小学数学思想论文
小学数学思想论文是小编为数学专业的同学带来的论文范文,写论文时可以作为参考哦。
小学数学思想论文【1】
摘 要:数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。
通常混称为“数学思想方法”。
而小学数学教材是数学教学的显性知识系统,看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的 心智活动过程。
而数学思想方法是数学教学的隐性知识系统。
关键词:小学数学;思想
一、方程和函数思想
在已知数与未知数之间建立一个等式,把生活语言“翻译”成代数语言的过程就是方程思想。
笛卡儿曾设想将所有的问题归为数学问题,再把数学问题转化成方程问题,即通过问题中的已知量和未知量之间的数学关系,运用数学的符号语言转化为方程(组),这就是方程思想的由来。
在小学阶段,学生在解应用题时仍停留在小学算术的方法上,一时还不能接受方程思想,因为在算求解题时,只允许具体的已知数参加运算,算术的结果就是要求未知数的解,在算术解题过程中最大的弱点是未知数不允许作为运算对象,这也是算术的致命伤。
而在代数中未知数和已知数一样有权参加运算,用字母表示的未知数不是消极地被动地静止在等式一边,而是和已知数一样,接受和执行各种运算,可以从等式的一边移到另一边,使已知与未知之间的数学关系十分清晰,在小学中高年级数学教学中,若不渗透这种方程思想,学生的数学水平就很难提高。
例如稍复杂的分数、百分数应用题、行程问题、还原问题等,用代数方法即假设未知数来解答比较简便,因为用字母x表示数后,要求的未知数和已知数处于平等的地位,数量关系就更加明显,因而更容易思考,更容易找到解题思路。
在近代数学中,与方程思想密切相关的是函数思想,它利用了运动和变化观点,在集合的基础上,把变量与变量之间的关系,归纳为两集合中元素间的对应。
数学思想是现实世界数量关系深入研究的必然产物,对于变量的重要性,恩格斯在自然辩证法一书有关“数学”的论述中已阐述得非常明确:“数学中的转折点是笛卡儿的变数,有了变数,运动进入了数学;有了变数,辨证法进入了数学;有了变数,微分与积分也立刻成为必要的了。”数学思想本质地辨证地反映了数量关系的变化规律,是近代数学发生和发展的重要基础。
在小学数学教材的练习中有如下形式:
6×3= 20×5= 700×800=
60×3= 20×50= 70×800=
600×3= 20×500= 7×800=
有些老师,让学生计算完毕,答案正确就满足了。
有经验的老师却这样来设计教学:先计算,后核对答案,接着让学生观察所填答案有什么特点(找规律),答案的变化是怎样引起的?然后再出现下面两组题:
45×9= 1800÷200=
15×9= 1800÷20=
5×9= 1800÷2=
通过对比,让学生体会“当一个数变化,另一个数不变时,得数变化是有规律的”,结论可由学生用自己的话讲出来,只求体会,不求死记硬背。
研究和分析具体问题中变量之间关系一般用解析式的形式来表示,这时可以把解析式理解成方程,通过对方程的研究去分析函数问题。
中学阶段这方面的内容较多,有正反比例函数,一次函数,二次函数,幂指对函数,三角函数等等,小学虽不多,但也有,如在分数应用题中十分常见,一个具体的数量对应于一个抽象的分率,找出数量和分率的对应恰是解题之关键;在应用题中也常见,如行程问题,客车的速度与所行时间对应于客车所行的路程,而货车的速度与所行时间对应于货车所行的路程;再如一元方程x+a=b等等。
学好这些函数是继续深造所必需的;构造函数,需要思维的飞跃;利用函数思想,不但能达到解题的要求,而且思路也较清晰,解法巧妙,引人入胜。
二、化归思想
化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。
应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。
它具有不可逆转的单向性。
例: 狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳4 1/2 米,黄鼠狼每次可向前跳2 3/4米。
它们每秒种都只跳一次。
比赛途中,从起点开始,每隔12 3/8米设有一个陷阱, 当它们之中有一个掉进陷阱时,另 一个跳了多少米?
这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每 次所跳距离4 1/2(或2 3/4)米的整倍数,又是陷阱间隔12 3/8米的整倍数,也就是4 1/2和12 3/8的“ 最小公倍数”(或2 3/4和12 3/8的“最小公倍数”)。
针对两种情况,再分别算出各跳了几次,确定谁先掉 入陷阱,问题就基本解决了。
上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。
三、极限的思想方法
极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。
现行小学教材中有许多处注意了极限思想的渗透。
在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1÷3=0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。
当然,在数学教育中,加强数学思想不只是单存的思维活动,它本身就蕴涵了情感素养的熏染。
而这一点在传统的数学教育中往往被忽视了。
我们在强调学习知识和技能的过程和方法的同时,更加应该关注的是伴随这一过程而产生的积极情感体验和正确的价值观。
《标准》把“情感与态度”作为四大目标领域之一,与“知识技能”、“数学思考”、“解决问题”三大领域相提并论,这充分说明新一轮的数学课程标准改革对培养学生良好的情感与态度的高度重视。
它应该包括能积极参与数学学习活动,对数学有好奇心与求知欲。
在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性,形成实事求是的态度以及进行质疑和独立思考的习惯。
另一方面引导学生在学习知识的过程中,学会合作学习,培养探究与创造精神,形成正确的人格意识。
小学数学数形结合教学思想论文【2】
摘要:小学是我国教育系统的重要组成部分,同时也是我国教育系统的基础,小学教育的质量将会影响到学生学习能力的培养,进而影响到学生以后的学习。
数学是一门比较重要的学科。
在小学阶段,大部分的学生都是刚开始正式接触数学学科,而数学知识的逻辑性又比较强,比较抽象,从而会使得一部分学生感觉到比较吃力。
鉴于此,在小学数学教学过程中应结合小学生的生理特点和心理特点采用数形结合的教学思想,提高学生数学学习的效果。
关键词:小学;数学教学;数形结合
数形结合思想是数学思想的一种,在教学过程中采用数形结合的教学思想不仅可以降低知识点的难度,同时还可以提高学生学习的兴趣。
因此,应将数形结合的教学思想应用于小学数学教学中。
本文将结合小学数学教学的实际情况,分析和研究数形结合思想在小学数学教学中应用的方法,并提出在小学数学教学中运用数形结合思想应注意的问题,希望可以为以后的小学数学教学工作提供一些借鉴。
1数形结合思想在小学数学教学中的具体应用
数形结合思想就是指在数学学习过程中,可以通过数和形之间的变换来解决一些数学问题,采用这样的方式可以大大降低数学问题的难度。
下文将具体介绍一下数形结合思想应用的方法。
首先,在小学数学教学过程中应采用数形结合的思想可以将一些抽象的概念直观化,从而使得学生可以更好地理解概念。
概念是数学学习的重要内容之一,但在数学中有一些概念是比较抽象的,对于小学生来说理解这样的概念是存在一定难度的。
以往,教师为了让学生理解这些概念往往会采用死记硬背的方式,按照教师的观点,先记住概念,随着使用次数的增多自然就会理解了。
但是,对于学生而言,光记住概念却不理解概念是难以将其应用于解题过程中的。
因此,在教学过程中,教师可以采用数形结合的思想,通过“数”、“形”变换将这些抽象的概念以较为直观的方式表达出来,这样学生才能更好地理解概念,并将其应用于解题过程中。
其次,在小学数学教学过程中教师应采用数形结合的思想将一些隐性的数学规律以形象化的方式表达出来,从而培养学生找规律的能力。
数学知识的逻辑性比较强,同时也存在很大的规律性。
有一些数学规律已经被视为公式,出现在数学教材中。
但有一些数学规律则因各种因素的影响没有出现在教材中,而这些隐性的规律是学生难以发现的,但对于理解数学知识和解题来说是比较有用的。
因此,教师应将这些隐性的数学规律告知学生。
但在告知学生的过程中应掌握一定的方法技巧,培养学生独立寻找数学规律的能力。
采用数形结合的思想,一方面可以更加清晰地展示数学规律,另一方面也更加容易让学生掌握这种寻找数学规律的方法。
最后,在小学数学教学过程中教师应采用数形结合的思想来简化问题,从而降低问题的难度。
在数学学习过程中,有很多数学问题都存在比较复杂的数量关系,对于处于小学阶段的学生来说他们难以理解这样复杂的数量关系,进而也就不知道该如何解题。
在这种情况下,教师应教授学生利用数形结合思想解决问题的方法。
采用数形结合思想一方面可以将一些复杂的问题简单化,另一方面也可以使得问题中的数量关系清晰化,更加有利于学生理解题目的含义。
在小学数学教学中运用数形结合思想不仅可以提高学生数学学习的效果,同时还可以让学生养成用数形结合思想解决问题的习惯,从而使得学生的空间思维能力得到提升,这对学生以后的数学学习也会有很大的帮助。
2小学数学教学中运用数形结合思想应注意的问题
在小学数学教学中运用数形结合思想对于培养学生的数学思维能力具有重要的作用,但为了充分发挥数形结合教学思想的作用,在运用数形结合教学思想的过程中还应注意下述几方面的问题。
首先,教师在小学数学教学的过程中不仅要采用数形结合思想,同时还应让学生养成用数形结合思想解决问题的习惯。
准确地说,数形结合是一种数学思想,而不是教学思想。
因此,为了提高学生的数学学习能力,在数学教学的过程中教师应有意识地培养学生运用数形结合思想解决数学问题的习惯,这样就会让学生养成一种思维习惯,遇到数学问题时就会想到这种解决问题的方法,这对学生以后的学习和生活都是具有积极作用的。
其次,教师在运用数形结合教学思想的过程中应充分利用多媒体技术。
正如上文所述,数形结合思想简单来说就是“数”、“形”变换的一种思想。
利用多媒体技术可以更好地向学生展示“形”,还可以利用视频、动画、图片等多种方式来展示“数”“形”变换的具体过程,这样更加有助于学生理解数学知识。
最后,在小学数学教学中运用数形结合的教学思想时应加强数学知识和现实生活之间的联系,最好用一些学生平时比较熟悉的事物来表现数形变换的过程,这样不仅可以加深学生对相关知识点的印象,同时还可以提高学生数学学习的兴趣。
3总结
总之,相比于传统的教学思想来说,数形结合的教学思想更加符合数学教学的实际情况。
在小学数学教学的过程中采用数形结合的教学思想不仅可以将一些抽象的知识具象化,使得学生可以更好地理解数学知识,同时还可以提高学生的数学思维能力,使其更好地掌握数学知识。
参考文献
[1]袁婷.小学数学教学中数形结合思想的渗透研究[J].学周刊,2015,06:60-61.
[2]曹红涛.数形结合思想在小学数学教学中的渗透研究[J].中国校外教育,2015,28:129.
[3]张晓明.浅谈数形结合思想在小学数学中的应用[J].学周刊,2014,33:208.
【小学数学思想论文】相关文章:
数学思想小学数学论文10-08
小学数学如何渗透数学建模思想论文10-09
小学数学教学中渗透数学思想的探索论文10-10
小学生数学建模思想培养论文10-09
小学数学中的建模思想探讨论文10-09
小学数学数形结合思想研究论文10-10
小学数学教学渗透数学思想方法论文10-08
思想教育数学教学的论文10-11
小学数学的数学思想10-08