过不同形式比例尺的分析比较,以及系列学生自主活动,进一步加深对概念的理解,培养学生分析、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

  教学步骤

  教师活动学生活动

  一、设置情境

  比较引入演示:出示出示一组大小不同的中国地图。

  师:通过观察,你发现了什么?什么变了?什么没变?

  师:想知道地图是怎样绘制出来的吗?今天我们就学习这方面的知识。

  (板书课题:比例尺)学生观察

  学生回答。(可能出现:形状没变、大小变了。)

  二、自主探究

  认识新知

  1、出示例6。

  师:题中要我们写几个比?这两个比分别是哪两个数量的比?

  什么是图上距离?

  什么是实际距离?

  2、认识探索写图上距离与实际距离比的方法。

  师:图上距离与实际距离的单位不同,怎样写出它们的比?

  (学生独立完成后,展示、交流写出的比,强调要把写出的比化简。)

  3、比例尺的意义及求比例尺的方法

  师:像刚才写出的两个比,都是图上距离和实际距离的比。我们把图书距离和实际距离的比,叫做这幅图的比例尺。

  题中草坪平面图的比例尺是多少?

  师:怎样求一幅图的比例尺?

  根据学生的回答,相机板书:

  图上距离:实际距离=比例尺

  4、进一步理解比例尺的实际意义。

  师:我们知道这幅图的比例尺是1:1000,也可以写成1/1000。你是怎样理解这幅图的比例尺的?

  图上距离/实际距离=比例尺

  指出:为了计算简便,通常把比例尺写成前项是1的最简单整数比。像1:1000这样的比例尺,通常叫做数值比例尺。

  5、认识线段比例尺

  比例尺1:1000还可以用下面这样的形式来表示。

  0102030米

  师介绍线段比例尺。

  问:图上1厘米表示实际多少米?3厘米呢?

  指出像这样的比例尺通常叫做线段比例尺。学生读题,理解题意,尝试写出两个数量的比。

  三学生交流,明确方法:

  把图上距离与实际距离的单位统一成相同单位,写出比后再化简。

  学生总结:图上距离:实际距离=比例尺

  学生在小组里说说,再全班交流。

  学生交流:1:1000的意思是图上1厘米的线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。

  学生:图上1厘米的距离表示实际距离10米。

  四、独立练习

  巩固提高1、做“练一练”第1题。

  2、做“练一练”第2题。

  独立相互说,指名说。先说说每幅图中比例尺的实际意义。

  学生各自测量、计算,再交流思考过程。

  五、总结评价

  生活延伸1、你学会了什么?你有哪些收获和体会?

  2、在生活中找找,哪些会用到比例尺学生交流

  数学《比例尺》教学教案 篇10

  教学内容:

  比例尺

  学情分析

  班级学生基本上已经比例有关知识,通过本节课是学生能结合具体情境,认识比例尺,能根据图上距离,实际距离,比例尺中的两个量求第三个量,运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

  教学目标:

  1、结合具体情境,认识比例尺,能根据图上距离,实际距离,比例尺中的两个量求第三个量。

  2、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题,进一步体会数学与日常生活的密切联系。

  教学重点:

  认识比例尺,能根据三个量中的两个量求第三个量,运用比例尺的知识解决实际问题的能力。

  教学难点:

  认识比例尺,能根据三个量中的两个量求第三个量,运用比例尺的知识解决实际问题的.能力。

  教学过程:

  呈现情境图

  思考、讨论

  我家的房屋平面图

  1、比例尺1:100是什么意思?

  图上距离

  2、比例尺=—————实际距离

  3、练习独立完成p30页第2、3题。

  4、p30页第4题,怎样求窗户的图上距离?注意比成相成的单位后再计算。

  5、指导完成p30页第5题。

  注意求比例尺时,图上距离与实际距离的单位要统一。

  p31页第1题,说明清楚两地距离一般假设是直线距离,计算时,注意单位换算。 p31页第2题,自己尝试独立完成。

  放手让学生自己研究。

  教师对困难的学生加以指导

  试一试

  练一练

  教学反思:

  在教学比例尺的过程中,针对课本上出现的两种问题,一类是已知比例尺和图上距离求实际距离,另一类是已知比例尺和实际距离求图上距离。而且在教学的过程中,方法也有不同,学生很容易混淆。

  第一个容易混淆的地方是,针对两种不同类型的问题,用方程解答,在解设未知数的时候,教材上出现的方法是在设未知数的时候,单位上就出现了不同,以至于学生不知道如何区分,什么时候该怎么设。

  第二个就是方法的选择上,其实在这一块知识上,利用图上距离和实际距离的倍比关系,也是一种很好的解法。但是如何让学生理解这种方法的原理很重要,从学生的课堂和课后情况来看,很多学生其实并没有从根本上理解这种解法的原理,只是在一样的画葫芦罢了。

  根据学生的这一情况,今天又对比例尺的内容重新整理了一遍,其实关键还是在于学生没有真正的理解比例尺的概念。例如:比例尺1:500000这是在图上距离和实际距离的单位统一的时候的比,所以在用列方程进行解答的时候,如何进行解设只要抓住一个要点:对应的图上距离和实际距离的单位是相同的才能列出方程。这样就不用去顾及怎么设,只要抓住图上距离和实际距离的单位相同就可以了,怎么设都是可以解答的。

  对于第二个问题,倍比关系的理解,实际还是对于比例尺的理解不够深。例如:比例尺1:500000表示的图上距离是实际距离的1/500000,实际距离是图上距离的500000倍,图上的1厘米实际是5千米,这就是线段比例尺,在有些问题中利用线段比例尺还会给计算带来方便。

  在学生出现问题之后,针对学生的情况,及时地给学生适当的进行归纳整理,会加强学的理解,帮助学生更好的掌握!

  数学《比例尺》教学教案 篇11

  一、教材分析

  《比例尺》这节课是在学生学习了比和比例的基础上进行学习的,它是比和比例知识的延伸和应用,比例尺不是一把真正意义上的尺子,却是一个日常生活中极其重要的工具。在现实生活中有着广泛的应用,因此,对比例尺的学习具有很现实的意义。

  二、学情分析

  本课内容是《义务教育课程标准实验教科书.数学》六年级第十二册第

  48、49页。是在学生学习了比和比例有关知识的基础上学习的,学生对于常见的平面图和地图并不陌生,但对“比例尺”这个概念可能会有些生疏和抽象,课堂上将紧密借助学生已有的知识和经验引导学生,主动建构知识,让学生充分动手操作,动脑思考,经历“比例尺”知识的形成过程。

  三、目标与要点分析教学目标:

  (1)在具体情境中理解比例尺的意义,并能根据比例尺的意义求一幅图的比例尺。

  (2)能够根据比例尺知识求实际距离。

  (3)培养学生综合运用知识的能力;培养学生动手测量和画图的能力。

  过程与方法:通过学生的自主探究、合作交流,培养学生的探究意识、合作意识、创新意识。

  情感、态度与价值观:使学生感受数学与生活的联系,体验学习数学的价值,增强学好数学的情感。

  本节课的重点是理解比例尺的意义。难点是把线段比例尺改写成数值比例尺。

  为了抓住重点,突破难点,本节课将提供较大的探索空间和众多的动手操作时机,让学生充分动手动脑,主动建构知识,而不是硬生生地把知识强塞给学生。

  四、教学策略设计

  比例尺是人们约定俗成地表示图上距离与实际距离的关系。以往我们执教传统教材,是直接给出图上距离和实际距离,然后让学生求图上距离与实际距离的比,要求化成单位相同再写比,这样的比就是比例尺。表面上看学生似乎已经知道了比例尺,但是比例尺为什么应运而生?学生只是被动接受知识。如何让学生经历比例尺的产生过程,教材创设了设计足球场平面图的情境,让学生在设计过程中体验到比例尺产生的必要性——绘制平面图时需要把实际距离缩小一定的倍数,既体现了新理念,又让学生有了更多自我体验和感悟的时间与空间。

  有了以上的思考,就有了我第一次设计尝试,遗憾的是学生面对一个长8米,宽6米的.教室,没有意识到在纸上长要画多长,宽要画多长,按多少“比”在来画。从学生完成的作品来看,有3人用1∶1000来画的,有13人画出长的比是1∶500,宽的比是1∶300,两个比不同,导致学生画出的形状与原来足球场的形状不同。大部分学生画出了任意长和任意宽,组成一个长方形,标上实际距离。这种情况是不是学生缺乏一种体验,一种按倍数缩小并缩小相同倍数的体验,因此学生不能自动生成。以上的教学实践引起了我的反思,重新尝试第二次设计,收到了较好的效果。

  教师准备:一幅李成俊同学的照片

  五、教学过程设计

  (一)、生活原型再现:

  师:(出示李成俊同学的照片)你们认识他吗?他是谁?生:李成俊

  师:怎么可能呢?照片上的人这么小,怎么会是他呢?生:是缩小了??

  师:如果李成俊的眼睛不缩小,鼻子和嘴巴缩小了,那会怎么样?生:不像他了,像丑八怪??师:那怎样才能像他呢?生:都要缩小。

  师:一起缩小,是吧。如果他的眼睛缩小100倍,鼻子和嘴巴缩小10倍,像他吗?生:不像,要缩小相同的倍数。??

  (二)、创设情境,以疑激思

  同学们,昨天我们测量了教室的长是8米宽是6米,现在老师提议大家以小组为单位,当一回绘画师,画出教室的平面图。再动手之前,先思考这两个问题:

  1、要把教室的平面图画在纸上,你有这么的的纸吗?你怎么办?

  2、随便在纸上画一个长方形,这一定是教室的平面图吗?

  (三)、独立探究,合作交流。

  (1)通过学生讨论,引出学习要求:A、你是怎样确定图上的长和宽的长度;

  B、图上的长和实际的长的比是多少,并化简;

  C、写上图上的宽和实际的宽的比,并化简;

  根据要求个人作图,完成后四人小组交流(重点交流你是怎么确定图上的长和宽的)选择你们组认为最好的,贴在黑板上。(2)学生小组学习(3)学生汇报设计思路

  生1:我是把实际的长和宽都缩小1000倍,图上的长就是8厘米,宽就是6厘米,这样的长方形图就是足球场的平面图。

  (根据学生的汇报板书)图上距离:实际距离

  8厘米:8米=8:800=1:1006厘米:60米=6:6000=1:1004厘米:8米=4:800=1:2003厘米:6米=3:600=1:200揭示比例尺的意义:图上距离和实际距离的比,叫做这幅图的比例尺。

  图上距离:实际距离=比例尺

  师:1:200的比例尺,说说你是怎样理解的?

  生:表示图上距离是实际距离的1/200;

  表示实际距离是图上距离的200倍;图上距离和实际距离的比是1:200;图上1厘米表示实际距离2米;

  (四)、数值比例尺和线段比例尺的认识

  1、示中国地图。

  师:比例尺1:10000000表示什么实际意义?

  生:图上距离1厘米是实际距离的1000000000厘米。

  2、示北京市的地图。

  师:观察这幅地图的比例尺有什么不同?表示什么实际意义?生:这是一幅线段比例尺,表示图上1厘米表示实际50千米。

  3、学生读教科书。

  师:书中这两种比例尺分别叫什么?它们有什么不同?

  生1:前面的一种叫数值比例尺,后一种叫线段比例尺。数值比例尺没有单位.生2:实际距离都比图上距离大。

  师:是不是所有的比例尺都是实际距离比图上距离大呢?请同学们看书第49页后,回答并说为什么?

  生:不是。因为有的机器零件很小,需要把实际长度按一定的比扩大后,再画在图纸上,这就出现了图上距离比实际距离大的比例尺。师:图中的2:1表示什么?

  生:图中的2:1表示图上距离是实际距离的2倍。

  师:请同学们观察这些比,你有什么发现?生:这些比的前项和后项都是1.小结:为了计算,通常把比例尺写成前项或后项师1的比。

  4、教学例1.师:我们能不能把它(手指上面的线段比例尺)改成数值比例尺呢?指名学生板书:图上距离:实际距离1厘米:50千米

  =1厘米:5000000厘米

  =1:5000000师:做这类题,因该注意什么?

  生:统一单位,比例尺不带单位名称,一定是图上距离除以实际距离。

  (五)加深理解,拓展应用

  1、判断题:

  )①小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。

  ②某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。

  ③一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离

  2、解决生活中的问题:

  一栋楼房东西方向长40m,在图纸上的长度是50cm.这幅图纸的比例尺是多少?

  3、拓展应用:

  我们学校操场的长是200米,宽是100米.同学们,你们能自己确定比例尺,把操场的平面图画下来吗?

  板书设计比例尺图上距离:实际距离=比例尺

  图上距离=比例尺

  实际距离

  8厘米:8米=8:800=1:1006厘米:6米=6:600=1:1004厘米:8米=4:400=1:2003厘米:6米=3:600=1:200

  教学实施

  本节课在两个方面进行了创新设计:

  一是情境导入,由于第一次设计时,让学生一进课堂就设计一个教室的平面图,学生们不知道平面图要按照一定的倍数缩小,而且要缩小相同的倍数,缺少这种经验和体验,出现了任意画的情况。因此,二度设计时我选择了生活原型——从照片引入,学生对这种生活常识应该说不陌生,为画平面图做好了很好的铺垫。

  二是结合教室实际的长和宽和图上的长和宽,使学生初步确定什么是图上距离和实际距离,在动手画图时,对如何确定图上的长和宽就是要将实际的长和宽缩小一定的倍数,也就是确定图上距离和相对应的实际距离的比,并引出比例尺的意义,再结合两幅地图的比例尺介绍线段比例尺和数值比例尺,又通过一个机器零件的放大的图纸,让学生认识把实际距离放大的比例尺如何表示。最后说明为了计算方便,通常把比例尺改写成数值比例尺。

  三、教学反思

  上完课,我有一种意犹未尽的感觉,经历了实践与理论的深思与探索,对新课标有了更深入的理解。

  1、在学生已有的经验上学习数学

  新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。只有在学生的生活经验的基础上进行教学,学生才感到亲切,学得主动。通过课前展示学生的照片,学生对照片上的人是按倍数缩小了这种生活常识有了深刻的体验,再让学生来画教室的平面图,可以说是水到渠成的。

  2、让学生经历了知识的形成过程

  只有体验过,理解才会深刻。让学生在画教室平面图的交流互动中,体验探究比例尺的产生过程,理解比例尺产生的必要性。同时在探究过程中,学生对比例尺的意义理解是多方位的,个性化的。有了学生个性化的体验,才有了后面解决问题的个性化的表达。

  3、让学生密切联系了生活实际

  数学来源与生活,又应用于生活实际。本节课从让学生设计教室平面图,到让学生把线段比例尺改成数值比例尺,“生活中处处有数学“的理念贯穿了整个教学的始终,使学生真切地感受到学习数学的价值。

  数学《比例尺》教学教案 篇12

  教学目标

  1、通过学习进一步理解比例尺的意义,能根据比例尺用多种方法计算实际距离。

  2、在具体情境中经历提出问题、分析问题、解决问题的过程,培养问题意识和解决问题的能力。

  3、结合问题情境,体验数学与生活的密切联系,感受学习数学知识的重要性。

  教学重难点

  教学重点:进一步认识比例尺,能根据比例尺用多种方法计算实际距离。

  教学难点:应用比例尺的知识解决生活中的实际问题。

  教具、学具

  教师准备:多媒体课件

  学生准备:直尺

  教学过程

  一、创设情景,提出问题

  1、回顾思考:

  (1)上一节课我们一起认识了比例尺,什么是比例尺?怎样计算比例尺?(留出时间学生思考时间)图上距离与实际距离的比叫做这幅图的比例尺,

  (2)比例尺有哪些表示形式?数值比例尺有什么特点?在计算时比例尺要注意什么?

  师生共同总结如下:

  ①比例尺从形式上可分为“数值比例尺”和“线段比例尺”。

  ②特点:1、数值比例尺是一个比,可以写成比的形式也可以写成分数的形式;

  2、比例尺的前项一般是1。

  ③计算过程中要注意单位统一;1千米=100000厘米

  (3)生活中哪些地方用到“比例尺”?请举例说一说这个比例尺所表示的意义,前项和后项有怎样的倍数关系?

  小结:通过刚才同学们的举例可以看出,比例尺在生活中应用很广泛,应用比例尺还可以解决哪些实际问题呢?这节课就让我们共同探究怎样根据比例尺求实际距离。(板书课题)

  2、提出问题。(课件出示情境图)

  通过观察你获得哪些数学信息?(学生回答)你能提出什么问题?

  根据学生提出的问题,教师板书:雏鹰少年足球队需要几小时到达青岛?

  二、自主学习,小组探究

  教师出示问题:雏鹰少年足球队需要几小时到达青岛?

  1、出示探究要求:

  (1)理解题意,找出条件和问题。

  (2)分析数量关系,要求“雏鹰少年足球队需要几小时到达青岛?”,还需要什么条件?

  (3)怎样根据比例尺求出济南到青岛的实际距离?

  (4)尝试用不同方法解答这个问题。

  2、以小组为单位合作解决,小组长做好记录。

  (小组合作解答,教师巡视指导学困生,注意不同的解决方法)

  三、汇报交流,评价质疑

  1、分析题意,理清数量关系

  图中为我们提供了哪些信息?要求时间还要知道哪些条件?

  生:从图中我们知道了这幅图的比例尺是1:8000000,这辆汽车的速度是每小时100千米;要求时间应先求出两地间的路程,用路程÷速度就是需要的时间。

  2、以小组为单位合作解决,小组长做好记录。

  (小组合作解答,教师巡视指导学困生)

  列方程为:

  质疑:济南到青岛的实际距离为什么要用厘米作单位?

  生:让实际距离和图上距离的单位统一。

  (师强调比前项和后项要单位一致)

  师:还有不同解法吗?学生用展台进行全班交流

  生:4÷=32000000(厘米)=320(千米)320÷100=3、2(小时)

  师:“4÷”求出的是什么?你们是怎样想的?

  生:“4÷”求出的是实际距离。我们组是这样想的:因为“图上距离:实际距离=比例尺”,在这里图上距离是比的前项;实际距离是比的后项;比例尺相当于比值。所以可以推出“实际距离=图上距离÷比例尺“我们组就是根据这种关系求实际距离的。

  师:哪个小组还愿意说一说?

  生:4×8000000=32000000(厘米)=320(千米)

  320÷100=3、2(小时)

  质疑:说一说你们的依据?

  生:我们是这样想的:比例尺是“1︰8000000”,说明实际距离是图上距离的8000000倍,所以从济南到青岛的实际距离可用“4×8000000”求出,求出的数值单位是厘米,所以还要把这个数量的单位转化为“千米”,最后利用“路程÷速度”求出时间。

  四、抽象概括,总结提升

  同学们:这节课我们主要学习了利用比例尺求实际距离,想想上面的几种解法,说说你更喜欢哪种解法。为什么?

  预设1:我认为第一种方法好,它是根据比例尺的计算公式列出方程,这种方法更好理解。

  预设2:第三种解法。比例尺“1︰8000000”,说明实际距离是图上距离的8000000倍,所以从济南到青岛的实际距离可用“4×8000000”求出,因为求出的数值单位是厘米,所以还要把这个数量的单位转化为“千米”,最后利用“路程÷速度”求出时间。

  总结:根据你的理解能选择适合你的解法很好,那么在设未知数x时,由于图上距离和实际距离所用的单位不同,注意应设实际距离为x厘米,算出实际距离的厘米数后,再换算成千米。通过这节课的学习,我们对比例尺又有了新的认识,在根据比例尺和图上距离,求出实际距离时,既能根据比例尺的公式列方程解答,也可以用“实际距离=图上距离÷比例尺”或“实际距离=图上距离×比的后项”来计算。

  五、巩固应用,拓展提高

  1、基本练习

  自主练习第1题

  2、提高练习

  自主练习第2题

  (1)说说这个线段比例尺表示的意义,并改成数值比例尺。

  (2)量出图上距离。(要求测量准确)

  (3)计算实际长度。

  3、开放练习

  ⑴自主练习第3题

  ⑵自主练习第5题

  设计说明

  1、教学反思

  (1)教学时,我承接了前面足球队赛前训练的.话题引入,出示信息窗,通过读图让学生认识山东省地图,了解17个城市的大体位置。然后引导学生结合图中信息提出并解决足球队需要的几小时到达青岛的问题,展开对新知识的学习。

  (2)合作探索时,根据速度、时间、路程三者之间的关系确定解决问题的思路。把问题转化到了求济南到青岛的实际距离大约是多少千米。学习邱实际距离时,让学生充分发挥自己的思考探究能力,找出解决问题的方法,有的同学想到了方程法,还有的同学根据关系式“实际距离=图上距离÷比例尺”解答。对于学生的不同方法我给予了充分的肯定,让学生说明道理,另一方面又引导学生自觉进行比较反思,从而掌握求实际距离的基本方法。

  (3)学生对于题目当中的数据,缺乏认真地观察和思考,单位不统一时,就直接做的大又有在,对于这一点应加强学习习惯的养成教育。

  2、使用建议

  书上呈现只有一种方法,并不是硬要求学生掌握只用一种方法,可能是为了以后的用比例解决问题。对学生来说,并不是书上的方法就是好的。我觉得应该鼓励学生结合已有的知识经验,运用多种方法解决,学会欣赏,以实现个性与共性的统一,同时也进一步理解比例尺的意义。

  3、需破解的问题

  是不是把这一个问题当成一个问题来解决,突出解决问题的多样化,培养学生解决问题的能力。所以除了常规的知识与技能目标外,增加“经历解决实际距离问题的探索过程,培养学生解决问题的能力”和“并结合已有知识掌握”。

  数学《比例尺》教学教案 篇13

  【教学内容】

  比例尺(3)(教材第56~58页第3~10题)。

  【教学目标】

  1.通过练习,巩固对比例尺的认识。

  2.培养学生联系实际解决问题的能力。

  3.使学生感受到数学在生活中的广泛应用。

  【重点难点】

  把比例尺应用到实际生活中,解决实际问题。

  【教学准备】

  投影仪。

  【复习导入】

  1.什么是比例尺?比例尺1∶1000表示什么?

  2.说说实际距离、图上距离和比例尺之间的关系。

  【新课讲授】

  1.教授例3。

  (1)教师用投影出示教材55页的例3。

  (2)组织学生讨论:画出三家和学校的平面图要做好哪些准备工作?使学生明确:根据“图上距离=实际距离×比例尺”,求出长和宽的图上距离。

  (3)学生分组求出各图上距离,教师订正。(4)组织学生画出平面图,并在全班交流。

  2.巩固应用:完成教材第55页“做一做”。组织学生独立完成,同桌间相互检查。

  【练习讲授】

  1.出示习题:小明家要搬新家了,他特别高兴。可是,他很担心新家离学校太远。小明的爸爸按比例为他画了一幅图,并且告诉他旧家与学校之间的距离是900m。小明量得新家到学校的图上距离是7cm,旧家到学校的距离是3cm。同学们,你们能帮助小明算算新家与学校之间的距离吗?

  (1)学生根据手中的图纸,分小组研究用什么知识来解答,然后合作计算出结果。

  (2)学生汇报所在小组是怎样想的及利用了什么知识。教师要求学生每说出一步算式要说出理由,并说一说为什么要这样求。

  方法一:运用比例尺。

  900m=90000cm3∶90000=1∶30000

  7×30000=210000(cm)=2100(m)

  方法二:运用倍比关系。

  7÷3=900×=2100(m)

  2.教师:通过同学们的计算,我们知道了小明的新家距学校比旧家远了不少,但小明还是非常高兴的,因为小明的新家比旧家宽敞。小明的新家按1∶200画出的户型图是这样的。

  教师:你能根据手中的图选其中的一间求出实际面积吗?

  (1)学生以小组为单位分工计算出结果。

  (2)汇报求出卧室和卫生间的实际面积的方法。

  (3)引导学生通过这道题发现在比例尺的应用中应该注意哪些问题。

  3.教材第56页练习十第4题。

  教师:这是一幅七星瓢虫的放大图,那么它的比例尺的后项应该是多少?

  组织学生独立完成,指名汇报。

  答案:量得七星瓢虫的'长度是2.5cm,2.5cm∶5mm=25mm∶5mm=5∶1。

  4.教材第57页练习十第8题。

  先组织学生独立练习,并在小组中交流。

  答案:3.6cm22.5cm9000km

  5.教材第57页练习十第7题。

  (1)教师用投影出示第7题。

  (2)指名读题,理解题意。

  (3)小组合作讨论,指一名学生板演,然后集体订正。

  解:设兰州到乌鲁木齐在地图上的长是x厘米。

  1900km=190000000cm

  x∶190000000=1∶40000000

  x=4.75

  答:地图上两地之间的长度是4.75cm。

  6.教材第57页练习十第6题。

  (1)组织学生分小组活动:在自己准备的地图上,选取两个城市。

  (2)组织学生量出两个城市在图上的距离。

  (3)根据比例尺,算出两个城市的实际距离。

  (4)小组交流,汇报。

  7.教材第57页练习十第9题。

  (1)组织学生读题,理解题意。

  (2)组织学生在小组中合作完成。

  ①根据比例尺,算出篮球场长和宽的实际距离。

  ②画出平面图。

  ③相互展示。

  8.教材第58页练习十第10题。

  (1)学生拿出自己测量房屋地面的长和宽的实际距离。

  (2)组织学生在小组中议一议,使学生明确,先要确定比例尺,再计算出长和宽的图上距离,然后再画。(比例尺要根据平面的大小来定)

  9.教材第58页练习十第11题。

  (1)组织学生读题,理解题意。

  (2)组织学生在小组中议一议,确定解题步骤。

  (3)小组合作完成,并相互交流,这里用图上距离1cm表示实际距离200m比较合适。

  (4)用投影展示学生的作业。

  【课堂小结】

  通过这节课的学习,你又有哪些新的认识?比例尺能帮助我们解决生活中的哪些问题?

  组织学生说一说,相互交流。

  【课后作业】

  完成练习册中本课时的练习。

  数学《比例尺》教学教案 篇14

  教学目的:

  1、认识比例尺,理解比例尺的意义,掌握求比例尺的方法;

  2、培养学生的解决问题能力和自学能力;

  3、体验数学知识与日常生活的密切联系,激发学习的兴趣,培养学生的探究意识。

  教学重点:

  理解比例尺的意义,掌握求比例尺的方法。

  教学难点:

  理解比例尺的含义。

  教学过程:

  一、创设情境,导入新课。

  1、要想知道我们教室的长和宽各是多少米,怎么办?师生合作测量,记录数据。

  2、按照实际的长和宽把教室的平面图画在我们的作业本上,能行吗?怎么办?组织学生交流。

  3、教师指出:在绘制地图和其他平面图时,常常需要把实际距离按照一定的比缩小或放大,再画在图纸上,这个比就叫做这幅图的'比例尺(板书课题)

  二、探究新知

  1、教学比例尺的意义

  (1)你能说说什么是比例尺吗?

  (2)出示比例尺的意义。组织学生齐读,在这句话中,你认为关键词是什么?

  (3)根据比例尺的意义,你认为应该怎样求比例尺?同桌互相说一说,并汇报,教师板书。(图上距离:实际距离=比例尺)

  2、理解比例尺的含义。

  (1)指导学生观察P48图1,认识数值比例尺。

  ①从图上你知道了什么数学信息?(教师板书:数值比例)

  ②你是怎样理解1:100000000的?

  学生畅所欲言的交流

  ⑵指导学生观察P48图2,认识线段比例。

  ①从图上你又知道了什么信息?(教师板书)

  ②你能说说线段比例尺|------|表示什么意思吗?

  ⑶指导学生观察P49图3。

  ①这幅图的比例尺是多少?②这个2:1表示什么意思?③这个比例尺和图1的比例尺有什么不同?学生小组交流,然后指名汇报。

  ③教师小结:在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数,再画在图纸上,这时比例尺的前项就比后项大。

  3、教学例题:在一幅地图上,用图上的3厘米表示实际距离60千米,这幅图的比例尺是多少?

  ①先让学生说一说什么是比例尺,怎样求比例尺?

  ②学生尝试解答,板演。

  三、应用知识解决问题。

  1、完成“做一做”。⑴学生独立练习,指名板演,集体订正。⑵你认为求比例尺时应该注意什么?同桌交流①单位要统一,②前项或后项要化到1为止,③比例尺不带单位名称。

  2、小小评论家。

  ①一幅地图的比例尺是1:200厘米。()

  ②比例尺1:200表示图上1厘米的距离相当于实际距离200厘米。()

  ③比例尺1;200也表示实际距离是图上距离的200倍,图上距离是实际距离的1200。

  ④图上4厘米表示实际距离20千米,这幅地图的比例尺是1:5。()

  3、完成练习八第1、2题。

  四、小结。

  通过今天这节课的学习,你有什么收获?

  五、布置作业。

  数学《比例尺》教学教案 篇15

  教学内容:

  义务教育课程标准实验教科书数学六年级下册P49、50“练一练”和练习十一的第3、4、5题

  教学目标:

  1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。

  2、使学生在认识比例、应用比例的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略,发展对数学的积极情感。

  教学重点:

  能按给定的比例尺求相应的实际距离或图上距离。

  教学难点:

  能按给定的比例尺求相应的实际距离或图上距离。

  设计理念:

  本课时主要是学生在对比例尺含义理解的基础上,进一步体会比例尺的运用,所以在设计着重体现实用性,设计中采用不同的问题情境,才学生身边的事物说起,引导学生解决身边的数学问题,激发学生学习兴趣。再有是进一步学生加强对比例尺含义的理解,设计中,引导学生自主分析,利用知识迁移,自主尝试列式解决,有扶到放,能有效培养学生解决问题的策略水平,主动探索问题的方法,以及不断积累解决问题的`经验。

  教学步骤

  教师活动学生活动

  一、复习旧知

  引入新课1、在一幅地图上扬州到南京相距5厘米,实际相距100千米,你能找出这幅地图的比例尺吗?

  2、什么叫比例尺?求比例尺时要注意哪些问题?

  学生练习,找出图上距离与实际距离,再写出比例尺。

  二、理解明确

  实践运用

  1、出示例7,明确题意

  找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。

  2、分析比例尺1:8000所表示的意义。

  引导分析:比例尺1:8000,说明实际距离是图上距离的8000倍。也可以理解为比例尺1:8000也就是图上距离1厘米表示实际距离80米。

  3、尝试列式

  根据对1:8000的理解你能尝试列出算式吗?

  师:交流算法,说说为什么这样算?(引导学生进一步理解不同算法,为什么会这样列式,关键是要让学生根据对比例尺的意义的理解去解决问题,帮助学生掌握不同算法以及之间的联系。)

  4、归纳、选择、

  教师允许学生按照自己的思考选择方法进行解答,重点引导学生理解和掌握用列比例式求实际距离的方法。

  5、练习

  教师引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?

  学生分析题意,明确已知比例尺,已知图上距离,求实际距离。

  学生分析1:8000表示的意义。

  学生根据自己的思考自己选择合适的方法进行解答后先小组交流算法,再大组交流。

  学生可能出现的方法:

  1、5×8000=40000……2、5×80=400……

  3、5/X=1/8000……

  图上距离/实际距离=比例尺,可以用解比例的方法求出实际距离。

  学生列式5/X=1/8000并计算。

  三、尝试练习

  巩固提高1、做“试一试”。

  先选择自己合适的方法算出学校到医院的图上距离。再引导学生讨论怎样把医院的位置在图上表示出来。

  2、做“练一练”先独立解题,在组织交流

  3、做练习十一第4题

  引导学生在地图上测两地之间的距离和在地图上如何找比例尺。

  3、做练习十一第5题。

  引导学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。

  学生练习

  在图中表示医院的位置。

  学生练习后交流

  四、全课总结

  回顾反思1、通过本课的学习,你又掌握了什么新的本领?有哪些收获?

  2、你还有什么疑问,或你能给同学提出什么新问题?

  五、知识拓展

  激发兴趣P51“你知道吗?”

  1、收集地图资料,展示给学生观看。

  2、介绍国家基本比例尺地图。

  学生观看

  阅读后适当交流

  数学《比例尺》教学教案 篇16

  【教学内容】

  北师大版数学六年级下册30页——比例尺

  【教材分析】

  教材从学生比较熟悉的房屋平面图入手,引导学生认识比例尺,初步感受比例尺在生活中的应用。出示平面图后,借助图形放缩的经验和其他学习经验,了解比例尺的含义。

  【学情分析】

  本节课内容是学生在学习了化简比的基础上学习的,因此不会感到陌生。但学生对比例尺的意义可能不好理解,这部分知识相对来说比较抽象,在具体计算上可能存在一定困难。

  【教学目标】

  1、结合具体情境,认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。

  2、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

  3、能积极参与数学学习活动,进一步体会数学与日常生活的密切联系。

  【教学重点】

  结合具体情境理解比例尺的意义。

  【教学难点】

  应用比例尺的知识解决实际问题。

  【教学准备】

  多媒体课件,直尺,中国地图

  【教学流程】

  一、 谈话导入,激起兴趣

  1、 如果要绘制我们教室的平面图,需要多大的纸?

  如果要绘制中国地图呢?

  (学生自由回答。得出结论。)

  2、 聪明的人想出了一个办法,把物体实际的长度按一定比例缩小再画在图纸上,这就是我们这节课要研究的内容。

  【设计意图:先抓住学生急于认知的心理,从生活中熟悉的事物出发,真切感受到在绘制平面图的时候,不可能按照实际的长度来操作,需要有一个科学的方法,从而引入本节课内容。】

  二、创设情境,探究新知

  活动一:(课件出示)

  六一儿童节快要到了,学校要举办一个大型的篝火晚会,想让同学们设计一个舞台。在平面图上如果用10厘米表示地面上10米的距离,那么图上距离与实际距离的比是多少呢?

  【设计意图:用学生喜欢的活动引起浓厚的兴趣,用亲身经验走近数学,探索其中的奥秘。】

  (1)读懂题目中的信息。

  (学生汇报已知条件和所求问题。)

  (2)根据题目的要求,引导学生得出10厘米:10米,并用学生已有的学习经验化简比。

  【设计意图:利用已有的'学习经验,学生自然会想到要化简这个比,必须要统一计量单位,这也是比例尺这个知识点重点强调的地方。】

  (3)随学生汇报,板书提炼:图上距离:实际距离

  10厘米:10米

  10:1000

  1:100

  (4)揭示比例尺的含义。使学生理解图上距离与实际距离的比就是比例尺。

  【设计意图:不把比例尺作为一个知识点让学生背诵,而是在情景中鼓励学生进行充分的思考与交流后得出结论。】

  (5)讲授比例尺的另一种表示形式,即分数的形式。板书。

  活动二:(课件出示)(投影仪展示)

  师生共同搜集的生活中不同的比例尺,引导学生交流讨论,说说自己的发现。

  (学生积极展开讨论与研究,各抒己见。)

  教师归纳为三点。

  ① 比例尺是一个比,不带计量单位。

  ② 比例尺的前项和后项一定是同级单位。

  ③ 为了计算方便,比例尺通常都写做是前项为1的比。

  【设计意图:多角度理解比例尺的含义,使学生对比例尺的意义、形式、求法有初步了解,为解决实际问题打好基础。】

  活动三:(出示教材30页情境图)

  (1) 理解比例尺1:100的意义,引导学生用自己的语言描述。

  (2) 完成2、3题。

  (学生独立思考后小组内交流自己的想法,然后全班交流方法。)

  (3) 完成4、5题。

  (引导学生理解题意,独立思考后进行交流。)

  【设计意图:学生可以利用比的意义、比例尺的含义等知识和解决问题的经验来解决这些问题,放手学生有利于提高解决问题的能力。】

  (4)引导学生进行总结归纳。已知图上距离、实际距离、比例尺中的两个量怎样求第三个量。

  三、 拓展引申,巩固新知

  出示一中国地图。

  1、 找到自己的家乡。估一估家乡到北京的距离,求一求实际距离。

  2、 放暑假时,你打算从------到-------去旅游,两地间的实际距离大约是------千米。

  引导学生交流各自的想法。

  【设计意图:本体具有开放性和挑战性,对学生的估算和计算能力都是一种考验。】

  四、 运用所学,解决问题

  1、 学了本节课,你有获得了哪些知识?

  2、 怎样画我们教室的平面图呢?(长8米,宽6米)

  引导学生交流自己的看法,自定比例尺,画出平面图。

  【设计意图:回顾前面的问题,首尾呼应,为学生提供充分的自由发展空间,让他们倾听、协作、分享、交流。】

  五、 布置作业,课后延伸

  1、 搜集生活中后项为1的比例尺。

  2、 比例尺除了可以用1:100、1/100这样的形式表示,你知道还可以怎样来表示吗?

  【设计意图:作为知识的拓展,将旧教材中的扩大比例尺和缩小比例尺、数值比例尺和线段比例尺的知识点给学生,拓宽学生视野和知识面。】

  数学《比例尺》教学教案 篇17

  教学目标:

  1、理解比例尺的含义,掌握求比例尺的方法,能正确求出一幅图的比例尺。

  2、认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。

  教学重点:

  理解比例尺的含义。

  教学难点:

  认识线段比例尺和数值比例尺,并进行互化。

  教学准备:

  课件、直尺

  教学过程:

  一、定向导学(5分)

  1、填空:

  1千米= ( )m =( )cm

  60000cm=( )m =( )km

  千米化成厘米数,把小数点向( )移动( )位。

  厘米化成千米数,把小数点向( )移动( )位。

  2、导入:

  脑筋急转弯:一只蚂蚁从北京爬到上海只用了10秒钟,这是为什么?

  在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。这就是我们今天要认识的新朋友---比例尺。板书课题。

  3、出示学习目标:

  (1)理解比例尺的含义,掌握求比例尺的方法,能正确求出一幅图的比例尺。

  (2)认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。

  二、自主学习(8分)

  我们中华人民共和国富源辽阔,有960万平方千米,怎样才能把她画在小小的图纸上:这幅图就要用1:4500000的缩小比例尺把她画在地图上。幸福路小学的面积也比较大,也要用1:1200的缩小比例尺把她缩小画在平面图中。下面,我们先来自主学习。(出示自主学习题目)

  学习内容:课本53页内容。

  学习方法:先独立看书,用笔画出重点,再回答下列问题:(5分钟之后,比一比,看谁能做对检测题!)

  1、( ),叫做这幅图的比例尺。

  ( )

  2、( ):( )=比例尺 或 =比例尺

  ( )

  3、为了计算方便,一般把比例尺写成前项或后项是( )的形式。

  4、北京到天津的实际距离是120km,在一副地图上量得两地的图上距离是2.4cm。这副地图的比例尺是多少?(请第4组的b1板演)

  5、一副中国地图的比例尺是1:100000000,这是( )比例尺,表示图上1厘米相当于实际的( )m或( )km。图上距离是实际距离的( ),实际距离是图上距离的( )倍。

  6、一副北京地图的比例尺是: ,这是( )比例尺,表示图上的1cm相当于实际的( )km。

  学完之后,让每组的b1回答。

  最后再提问:观察对比,数值比例尺和线段比例尺的不同之处?

  指名回答:数值比例尺不带单位;线段比有一条1厘米长的线段,并且线段的第一个端点上的数字是0,第二个端点上有一个带单位的数字。数值比例尺和线段比例尺的形式不同。

  三、合作交流(12分)

  在我们的'日常生活中,除了用到缩小比例尺,把把实际距离按一定的比缩小画在图纸上,有时,也会根据需要,用到放大比例尺,把实际距离按一定的比扩大,再画在图纸上,比如:在绘制比较精细的零件图时,经常需要把零件的尺寸按一定的比放大,再画在图纸上。再比如七星瓢虫实际长度只有5mm,本图就用8:1的放大比例尺把它画在图纸上。下面,我们来进行合作学习。(出示合作交流)

  1、一个零件的长为3厘米,画在纸上的长为6厘米, 这幅图的比例尺是( ),它表示:图上的()厘米相当于实际的( )厘米,图上距离是实际距离的( )。这是把零件()了。

  2、比例尺1:10和10:1相同吗?( )

  比例尺1:10表示:( ),是( )比例尺,()项是1。

  比例尺10:1表示:( ),是( )比例尺,()项是1 。

  3、比例尺的分类:

  按形式分 ( )例如:( )

  ( )例如:( )

  按用途分 ( )例如:( )

  ( )例如:( )

  四、质疑探究 (5分)

  1、一副地图的比例尺是1:300000,你能用 线段比例尺表示出来吗?

  0 600m

  2、一幅地图的比例尺是 ,你能用 数值比例尺表示出来吗?

  五、小结检测(10分)

  (一)小结:

  1、这节课你学会了什么知识?

  2、关于比例尺你认为需要注意什么?

  (1)数值比例尺与一般的尺不同,它是一个比,不应带有计量单位。

  (2)求比例尺时,前、后项的长度单位一定要化成同级单位。

  (3)为了计算方便,通常把数值比例尺写成前项或后项是1的比。

  (二)检测:

  一、填空:

  1、1:5000000表示( )

  2、5:1表示( )

  0 40km

  3、 表示( )

  4、在比例尺是1:4000000的地图上,图上距离是实际距离的( ),实际距离是图上距离的( )倍,把这个数值比例尺改成线段比例尺是( )。

  二、解决

  问题。

  1、一条跑道全长200米,在图纸上的长度是10厘米。这幅图纸的比例尺是多少?

  2、一个零件的实际长度是8毫米,在设计图上用4厘米表示。这幅设计图的比例尺是多少?

  板书设计:

  比例尺

  图上距离

  图上距离:实际距离=比例尺 或 =比例尺

  实际距离

  数值比例尺 例如1:10000

  按形式分

  线段比例尺 例如:

  缩小比例尺 例如:1:12000

  按用途分

  放大比例尺 例如: 6:1

  数学《比例尺》教学教案 篇18

  一、教学目标:

  1.让学生在实践活动中体验生活中需要比例尺。

  2通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。

  3运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

  4学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

  二、教学重点:

  正确理解比例尺的.含义。

  三、教学难点:

  运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

  四、教学准备

  多媒体

  教学过程:

  一、情境导入

  师:同学们,老师家的房子要扒了,老师想买个面积大一点的房子,现在老师有两套房子的平面设计图,你能帮老师选择买那套房子吗?看谁能帮老师解决这个难题。(出示投影)

  二.探究新知、

  1、计算

  师:下面就请你们来当一个小小的设计师,课前我们已测量出教室的长是8米,宽是6米,请你们把教室的平面图画在老师发给你的白纸上,并完成表格。

  师:在画之前,先看清楚要求。(课件显示):

  (1)确定图上的长和宽;

  (2)个人独立画出平面图;

  (3)在下表中填出图上的长、宽与实际的长、宽的比,并化简。

  2、展示交流

  你这样想?怎样画?请告诉大家。(学生展示交流)

  谁有不同的想法、画法?(学生充分交流不同的意见)

  (设计意图:在交流中学生思维互相碰撞,提高认识。另外,有利于教师了解学生的学习基础。)

  3、评析 感受感受比例尺的价值

  他们画得像吗?

  (指画得像的图片)问: 其中的奥秘是什么呢?

  请想一想,说一说。明确图上长、宽与实际长、宽的比是一定的,画出的平面图才逼真。

  (设计意图:思考图形画得象不象?为什么?产生认知矛盾,引发深层次的思考。)

  4、揭示概念

  象这样,在绘制平面图时,需要确定图上距离和实际距离的比,这个比叫做这副图的比例尺。

  投影出示比例尺的概念。

  5、总结求比例尺时的注意事项

  (1)求你所画那副图的比例尺

  (2)求老师所买那套房子的实际面积

  三、小结

  本节课你有哪些收获,还有那些不明白的地方?

  数学《比例尺》教学教案 篇19

  教学目的:

  1.在实践活动中体验生活中需要的比例尺,能读懂两种形式的比例尺。

  2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。

  教学重点:

  理解比例尺的意义

  教学难点:

  把线段比例转换成数值比例尺

  教学过程:

  一、激发兴趣,引入比例尺

  脑筋急转弯

  师:坐公共汽车从沙市红星路到荆州火车站,一共要用50分钟,但有只蚂蚁从沙市红星路爬到荆州火车站却只用了40秒钟。你知道是怎么回事吗?

  生猜:蚂蚁可能在地图上爬。

  师:对了。蚂蚁爬的是从沙市红星路至荆州火车站的图上距离,而人们坐车所行的是从沙市红星路到荆州火车站的实际距离。

  师:那图上距离与实际距离之间有什么关系呢?让我们先来做个游戏。

  二、动手操作,认识比例尺

  1、操作计算。

  师:你们喜欢画画吗?那我们来个最简单的——画线段游戏。我说物品的长度,你用线段画出它的长,行吗?

  ①橡皮长5厘米

  ②圆规长11厘米

  ③米尺长1米

  师:咦?怎么不画了?

  生:画不下。

  师:那怎么办呀?快想想,有什么好办法,可以把1米画到纸上去?

  生:可以把1米缩小若干倍后画在纸上。

  师:这个办法不错。就用这种方法画吧。

  学生画完,集体交流。

  师:你是用图上几厘米的线段来表示实际1米的呢?

  教师有选择的板书:

  师:像2厘米、5厘米、10厘米这些在图上画出的线段的'长度,我们叫“图上距离”,而这1米就叫“实际距离”。

  师:你能用比表示出图上距离与实际距离的关系吗?

  教师指名回答,并板书计算过程。

  2、揭示比例尺的意义。

  (1)初步理解比例尺的意义

  师:其实像这样一幅图的图上距离与实际距离的比,就叫这幅图的比例尺。这就是我们这节课所要学习的内容—比例尺(板书课题及关系式)根据比与分数的关系,我们还可以把它写成图上距离/实际距离=比例尺。(板书)

  师:下面每位同学算出自己的比例尺。

  (生独立计算后汇报结果,师板书)

  师:同样是1米的米尺的线段图,为什么它的比例尺却不一样呢?(缩小的倍数不同)

  师:同学们,你们还记得我们上课前所说的最后一道脑筋转弯的题目吗?原来坐车是从沙市红星路到荆州的火车站实际距离约是18千米,而蚂蚁行的是30厘米的图上距离,怪不得只要3秒呢!那么,你能求出这副地图的比例尺吗?

  (学生做前先交流)

  师:大家交流一下,谁能告诉大家首先要做什么事情?

  师:先写出图上距离与实际距离的比,再把千米化成厘米,也就是说我们在求比例尺的时候,首先写出比,再把单位统一起来,最后化简比。(板书1. 写出比。2. 单位统一。3. 化简比)

  学生汇报计算结果

  让能说说求一幅图的比例尺的方法是怎样的?

  对应练习:

  完成课本第49页“做一做”

  (2)联系生活,进一步理解比例尺

  师:你还在哪里见过比例尺?

  生1:大型建筑。

  生2:房屋装修。

  师:根据这幅图的比例尺,你能用另一种说法说出图上距离和实际距离的关系吗?

  (让学生说出图上距离是实际距离的几分之几?实际距离是图上距离的几倍?)

  三、认真比较,深刻理解

  1、比较比例尺,揭示数值比例尺的意义。

  师:像1:1000000这样的比例尺是数值比例尺。它也可以写成1/1000000你。能说说比例尺1:100000000所表示的意思吗?

  生:距离是实际距离的一百万分之一,实际距离是图上距离的一百万倍。

  师: 你还见过怎样的比例尺?(出示中国地图)引出线段比例尺。

  2、认识线段比例尺。

  师:把上面的线段比例尺改写成数值比例尺。

  1厘米:60千米

  =1厘米:6000000厘米

  =1:6000000

  小结:

  线段比例尺和数值比例尺是比例尺的两种基本形式。它们之间可以进行转换。把线段比例尺转换成数值比例尺只要把写出图上距离与实际距离的比再化简就可以了。

  3、认识把实际距离放大后的比例尺

  同学们,刚才我们把米尺的实际距离缩小若干倍后画在纸上,我们还求出了它的比例尺是1:100等,在实际生活中有没有要把实际距离放大后再画在图上的呢(有)

  (出示三年级科学书中蚂蚁图)

  师:这是同学们三年级科学书中蚂蚁图,他是把蚂蚁放大后画在书上,图上蚂蚁长6厘米,而蚂蚁实际长6毫米。你能算出这幅图的比例尺吗?

  (学生尝试算出这幅图的比例尺,指名板演)

  出示一些精密零件的图和图纸,介绍把实际距离放大后的比例尺。

  纵观这节课所认识的比例尺,思考下列问题:

  1、比例尺与一般的尺相同吗?化简后的比例尺带不带单位?

  2、求比例尺时,通常要做什么?

  3、化简后的比例尺,它的前项和后项一般是什么形式?

  四、巩固练习,灵活运用

  1、小结看书。

  2、练习:

  (一)填一填

  (1)在比例尺是1:2000的地图上,图上距离1厘米表示实际距离( )

  (2)在比例尺是1:4000000的地图上,图上距离是实际距离的( ),实际距离是图上距离的( )倍。

  (3)出示一个线段比例尺表示图上1厘米相当于实际距离( )米,把这个比例尺改写成数值比例尺是( )。

  (二)判断

  (1)小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。

  (2)某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。

  (3)一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离 .

  六、谈学后体会。

  这节课你学到了什么?

【数学《比例尺》教学教案】相关文章:

比例尺教学设计教案01-22

比例尺教学设计教案4篇01-22

比例尺的教案(通用11篇)10-08

数学的教学教案12-09

数学教学教案11-05

数学教学教案【荐】12-09

数学教学教案【推荐】12-09

数学教学教案【热门】12-09

小学数学教学教案12-10