- 相关推荐
垂直于弦的直径教学教案
一、教材分析
(一)教材的地位及作用
本节教学内容是新人教版九年级(上)第二十四章第一节圆的第二课时。本节内容是本章基础,是圆的有关计算和圆的有关证明一个重要工具。
(二)教学目标
1.知识目标:
(1)使学生理解圆的轴对称性;
(2)掌握垂径定理;
(3)学会运用垂径定理,解决有关的证明和计算问题。
2.能力目标:培养学生动手能力、观察能力、分析问题和解决问题的能力。
3.情感目标:通过联系、发展、对立与统一的思考方法对学生进行辩证唯物主义观点的教育。
(三)教学重点、难点
本节课的教学重点是:垂径定理及其应用 ;
教学难点是:找出垂径定理的题设和结论。
一、学情分析
学生在生活中经常遇到圆方面的图形,对本节课会比较有兴趣,并且学过轴对称图形相关知识。同时九年级的同学仍然是比较好奇、好动、好表现的。
二、教法分析
本节课采用多媒体辅助教学,并动手折纸探索垂径定理的结论,目的在于呈现更直观的现象,提高学生的积极性和主动性,并提高课堂效率 。
三、学法分析
“赠人以鱼,不如授人以渔”,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,进入新知识的领域,从不同角度去分析、解决新问题,通过基础练习、提高练习,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
五、教学过程
(一)创设情境,引入课题
问题情境:你知道赵洲桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4,拱高(弧的中点到弦的距离)为7.2,你能求出赵洲桥主桥拱的半径吗?
这里就是生活中的问题,目的是激发学生的探究欲望.教师可引导学生将实际问题转化为数学问题,也就是“已知弦长和拱高,如何求半径”的问题.学生可能会感到困难,从而教师指出通过本节课的学习就会迎刃而解了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学于实际生活,解决生活中的实际问题的基本思想。
(二)动手动脑,探索定理
1.探究准备
让学生用纸剪一个圆,沿着圆的任意一条直径对折,重复几次,通过交流,得出圆是轴对称图形这一结论,并明白对称轴是直径所在的直线.在动手过程中,积极鼓励学生,发挥他们的主观能动性,为了等下的探究打下基础.并给出个巩固练习,加深印象。
2.尝试猜想和验证定理
接着引入所要探究的问题:
如图,AB是⊙的一条弦,做直径CD,使CD⊥AB,垂足为p.(图略)
(1)此图是轴对称图形吗?如果是,它的对称轴是什么?
(2)你能发现图中有那些相等的线段和弧?为什么?
先让同学们观察这样的图形,通过观察,发现这个图形也是一个轴对称图形,对称轴是直径所在的直线,让同学们从观察中得到结论。然后观察图形猜想这个图形中一些相等的线段和弧,得到一些结论。紧接着发挥小组合作交流意识,讨论下为什么会出现这些相等的线段和弧,注意已知条件和利用所学的知识将所得结论证明出来。从此增加学习数学的兴趣,并体验成功的喜悦。
3.给出垂径定理
最后引导学生用符号语言将垂径定理表示出来,认清题设及结论,并将数学语言转化为文字语言“垂直于弦的直径平分弦,并且平分弦所对的两条弧.”这是学习数学的一项基本能力,这样的设计可以使学生充分参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
(三)应用举例,巩固定理
1、举个直接应用定理解决的例子,让学生及时巩固定理。
2、回到课本开头部分的问题,并加以解决,让学生现学现用,加深印象。
这样可以使学生体会到垂径定理在实际生活中的应用,使学生知道数学就在我们的身边,数学与实际生活是紧密相连,融于一体的。
(四)加强练习,巩固定理
为了进一步加深学生对定理的理解,并培养学生的数学应用意识,我根据学生的实际情况及心理特点,设计了有一定梯度,循序渐进的变式练习。
(五)课堂小结,各抒己见
通过学生回忆本节课所学内容,从垂径定理的猜测、验证到数学思想方法的应用,提问学生在获取新知识的方面有哪些收获?然后再由教师进行总结归纳。
(六)布置作业,应用新知
考虑到学生的个体差异,我设计了必做题和选做题,让更多的同学参与到数学中来.且限时20分钟,减轻学生负担,提高学习效率
六、板书设计
24.1.2 垂直于弦的直径
1、想一想:
2、做一做:
3、议一议: 学生板演区
4、比一比:
5、小 结:
6、作 业:
七、教学评价
1.在探索垂径定理的过程中,增强了同学们的猜测、推理等技巧,并且考查了学生分析问题的能力,动手与动脑的有机结合,对学生思考问题和解决问题都有很大的帮助。
2.通过实例了解了古代人的智慧,体会垂径定理的文化价值,使学生热爱科学,热爱探索,并树立远大的理想。