学习方法

八年级数学学习方法

时间:2022-10-08 16:42:12 学习方法 我要投稿
  • 相关推荐

八年级数学学习方法

  八年级数学学习方法,学好数学很重要,学好它有什么办法呢,下面带来八年级数学学习方法相关文章,仅供参考。

八年级数学学习方法

  八年级数学学习方法【1】

  一、不要怕数学。

  在我们的生活中,数学是无处不在的:我们买东西,付钱要用数学;看球赛,比分也是数学;勾股定理、黄金分割与优选法在我们生活中的应用更是比比皆是。

  其实,现代数学的范围已大大扩大了,包括数论、图论、概率、悖论等多方面的内容,而图论、递推关系在计算机中的应用也是非常广泛的。

  所以,数学与我们的生活有着紧密的联系,可以说:数学是无处不在的。

  二、学数学要学习什么。

  一句话,就是学习它的思维方法。

  在我们的现阶段,以及我们工作以后,很少能用到具体的数学题,但是,数学的思维方法是指导我们学习、工作的思想,所以,数学的思维方法是非常重要的。

  举个例子:数论中有一个著名的问题,就是歌德巴赫猜想。

  许多科学家都表示,用现有的数学方法无法解决这个问题。

  这样,要想解决歌德巴赫猜想必须用一种新的方法,而这种方法就是我们需要的。

  这也就是数学的精髓所在。

  三、打好基础,吃透课本。

  课本的题目是比较简单、比较基础的,却也不能忽视,这是因为课本的题目为我们提供了一种简捷的思维方式和比较严密的解题步骤。

  数学是一门要求严密的科学,需要思维的严谨性,课本就为我们提供了一个范例。

  这是一个平行四边形,求证它的对边相等。

  我们想容易想到,连接对角线,用两个三角形全等来证明。

  这就提供了一个思路:遇到平行线,可以做截这两条平行线的直线,把平行关系转化为角相等的关系。

  这也用到了一种转化思想。

  掌握简单题的思路,难题也就能变得简单了。

  四、拓展知识,提高能力。

  现在,计算机非常热门,而计算机编程就能用到图论、递推关系等数学知识,提前了解一下是很有帮助的。

  我们是21世纪的学生,应当具有宽广的知识面和较强的综合能力。

  学习上在课前必须预习老师所要讲解的内容,对于简单的要自己理解掌握,公理、公式和推论要有意识的去记忆,并划出自己不懂得地方; (2)客商要认真听讲,绝对不能开小差,更要着重听你在预习时感到困惑的地方,并记下经典例题; (3)课后认真做练习。

  对自己把握得不好的地方要加大训练,记熟公式。

  学习数学的主要方法就是加深理解,在理解之上记忆。

  总之,数学是一门基础学科,它的应用是非常广泛的。

  我一定会用心去学好。

  八年级数学学习方法【2】

  一、该记的记,该背的背,不要以为理解了就行

  有的同学认为,数学不像英语、史地,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。

  我说你只讲对了一半。

  数学同样也离不开记忆。

  试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9*9时用九个9去相加得出81就太不合算了。

  而用“九九八十一”得出就方便多了。

  同样,是运用大家熟记的法则做出来的。

  同时,数学中还有大量的规定需要记忆,比如规定 (a≠0)等等。

  因此,我觉得数学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。

  因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。

  比如大家熟悉的“整式乘法三个公式”,我看在座的有的背得出,有的就背不出。

  在这里,我向背不出的同学敲一敲警钟,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。

  对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。

  打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。

  同样,记不住数学的定义、法则、公式、定理就很难解数学题。

  而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。

  二、几个重要的数学思想

  1、“方程”的思想

  数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。

  最常见的等量关系就是“方程”。

  比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度*时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。

  我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。

  如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。

  初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。

  解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。

  物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。

  因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。

  所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。

  2、“数形结合”的思想

  大千世界,“数”与“形”无处不在。

  任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。

  初中数学的两个分支棗-代数和几何,代数是研究“数”的,几何是研究“形”的。

  但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与 “形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。

  在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。

  往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。

  在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。

  尝到甜头的人慢慢会养成一种“数形结合”的好习惯。

  3、“对应”的思想

  “对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数 “2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。

  比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。

  这就是运用“对应”的思想和方法来解题。

  初二、初三我们还将看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。

  “对应”的思想在今后的学习中将会发挥越来越大的作用。

  三、自学能力的培养是深化学习的必由之路

  在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。

  因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。

  我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。

  我去佛山一中开家长会时,一中校长的一番话使我感触良多。

  他说:我是教物理的,学生物理学得好,不是我教出来的,而是他们自己悟出来的。

  当然,校长是谦虚的,但他说明了一个道理,学生不能被动地学习,而应主动地学习。

  一个班里几十个学生,同一个老师教,差异那么大,这就是学习主动性问题了。

  自学能力越强,悟性就越高。

  随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。

  因此,要养成预习的习惯。

  在老师讲新课前,能不能运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。

  由于数学知识的无矛盾性,你所学过的数学知识永远都是有用的,都是正确的,数学的进一步学习只是加深拓广而已。

  因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。

  同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。

  有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把知识变为自己的。

  学来学去,知识还是别人的。

  检验数学学得好不好的标准就是会不会解题。

  听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。

  四、自信才能自强

  在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。

  当然,俗话说,艺高胆大,艺不高就胆不大。

  但是,做不出是一回事,没有去做则是另一回事。

  稍为难一点的数学题都不是一眼就能看出它的解法和结果的。

  要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。

  你都没有动手去做,又怎么知道自己不会做呢?即使是老师,拿到一道难题,也不能立即答复你。

  也同样要先分析、研究,找到正确的思路后才向你讲授。

  不敢去做稍为复杂一点的题(不一定是难题,有些题只不过是叙述多一点),是缺乏自信心的表现。

  在数学解题中,自信心是相当重要的。

  要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能够用自己所学过的知识把它解出来。

  要敢于去做题,要善于去做题。

  这就叫做“在战略上藐视敌人,在战术上重视敌人”。

  具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。

  一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。

  数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。

  有些同学老师讲过的题会做,其它的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。

  当然,做题先从哪儿下手是一件棘手的事,不一定找得准。

  但是,做题一定要抓住其特殊性则绝对没错。

  选择一个或几个条件作为解题的突破口,看由这个条件能得出什么,得出的越多越好,然后从中选择与其它条件有关的、或与结论有关的、或与题目中的隐含条件有关的,进行推理或演算。

  一般难题都有多种解法,条条大路通北京。

  要相信利用这道题的条件,加上自己学过的那些知识,一定能推出正确的结论。

  数学题目是无限的,但数学的思想和方法却是有限的。

  我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。

  题目并不是做得越多越好,题海无边,总也做不完。

  关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。

  当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;一是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。

  解题需要丰富的知识,更需要自信心。

  没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。

  八年级数学学习方法【3】

  首先要抱着浓厚的兴趣去学习,积极展开思维的翅膀,主动地参与教育全过程,充分发挥自己的主观能动性,愉快有效地数学。

  其次要掌握正确的学习方法。

  锻炼自己学习数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在老师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。

  这样, 通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。

  1、课本要“预、做、复”

  每堂新课之前,做到先预习,特别要把难点或不懂之处用彩笔划出,以便上课时更加注意。

  每节内容后面的练习自己可以先做一做,做到看懂70%的新内容,会做80%的练习题。

  每节新内容学完后,我们要按照课本内容,从易到难,从简到繁,一步一步地把学过的知识进行比较复习,对概念、定理、公式做出归纳、总结,加深对知识的理解,最好能把课本上的例题自己做一遍。

  对课本上的概念、定理、公式推理一遍,以形成对知识的整体认识。

  另外,我们学过不少知识点,做了不少题目,但是脑子里的印象却往往是模糊、孤立的,必须经过比较和整理,找出其中的联系和区别,把知识编织成网络,解题时就能胸有成竹,运用自如,形成解决问题的能力。

  2、上课要“听、记、练”把预习中存在的问题放在课堂上着重听,必要时还需做好笔记,并通过一些练习题加以巩固。

  数学不同于其他学科,单把概念、定理、公式背熟,无法解决实际问题,只有通过练来减少运算中出现的错误。

  3、作业要“思、问、集”

  作业一定要养成独立思考的习惯,多从不同的方法、角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。

  同时,还应多树立数学解题思想:如,方程的思想、函数的思想、数形结合的思想、整体的思想、分类的思想等常用方法;对于难题,要

  多问几个为什么,如改变条件、添加条件、结论与条件互换,原结论还成立吗?另外,对于自己作业、试卷中出现的错误,最好能准备一本错题集,以便今后复习中使用。

  做到绝不出现第二次类似错误。

  整理错题集时,要注意,我们不要笼统地埋怨自己解题时“粗心”,而应该把做错的题目研究一下,是不是因为注意力不集中,顾此失彼;或者审题马虎,误解题意;或者记错概念、公式、定理;或者是心急慌忙,随意跳步骤,造成运算错误等等。

  只有找到根源,才能不让相同的错误犯第二次。

  总之,学习数学要有方法、计划和合理的安排。

  新课学完后,有些同学就感到头痛,于是,东看看西翻翻,一天下来,不知道自己学了什么。

  因此,每个同学都应根据自己的实际情况制订出合理的学习方法、目标;没有方法,就会变成一只无头苍蝇;没有目标就会没有动力。

【八年级数学学习方法】相关文章:

数学的学习方法05-16

数学的学习方法11-15

数学的有效学习方法10-05

快乐数学的学习方法10-05

数学学习方法02-14

数学学习方法12-11

数学常用学习方法06-18

数学如何学习方法08-10

数学高效的学习方法08-11

小升初数学:学习方法10-05