- 相关推荐
忆阻器在神经网络中的应用
忆阻具有电阻的量纲,但和电阻不同的是,电阻的阻值是由流经它的电流决定,而忆阻的阻值是由流经它的电荷确定。因此,通过测定忆阻的阻值,便可知道流经它的电荷量,从而有记忆电荷的作用。
摘要:忆阻器是除电阻器、电容器、电感器之外的第四种基本无源电子元件。忆阻器和电阻的量纲相同,但是它的电阻值会随着流经的电荷量而发生改变,因而具有不同于普通电阻的非线性电学性能。忆阻器能够在电流断开时,仍能记忆之前通过的电荷量,从而保持之前的阻值状态,因而具有记忆功能。忆阻器的这些特性与生物大脑中神经突触的工作原理及结构有着高度相似性,并且,忆阻器有着很简单的金属/介质层/金属三明治结构,集成度高,因此在新型神经突触仿生电子器件领域引起极为广泛的关注。基于忆阻器,有望在不久的将来实现无数科学家一直以来的梦想――开发出与人脑结构类似的认知型计算机以及类人机器人。
关键词:相似性;阻变机理;可塑性
引言
人工神经网络是一种旨在模仿人脑结构及其功能的信息处理系统。神经元之间突触的联系强度是可变,这是学习和记忆的基础。人工神经网络可以通过“训练”而具有自学习和自适应的能力。神经网络技术的关键是权重设计,权重的硬件实现需要一个长期保持记忆且不耗能的纳米级元件。传统的人工神经网络技术都是在传统计算机基础上进行的,其主要缺点是运算量巨大且运算不是并行处理。如果在硬件上实现人工神经网络的并行分布式处理、非线性处理,自我学习功能和自适应性等功能,就能够解决了人工神经网络在传统计算机上运算量巨大的缺点。而单个忆阻器便可实现神经突触功能的模拟,而且忆阻器能够很容易与纳米交叉连接技术相结合,具有大规模并行处理、分布式信息存储、巨大存储量等优势。所以利用忆阻系统是人工神经网络实现神经突触功能的模拟的最好的方式之一,因而成为近年来研究的热点。
一、忆阻与神经突触的相似性
神经元是大脑处理信息的基本单元。人脑大约含有1011-1012个神经元,神经元互相连接成神经网络。突触是神经元间信息传递的关键部位,决定了前后神经元之间的联系强度。图1.神经突触的结构示意图。神经递质通过突触前膜释放到突触间隙,作用于突触后膜上的受体,使突触后膜发生电位变化,使下一个神经元产生兴奋或抑制。生物系统记忆和学习功能是以精确控制通过神经元及突触的离子流为基础建立的。突触能够随外界的电位刺激变化,粒子流产生动态连续的变化,联系强度增强或者减弱,即突触的可塑性。在忆阻器件出现之前,人工神经网络突触的的硬件实现需要集成电路甚至超大规模的集成电路,而且人工神经网络的密度也很难达到生物神经网络的密度,因而电路复杂体积庞大,制约了人工神经网络对于复杂的人脑功能模拟的实现。忆阻器的出现解决了这个问题,世界各地多个研究小组已实现了具有不同忆阻模型和忆阻特性的忆阻器件。由于忆阻器的电阻可变和电阻记忆特性,与突触的功能上有很强的相似性,因此忆阻在人工神经网络电路中可以模拟突触在生物神经网络中的作用。
二、神经突触的可塑性特性
神经突触一个重要的特征是突触的可塑性,电信号刺激能够加强或者弱化突触,突触连接强度可连续调节。利用忆阻器模拟生物突触最基本的依据是由于它具有电阻缓变的特性,当施加电压下器件的阻值可实现从高(低)阻值到低(高)阻值的缓变过程,器件的导电性(或阻值)相当于突触权重,导电性增大和减小的过程分别对应突触的增强和抑制过程。记忆是通过大脑中大量突触之间的相互连接所表现出来,因此,突触可塑性被认为是学习和记忆重要的神经化学基础。实现突触学习功能时,一个典型特性是电脉冲时间依赖可塑性(STDP)。人类大脑中记忆或者突触可塑性按保留时间可以分为短程记忆和长程记忆。短时程可塑性与神经元的信息传递和处理有着密切的关系。神经系统每时每刻都接受数以千计来自外界的刺激,短时可塑性对如何在大量的输入信息中提取有用信息扮演重要角色。长时程可塑性促使突触在数小时到数天之内发生持续性的变化,人们认为其在学习和记忆存储的突触机制中发挥重要作用。
三、忆阻器件的阻变机理
早在1971年,美国校华裔科学家蔡少棠就通过理论计算预言,在电阻、电容和电感之外必定存还在第四种无源电子元件,即忆阻器。如图3所示,电路的3个基本元件电阻、电感和电容,可以分别有由4个电路变量变量电压(v)、电流 (i)、电荷量(q)和磁通量(φ)中的两个来定义,分别为:由电压和电流定义的电阻R、由电荷和电压定义的电容 C 以及由磁通量和电流定义的电感L。出于逻辑完备性,蔡绍棠认为应该还存在由电荷量和磁通量定义的第4类基本电路元器件即忆阻器。然而学界却一直没有找到这个在理论上成立的无源元器件,直到37年后(2008年),美国惠普公司宣布在Pt/TiO-x/Pt两端器件实现了具有忆阻功能的器件结构(图4),从而找到这个一直缺失的电路元件,至此忆阻器开始引起更多学者的研究兴趣,并迅速成为电路、材料、生物等领域的研究热点。
随着人们对忆阻器研究的深入,多种忆阻器件和模型在各研究领域相继提出和实现。目前,阻变机理主要有边界迁移模型、丝电导模型、电子自旋阻塞效应、氧化还原反应等。中科院诸葛飞课题组在锥形纳米孔洞结构的非晶碳薄膜材料中,实现了纳米导电丝机制的忆阻器件。非晶碳膜阻变器件的电致电阻效应决定于通孔中的纳米导电细丝的通断(如图4)。
四、结论与展望
本文对神经网络的概念、忆阻器与神经突触的相似性、神经突触的可塑性、忆阻器的阻变机理进行了综述,指出了目前很多忆阻器是利用人工神经网络实现人工智能及超级计算机的硬件基础。目前忆阻器材料研究存在的两个主要问题是阻 变机理不够清楚和阻变性能不够稳定。忆阻器材料非常之多,甚至把任意绝缘材料做到纳米级,就很有可能具有阻变特性。找出隐藏在众多阻变现象之后的机理有无共同的规律,研究阻变特性是由材的化学成分决定还是由材料的微 观结构决定,这将是以后研究中需要回答的问题。
【忆阻器在神经网络中的应用】相关文章:
网络安全评价中神经网络的实践应用10-26
智能终端中的应用软件设计中的光传感器10-26
OMC在电化学生物传感器中的应用论文10-08
计算机网络安全评价中神经网络的构建论文10-09
经济神经网络活动分析的论文10-09
中职计算机应用基础中的应用论文10-09
高职计算机应用基础教学中的应用论文10-08
浅析计算机应用基础教学中的应用论文10-08
微电子在医学中的应用论文10-08