学习方法

数学学习方法与技巧

时间:2022-10-01 01:01:19 学习方法 我要投稿

数学学习方法与技巧

  小学数学学习方法与技巧【一】

数学学习方法与技巧

  一、 数学学习的基本环节与原则

  在校学生的学习,是在教师指导下进行的,课堂学习一般由四个环节组成:首先要听老师的课,这就是听课的一环;为了消化和掌握课堂上所传授的知识,需要做练习,这就是作业的一环,为了进一步把所学的知识巩固起来,并了解其内在联系,需要记忆和归纳整理,这就是复习的一环;为了使下一节课学得更主动,事先需要阅读新课,这就是预习的一环。这四个环节的每一部分都有它的独立意义和独立作用,而各部分之间又相互衔接,相互影响,相互制约。这四个环节组成一个小循环,也就是一个学习周期。学习的周期就是学习的车轮运转一周的轨迹,善于学习的人应该从车轮运转一周的撤印中找到它的起止点和中间环节,把四个环节组成定型的学习周期,组成一个学习系统,使每个环节都能充分发挥它们的作用,这样就能取得好的学习效果。

  数学学习的基本过程

  学生学习独立新知时,一般要经历以下五个基本步骤。

  第一步,对所学知识事物或数的变化发展过程进

  行初步感知。

  如考察事、物的存在、演变的条件与过程;参与对所学知识的演示、操作与实物及再现事物的存在、变化和发展过程,进而获得对所学知识的初步感受。

  按触和初步认识新知--建立感性认识

  开展联想 ---形成新知表象

  探究新旧知识的内在联系---第二次感知

  抽象概括新知本质特征---向理性知识转化

  记忆新知--- 巩 固

  应用新知 ---将知识转化为能力

  重视学生学数学的基本过程的研究,对改进教学方法、加强学法指导,提高教学质量具有十分重要的意义。

  数学课业学习的原则与基本方法

  根据心理学的理论和数学的特点,分析数学学习应遵遁以下原则:动力性原则,循序渐进原则。独立思考原则,及时反馈原则,理论联系实际的原则,并由此提出了以下的数学学习方法:

  1.求教与自学相结合

  在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师,必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。

  2.学习与思考相结合

  在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。

  3.学用结合,勤于实践

  在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

  4。博观约取,由博返约

  课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究。掌握其知识结构。

  5.既有模仿,又有创新

  模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。

  6.及时复习,增强记忆

  课堂上学习的内容,必须当天消化,要先复习,后做练习。复习工作 必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。

  7.总结学习经验,评价学习效果

  学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。

  更深一步是涉及到具体内容的学习方法,如:怎样学习数学概念、数学公式、法则、数学定理、数学语言;怎样提高抽象概括能力、运算能力、逻辑思维能力、空间想象能力、分析问题和解决问题的能力;怎样解数学题;怎样克服学习中的差错;怎样获取学习的反馈信息;怎样进行解题过程的评价与总结;怎样准备考试。对这些问题的进一步的研究和探索,将更有利于学生对数学的学习。

  历史上许多优秀的教育家、科学家,他们都有一套适合自己特点的学习方法。比如,我国古代数学家祖冲之的学习方法概括起来是四个字:搜炼古今。搜就是搜索,博采前人的成就,广泛地研究;炼是提炼,把各种主张拿来比较研究,再经过自己的消化和提炼。着名的特理学家爱因斯坦的学习经验是:依靠自学;注意自主,穷根究底,大胆想象,力求理解,重视实验,弄通数学,研究哲学等八个方面。如果我们能将这些教育家、科学家的更多的学习经验挖掘整理出来,将是一批非常宝贵的财富。这也是学习方法研究中的一个重要方面。

  小学数学学习方法【二】

  一、学会主动预习

  新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

  二、在老师的引导下掌握思考问题的方法

  一些学生对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题。如有这样一道题让学生解“把一个长方体的高去掉2_厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”同学们对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师的引导下逐渐掌握解题时的思考方法。这道题从单位上讲,涉及到长度单位、面积单位;从图形上讲,涉及到长方形、正方形、长方体、正方体;从图形变化关系讲:长方形→正方形;从思维推理上讲:长方体→减少一部分底面是正方形的长方体→减少部分四个面面积相等→求一个面的面积→求出长方形的长(即正方形的一个棱长)→正方体的体积,经老师启发,学生分析后,学生根据其思路(可画出图形)进行解答。

  有的学生很快解答出来:设原长方体的底面长为X,则2X×4=48得:X=6(即正方体的棱长),这样得出正方体的体积为:6×6×6=216(立方厘米)。

  三、及时总结解题规律

  解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:(1)本题最重要的特点是什么?(2)解本题用了哪些基本知识与基本图形?(3)本题你是怎样观察、联想、变换来实现转化的?(4)解本题用了哪些数学思想、方法?(5)解本题最关键的一步在那里?(6)你做过与本题类似的题目吗?在解法、思路上有什么异同?(7)本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,学生解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。

  四、拓宽解题思路

  在教学中老师会经常给学生设置疑点,提出问题,启发学生多思多想,这时学生要积极思考,拓宽思路,以使思维的广阔性得到较好的发展。如:修一条长2400米的水渠,5天修了它的20%,照这样计算剩下的还需几天修完?根据工作总量、工作效率、工作时间三者的关系,学生可以列出下列算式:(1)2400÷(2400×20%÷5)-5=20(天)(2)2400×(1-20%)÷(2400×20%÷)=20(天)。教师启发学生,提问:“修完它的20%用5天,还剩下(1-20%要用多少天修完呢?”学生很快想到倍比的方法列出:(3)5×(1-20%)÷20%=20(天)。如果从“已知一个数的几分之几是多少,求这个数”的方法去思考,又可得出下列解法:5÷20%-5=20(天)。再启发学生,能否用比例知识解答?学生又会想出:(6)20%∶(1-20%)=5∶X(设剩下的用X天修完)。这样启发学生多思,沟通了知识间的纵横关系,变换解题方法,拓宽学生的解题思路,培养学生思维的灵活性。

  五、善于质疑问难

  学启于思,思源于疑。学生的积极思维往往是从有疑开始的,学会发现和提出问题是学会创新的关键。著名教育家顾明远说:“不会提问的学生不是一个好学生。”现代教育的学生观要求:“学生能独立思考,有提出问题的能力。”培养创新意识、学会学习,应从学会提出疑问开始。如学习“角的度量”,认识量角器时,认真观察量角器,问自己:“我发现了什么?我有什么问题可以提?”通过观察、思考,你可能会说说:“为什么有两个半圆的刻度呢?”“内外两个刻度有什么用处?”,“只有一个刻度会不会比两个刻度更方便量呢?”,“为什么要有中心的一点呢?”等等,不同的学生会提出各种不同的看法。在度量形状如“V”时,你可能会想到不必要用其中一条边与量角器零刻度线重合的办法。学习中要善于发现问题,敢于提出问题,即增加主体意识,敢于发表自己的看法、见解,激发创造欲望,始终保持高昂的学习情绪。

【数学学习方法与技巧】相关文章:

数学的学习方法及技巧11-08

奥数学习方法与技巧10-08

初中数学的学习方法与技巧10-08

数学学习方法技巧08-24

初中数学学习方法技巧08-09

小学数学学习方法与技巧08-23

初中数学学习方法及技巧10-08

初二数学学习方法技巧10-05

初中数学学习方法和技巧10-09

高中数学学习方法技巧10-08