学习方法

初中数学学习方

时间:2024-05-29 14:05:25 学习方法 我要投稿
  • 相关推荐

[精华]初中数学学习方法15篇

  在学习、工作、生活中,大家都意识到了学习的重要性,不过,学习不是死读书,而要讲究方法的。什么样的学习方法才是真正有效的呢?以下是小编为大家收集的初中数学学习方法,供大家参考借鉴,希望可以帮助到有需要的朋友。

[精华]初中数学学习方法15篇

初中数学学习方法1

  学好初一数学的方法技巧

  1、做好预习:

  单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

  2、认真听课:

  听课应包括听、思、记三个方面。

  听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。

  思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。

  记,指课堂笔记——记方法,记疑点,记要求,记注意点。

  3、认真解题:

  课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。

  4、及时纠错:

  课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

  5、学会总结:

  冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。

  6、学会管理:

  管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。

  初二数学学习方法技巧

  1、配方法:

  所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

  2、因式分解法:

  因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

  3、换元法:

  换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂4、判别式法与韦达定理

  一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

  韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

  4、待定系数法:

  在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

  初三数学复习方法及技巧

  一、深刻理解概念。

  概念是初三数学的基石,学习概念(包括定义、定理、性质与判定)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,我们必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能更好地运用它来解决问题。多看一些例题。

  细心的'朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:

  不能只看皮毛,不看内涵。

  我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。要把想和看结合起来。

  我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。

初中数学学习方法2

  有疑必问是提高学习效率的有效办法学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂,没有学明白的知识,最短的时间内掌握。从而提高学习效率。

  学会学习,掌握学习规律和学习方法,以培养索取知识的能力,乃是当今青少年学习中十分重要的任务,只有凭借着良好的学习方法,才能达到“事半功倍”的学习效果。

  针对初中数学学习,有以下几点建议,供大家参考。

  一、阅读理解目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。

  二、提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的.小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。

  三、有疑必问是提高学习效率的有效办法学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂,没有学明白的知识,最短的时间内掌握。建立自己的错题本,经常翻阅,提醒自己同样的错误不要犯第二次。从而提高学习效率。

初中数学学习方法3

  学数学并非为了单纯的考试,但考试成绩基本上还是可以反映出一个人数学水平的高低、数学素质的好坏的,要想在考试中取得好的成绩,以下几个方面的素质是必不可少的。

  如何对待考试

  功夫用在平时,考前不搞突击,考试中需要掌握的内容应该在平时就掌握好,考试前一天晚上不搞疲劳战,一定要休息好,这样,在考场上才能有充沛的精力,考试时还要放下包袱,驱除压力,把注意力集中在试卷上,认真分析,严密推理。

  应试需要技巧,试卷发下来后,应先大致看一下题量,大概分配一下时间,做题时若一道题用时太多还未找到思路,可暂时放过去,将会做的'做完,回头再仔细考虑,一道题目做完之后不要急于做下一道,要再看一遍,因为这时脑中思路还比较清晰,检查起来比较容易,对于有若干问的解答题,在解答后面的问题时可以利用前面问题的结论,即使前面的问题没有解答出来,只要说清这个条件的出处(当然是题目要求证明的),也是可以运用的。

  考试时要冷静,有的同学一遇到不会的题目,脑袋立刻热了起来,结果,心里一着急,自己本来会的也做不出来了,这种心理状态是考不出好成绩的,我们在考试时不妨用一用自我安慰的心理:我不会的题目别人也不会,(俗称精神胜利法)或许可以使心情平静,从而发挥出自己的最好水平,当然,安慰归安慰,对于那些一下子做不出的题目,还是要努力思考,尽量能做出多少就做多少,一定的步骤也是有分的。

初中数学学习方法4

  误区一:“一听就懂,一做就错或不会”

  在数学学习过程中,常常出现这种现象,这也是在课余经常能够听到的部分同学的反馈信息。为什么学生在课堂上听懂了,课后解题时一旦遇到稍有变化的新题型时却无所适从呢?这说明上课听懂还停留在“听懂”这一初级层次上,而能达到举一反三应用知识解决问题却是对学生对数学知识在头脑中加工重组构建的更高层次的要求,也是每位同学必须达到的要求。

  教师所举例题是范例同时也是思维训练的手段,作为学生不应该只学会题中的知识,更要学会领悟出解题思路与技巧,以及蕴藏其中的数学思想方法。

  针对这种情况,应作出如下的策略调整,步骤如下:

  第一步:合上书,自己重做一遍例题,做题过程中,找出自己遇到的思维受阻的地方;

  第二步:对照课本解法,寻找自身思维漏洞,问自己:为什么课本这样解决问题?我的解法不足之处在哪里?

  第三步:进一步思考:本题的条件、结论换一下还成立吗?本题还有其它的'解法与结论吗?

  第四步:总结解题规律,提醒自己容易出错的地方,作出重点提醒标记。

  误区二:“数学多做题就能提高成绩,数学概念不重要”

  有不少的学生认为数学多做题就能学好,可结果却往往事与愿违,这是为什么呢?很多的原因在于概念不清。数学概念是学习数学的基础。如果概念不清,往往导致认识、理解偏差,解题出错。

  例如,对正、负数概念的理解。在学生刚学习正负数时,教材曾把算术数前带有正号和符号的数分别叫做正数和负数。随着学习的逐步深入,特别是在学习用字母表示数和有理数的运算以后,再这样形式地理解正负数就非常不够了。这时应当把负数理解为小于零的数。如果缺乏对概念的这些更深层次的理解,就将导致出现“-a是负数”,“a>-a”,“a+b≥a”等一系列错误。

  这是因为概念不清造成失误的典型例子。除此之外,还有很多。由此可见,概念不清,做再多的题只能起到“事倍功半”的效果,想提高成绩谈何容易!

  调整策略:

  第一步:记住概念,理解概念;

  第二步:“咬文嚼字”,抓住关键词,吃透概念;

  第三步:联系前后相关知识,深入理解概念;

  第四步:对照题目条件,联想、对比相应概念;

  第五步:积累经验,精选题目,注意类型,勤于总结。

  误区三:“多做题目总能遇到考题”

  有这种想法的人总会感到失望。每一份综合试卷,出卷人总要避免 考旧题、陈题,尽量从新的角度,新的层面上设计问题。但是考查的知识点和数学思想方法是恒久不变的。所以多做题,不会碰巧和考题零距离亲密接触,反而会把自己陷入无边无际的题海之中。解决问题的办法是从知识点和思想方法的角度分别对所解题目进行归类,总结解题经验的同时,确认自己是否真正掌握并确认复习的重点。

  调整策略:

  一让自己花点时间整理最近解题的题型与思路;

  二要思考:这道题和以前的某一题差不多吗?此题的知识点我是否熟悉了?最近有哪几题的图形相近?能否归类?

  三要善于归类。不仅总结知识,更要总结方法与技巧,只有这样,才能触类旁通、事半功倍。

  如:

  在“无理方程”的教学中,归纳出解法:

  ①去分母法;

  ②换元法;

  对于换元法给予归纳出两种常见的题型:

  A平方型;

  B倒数型。

  又如在“三线八角”教学中,由于图形较于复杂,学生不易找出同位角、内错角、同旁内角,可以总结出同位角找字母“F”,内错角找字母“N”,同旁内角找字母“L”。只有不断的总结,才能有创新和发展。

  误区四:“对于数学公式,记住并会套用就行”

  这种想法与做法在解题过程中并非完全不奏效,从而让这样做的同学更加坚定了信念。然而这种做法也并非完全奏效,也有“失灵”的时候。后者多出现于以下几种情况:

  一是所给题目条件有限制,不能完全适用于公式;

  二是公式本身也有限制条件,并非适用所有题目的求解。

  如:解方程:(a+1)x2-2x+5=0。有的同学看完题目就开始套用“一元二次方程的求根公式”。事实上,本题能否套用求根公式主要取决于方程本身是否一定是一元二次方程。因此应就“a+1”是否为0作出讨论,分别就两种情况求解。

  调整策略:

  一是不仅记住公式,更要记住公式的适用条件与范围;

  二是对照公式,仔细审题,看清哪些适用,哪些需另做讨论。

  误区五:“多做难题、偏题、怪题,就能提高成绩”

  学习过程中经常遇到这样的学生,简单的题目不屑一做,总喜欢钻研一些综合性强的、灵活度高的“难题”,以为这样就能学好数学;而喜欢做“偏题”、“怪题”的同学想法也很简单,以为这样就能拉开与其他学生的距离,提升自己学习成绩。可结果却总爱捉弄这些独辟蹊径的学生,给他们当头浇上一瓢冷水,让他们不由对自己的学习方法产生怀疑,甚至灰心失望。分析原因不难发现:中考试卷难题少,偏题、怪题很难遇到。而影响成绩的主要因素不是这些“独特”题目的因素。

  调整策略:以基础题目为主,注意总结中考试题出题类型与规律,适当做少量几道有针对性的综合灵活题目。

初中数学学习方法5

  1、掌握基础知识和基本技能:初中数学的学习需要掌握一定的基础知识,如算术、代数、几何、概率与统计等方面的知识。同时,也需要掌握基本技能,如计算、推理、画图、实验等能力。

  2、建立良好的学习习惯:初中数学的学习需要养成良好的学习习惯,如认真听讲、独立思考、勤奋学习、按时完成作业、积极参与课堂讨论等。

  3、多做练习题:数学是一门需要大量练习的学科,通过多做练习题,可以加深对基础知识的理解和掌握,提高解题能力。

  4、学习方法多样化:在学习数学时,可以采用多种方法,如看教科书、看视频、听讲座、做练习、参加数学俱乐部等。

  5、培养兴趣:兴趣是最好的'老师,在学习数学时,可以多了解一些数学的应用,如数学在金融、科学、工程等领域的应用,从而激发学习的兴趣和动力。

  6、注重思维训练:数学不仅仅是计算和解题,更重要的是培养思维能力,如逻辑思维、空间想象能力、创新能力等。因此,在学习数学时,需要注重思维训练,多思考问题的本质和解决方法。

  7、及时请教:在学习数学时,遇到问题需要及时请教老师或同学,寻求帮助和解答。

初中数学学习方法6

  二元一次方程(组)

  1、二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  2、二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

  3、二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

  4、二元一次方程组的解法。

  (1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法。

  (2)加减消元法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法。

  提醒大家:二元一次方程组的解法包括代人消元法和加减消元法。

  平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的.数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:

  ①在同一平面

  ②两条数轴

  ③互相垂直

  ④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:

  ①结果必须是整式

  ②结果必须是积的形式

  ③结果是等式

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:

  ①系数是整数时取各项最大公约数。

  ②相同字母取最低次幂

  ③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。

  ②确定商式

  ③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

初中数学学习方法7

  敢于休息

  当按着会做的则解,不会做的则放,卡壳的也放的方法,从前做到最后一道题之后,要敢于休息30秒。

  而且这个休息一定是老老实实地休息。比如,可以看看窗外的自然景观,树在摇曳,鸟在飞翔等。也可以想想自己喜欢的流行歌曲、电视剧等,当然不能想得太远,如果你想出十集去,考试早结束了。还可以采取一些深呼吸放松法、自我深度松驰法、积极的自我暗示法等。当然也可以什么都不想,就是闭目养神。在休息过程中要注意一点,采用什么休息方法悉听尊便,但千万不要想自己没做上来的某道题。

  为什么要用敢于休息30秒的“敢于”两字呢?是因为绝大多数同学每每都觉得时间不够,哪还敢挤出时间休息呀!其实恰恰相反,因为考试是高度的耗氧活动,对脑力、体力消耗很大,经过一段时间便会出现疲劳的现象,此时若*意志力来坚持,效率自然不高。经过休息就会使脑力得到恢复,使体力得到补充,经休息后再投入到解题过程中会高效发挥,所以敢于休息的同学反而时间就够了,这就是辩证法。这也正是俗话所说“磨刀不误砍柴工”的道理。敢于休息30秒也是心理状态提升的体现。考试时有的'同学一听到其他同学快速翻页的声响就着急,眼睛的余光一看别的同学答得较快就发慌……现在我能做到不为所动,不被所引,我还敢于主动休息。急答出现差错,稳答一次成功,孰优孰劣是不言自明的道理。心理状态的提升需要一个磨炼过程。

  温馨点评:敢于休息30秒,就是心理状态走向成熟的开始,因此一定要敢于休息。

初中数学学习方法8

  素质教育以培养创新精神和实践能力为目标,数学教学要实现这一目标,首先要解决学生数学能力的培养,而数学能力的核心是数学思维能力。正是如此,每位数学教师在进行课堂教学时,或多或少,或自觉或不自觉地总要设计一些问题,启发引导学生去思维。我们知道,数学思维教学必须全面考虑,依据不同的教材内容和不同课型的内在联系,提出不同的问题,从而多方面地培养学生的思维能力,提高学生良好的思维品质。下面本人根据多年来的教学实践,谈谈课堂问题设计与思维能力培养的关系。

  一、设计发散型问题,培养学生的灵活思维能力

  教学实践表明,学生思维能力的灵活程度与学生的发散思维水平密切相关。在日常教学中我们不难发现,优等生可以从同一道试题的题意产生出不同的假象,然后就每一种假想进行合理的思维推理,一旦思维受阻就无所事从,放弃解答。为此就要求我们教师在教学中必须适时合理且经常地设计发散型问题,引导学生多角度、多方面地思考问题。

  数学可供设计发散式问题的内容比比皆是,只要我们能充分挖掘教材的内在联系,发挥自身的优势,就能很好地培养学生思维的灵活能力。

  二、设计互变型问题,培养学生的逆向思维能力

  通常评价一位学生思维灵活与否,其主要的判别条件之一,是考察学生逆向思维能力强不强。逆向思维是从对立的角度去考虑问题,也就是通常所说的:“反过来想一想”。初中教材中定义、公式、法则、图像等通常是按照正向思维方式给出,学生在学习中习惯于这种正向思维,而不习惯逆向思维,这就容易造成学生知识结构的缺陷,造成思维方法上的刻板僵化。所以在教学中,对于每一节教学内容,在向学生进行一定程度的正向思维训练后,应根据学情在教学的各层、各阶段中,适时地设计有一定梯度的互变式问题,培养学生的逆向思维能力。

  三、设计陷阱式问题,培养学生的批判思维能力

  没有批判就没有创新,因此培养学生的批判能力是我们教师义不容辞的责任。教学实践证明,适时地设计一些陷阱式问题,有利于培养学生的批判思维。这类题是为突破消极思维定势而有意设下的陷阱,使题型与方法错位,诱使学生“上当”、“中计”,从而使学生在失败中吸取教训,在“上当”、“中计”后幡然悔悟。在醒悟境界中学生会变得越来越聪明,思考问题越来越深刻,思维批判能力也就随之而生了。

  四、设计变角型问题,培养学生的概括思维能力

  变角式问题是指从同一事理的不同角度去提出问题,它与培养学生的概括思维能力密切相关。

  设计变角式问题进行的训练,可以暴露问题,从而进行追根求源,防止思维定势的负迁移,克服思维的呆板性,提高学生的概括能力。

  例如:农机厂职工到距工厂15千米的生产队检修农机,一部分人骑自行车先走,40分钟后,其余人乘汽车出发,结果同时到达。已知汽车的速度是自行车的3倍,求两种车的速度。当学生解完此题后,可变换角度提出下面的问题,让学生分析思考它们之间有何关系?

  变式:甲、乙两人各做15个零件,甲先做40分钟后,乙才开始做,由于乙的工作效率是甲的.3倍,结果两人同时完成了任务,求两人每小时各加工几个零件?

  从表面上看来,它们分别是行程问题和工程问题,学生通过分析比较会发现,从某种意义上讲,距离就是工作总量,速度就是工作效率,因而行程问题和工程问题有着本质的联系,并能由此推及其它与这相关的数学问题的解答。

  五、设计探究型问题,培养学生的创造思维能力

  探究式问题是指做完一道习题后,保持已知条件不变,探究能否得出更深刻的结论;或改变命题条件、结论的若干元素,组成新型的逆向的或更一般性的、高一层的命题,并探究它的正确性,这对于培养学生的锲而不舍精神和创新思维能力大有好处。

  六、设计开放型问题,培养学生的缜密思维能力

  缜密思维要求考虑问题全面,周密而不遗漏。数学教学中若能注重这方面能力的培养,不仅有助于学生提高数学能力,而且有益于学生严谨品格的培养。

  数学教学中,我们常发现有的学生分析解决问题时,要么思路不清晰、考虑问题欠周密,导致解题不严密。教学实践证明,适时地设计一些开放型问题,有利于培养学生的缜密思维能力。

  例如:解关于X的方程abx2-(a2+b2)x+ab=0,学生的通常解法是直接采用十字相乘法求得方程的两个根,而忽略了“当a=0,b≠0时及a≠0,b=0时原方程变为一次方程”的情况。因此为了提高学生合理分类,全面讨论问题的能力,从而防止“解”不完备,除了多进行实例教学外,还要结合教材设计一些开放式问题对学生进行针对性的训练,以便加强学生思维的纵向延伸于横向交流,使思考问题到达全面、深刻。

  综上所述,课堂问题的设计直接或间接决定着学生思维能力的培养,而各种思维能力的发展是相辅相成、不容分割的。因此,必须根据学生的认知基础、智力发展规律、教学内容的特点和内在联系,综合平衡,精心设计课堂问题,全方位地培养学生的思维能力,提高学生的思维品质。

初中数学学习方法9

  首先要认真听课。初中数学的学习是按照书本进行的,考试的内容也是根据书本来设定的,因此在课堂上要注意老师讲解的重点及疑难点,并及时做好笔记。

  其次要注重完成课后作业。每次讲完课后。老师都会留下作业,这这些作业是为了更好的巩固课堂上讲解的内容的,因此对作业不能又敷衍的心态,要认真完成。

  第三要掌握好数学运算。数学运算是基础,对整个初中数学的学习是十分重要的,只有将数学运算学好,自己的成绩才能得到快速提高。

  第四要理解和记忆数学基础知识。大家都知道数学是一门逻辑性极强的学科,需要理解并诠释数学的`规律性,即数学所蕴含的思维方法和思想方法,在理解的基础上学会举一反三。因此学会理解数学基础知识并记忆数学基础知识,是学好数学的另一个前提。

  第五要掌握好数学思维。数学的思维是跟语文的思维是不同的,因此要掌握数学思维,在做题的过程中学会转换、发散思维,并能够用顺向与逆向思维、宏观与微观等完成解题。

  第六要多练习。任何事情都是孰能生巧的,如果没有过人的天份的话,建议还是要多做习题,更好的巩固所学的内容,也能提高自己解题的效率。

初中数学学习方法10

  长期以来,数学教学偏重于对教的研究。因此,教师钻研教材多,研究教法多,而对学生是如何学的,学的活动是如何安排的往往很少问津。在实际教学中,教学效果的高低,不仅取决于教师的教法,而且更大程度上取决于学生的学法。新教学改革中特别强调学生学习的主动性和主体性,学习方法的好坏将直接影响到学习效果的高低,而对于七年级的学生,在小学学习阶段,由于科目少,知识内容浅,学生即使学法较差也能通过刻苦努力取得好成绩。进入初中后,随着课程的增多及学习内容的加深拓宽,尤其是数学从具体到抽象,由文字发展到符号、图形……,学习内容发生了根本性的变化,学生的认知结构也要发生变化。如果还是用小学时的方法对待,将会因学不得法而使成绩逐渐下降,久而久之,这一部分学生就会失去学习信心和兴趣而成为学困生。而且数学学习的好坏会对物理、化学的学习产生一定的影响。因此,重视对初一学生进行数学的学法指导是非常必要的。本文就对数学学习方法指导的内容和形式谈几点浅见。

  一、培养学习数学的兴趣

  “兴趣是最好的老师”。学习数学,如果没有兴趣那么学习起来就会感觉特别痛苦。初中数学已不在局限于数字、计算的基础内容,它的`内容比起小学增加了很多,难度也增大了很多。在这个阶段,数学成绩不理想的学生就会厌恶数学学习。在这时,如何培养数学学习的兴趣,就成了关键。学生只有对所学的知识产生了浓厚的兴趣,才会愉快学习,自主地探索。

  培养数学兴趣要从初一入学开始。开始半期左右的时间,不要在乎学生数学的考试成绩,而是要想尽一切办法去培养学生的数学兴趣。多在课堂上讲些数学趣味故事,多出一些简单的数学趣味题,少批评多表扬学生。

  二、要学会认真听课

  要学好数学,听课是最为关键的途径之一。学生到校读书学习,学习方式最主要的还是上课听课的形式,通过听取老师的讲课而获取知识,这也是中国传统的教学方式。因此,如何在短短的45分钟内听好数学课就成为了学生能否取得好成绩的途径之一,那么如何让学生能在课堂上听好课呢?笔者认为主要要做到以下几个方面的工作。

  1、认真有效的进行预习。

  通过老师给的学案或者老师推荐的自学辅导丛书进行预习。预习中要先了解新知识的来龙去脉,理解新知识,其次能初步运用新知识去解题,这时不要求能灵活运用,不然花费的时间过多就会影响其他学科的学习了。预习中不懂的问题,要记在笔记本中,以便上课听讲时,带着问题去听。预习的好坏,很容易影响到学生听课的结果。在预习后,学生就能带着问题,抓住要点来听,挤出更多的时间来思考解决问题,使得听课的效率更高,收效更好。

  2、听课力求集中精力,思维与老师同步。

  在听课时,力求集中精力、专心听课。在认真听课的同时要动脑动手,与老师一同思考、探究问题。如果,意识到自己有开小差或打瞌睡时,可深呼吸几下,使氧气吸入较多让自己头脑更清醒一点。

  3、科学地听课,有效的做好笔记。

  会听课就是善于抓住一节课中的重点。注意老师讲课反复强调的内容即是本节课的重点、难点。要了解老师讲课的特点,知道什么情况下老师在轻描谈写,什么情况下老师在画龙点睛,结合自己的预习来找出自己的不足。要学会做笔记,笔记的内容以老师讲解的重点内容、难点内容为主,不要面面俱到,对记不下的内容要学会速记,课后再来完善。

  4、主动思考。

  听课的时候要对老师的提问时行思考,这是每一个学生应该做到的。但是学生更应该做到的一点应是变被动思考为主动思考。在老师读题前,就应积极、快速地理清题意,迅速思考,尽快形成自己的思路,同时在思考时注意手脑并用。对不动的问题要提出来,或者及时查阅资料。要长期养成这种良好的学习习惯,提高自己的思维能力。

  5、善于自我调节。

  作为一名初中生,是很难做到一节课45分钟都保持全神贯注的认真听讲的。所以如何把握自己的精力是至关重要的。一般在上课开始的10—25分左右是老师讲课的重点时间段,学生在这段时间内应该保持高度集中。开头一般是引入、后面一般是练习,这段时间可稍稍放松一些。听课要有松有紧。一节课都全力而为,则大脑得不到适当的休息与放松,那么人就会精神疲倦,无法继续接受新知识,所以有张有弛的自我调节是很重要的。

  6、敢于不耻下问。

  孔子曰:“敏而好学,不耻下问。” 爱因斯坦说过:“提出问题比解决问题更重要。”问能解惑,问能知新,任何学科的学习无不是从问题开始的。但初一学生往往不善于问,不懂得如何问。因此,教师在平时教学中应教给学生一些问问题的基本方法,主要有:(1) 追问法。即在某个问题得到回答后,顺其思路对问题紧追不舍,刨根到底继续发问;(2) 反问法。根据教材和教师所讲的内容,从相反的方向把问题提出来;(3) 类比提问法。根据某些相似的概念、定理、性质等的相互关系,通过比较和类推提出问题;(4)联系实际提问法。结合某些知识点,通过对实际生活中一些现象的观察和分析提出问题。此外,还应要求学生在提问时不仅要问其然,还要问其所以然。

  当然,平时教师在教学中,还应因人而异地采用科学的教学方法,促使学生乐问、敢问、勤问、善问。

  三、要教会学生自主学习数学

  给不同层次的学生建议购买一定适合该学生的数学参考书,并指导学生进行自学。在学习方法有很多学生对数学的学习,只局限于结果,不注意过程,只注意掌握公式,会做基本的题,最易忽略知识的发生发展过程,即知其然,不知其所以然,这种情况在一部分中等成绩学生学习上比较明显,因此,为了改变这种情况,教师可以开始为学生编好阅读题纲,并指导学生掌握“读读、划划、算算、写写”的预习方法,逐步学会归纳整理、分类,善于抓住重点以及围绕重点思考问题的方法。

  四、引导学生学会复习

  俗话说“温故而知新”,这就是说对我们以前所学过的知识和技能要经常复习。

  复习也要制定一个计划。首先要保证时间复习当天学习的内容。其次,利用一定时间分批复习以前所学。最后是周六、周日、节假日的系统复习,包括单元复习,阶段复习,考前复习。当然老师要向学生介绍复习的方法和技巧。

  五、要求学生会知识纠错

  要求学生准备一个笔记本做为收集错的《错题集》。《错题集》中应该收录学生多次做错的题型,容易忽略的简单知识问题,或似是而非的问题,属于重点知识内容做错的题,以及一些因综合性强、难度大的题。在《错题集》中写出错误的原因,并把附上正确的答案。并在时常拿出来温习,避免遗忘。

  初中数学方法还有很多很多不能一一例举,笔者只能在此起到抛砖引玉的作用,所说的还有很多不足与缺陷,还有待同行们提出意见与建议,加以完善。总之,对初中学生数学学习方法的指导要力求做到转变思想与传授方法相结合,课上与课下相结合,学法与教法相结合,教师指导与学生探求相结合,统一指导与个别指导相结合,建立纵横交错的学习网络,促进学生掌握正确的学习方法,最终提高每个学生的学习能力。

初中数学学习方法11

  初中是一个完全不同的阶段。虽然小学也一样有数学课,然而初中数学不再是单纯的计算,而是数学内容进一步拓宽、知识更一步深化,从具体发展到抽象,从文字发展到符号,由静态发展到动态……要求学生在认知结构上发生根本变化。

  一、课前预习方法的指导

  初一新生必看的初中数学学习方法

  初一学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,粗略地看一遍,看不出问题和疑点。在学生预习时应要求学生做到:

  一粗读,先粗略浏览教材的有关内容,了解新课的重点和难点。

  二细读,对重要概念、公式、法则、定理反复阅读、仔细体会、认真思考,注意知识的发展形成过程,对难以理解的概念作出标记,以便带着问题去听课。

  二、听课方法的指导

  在听课方法的指导方面要处理好“看”、“听”、“思”、“记”的关系。

  “看”就是上课要注意观察,观察教师的板书的过程、内容、理解老师所讲的内容。

  “听”是学生直接用感官接受知识,应让学生在听的过程中明确:

  (1)听每节课的学习目的和学习要求;

  (2)听新知识的引入及知识的形成过程;

  (3)理解教师对新课的重点、难点的剖析(尤其是预习中的疑问);

  (4)听例题解法的思路和数学思想方法的体现;

  “思”是指学生思考问题。没有思考,就发挥不了学生的主体作用。古人说的好“学而不思则罔。”学生是学习的主人,在课堂上对于老师的讲解,学生不仅仅只是会做,而且要经常思考;在思考方法指导时,应使学生明确:

  “记”是指学生记课堂笔记。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此在指导学生作笔记时应要求学生:

  (1)记笔记服从听讲,要结合教材来记,要掌握记录时机;

  (2)记要点、记疑问、记易错点、记解题思路和方法、记老师所补充的内容;

  (3)记小结、记课后思考题。使学生明确“记”是为“听”和“思”服务的。记笔记有助于将知识简化、深化、系统化。

  三、完成作业方法的指导

  初一学生课后往往容易急于完成书面作业,忽视必要的巩固、记忆、复习。以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业的巩固、深化、理解知识的作用。为此在这个环节的学法指导上要求学生每天先浏览教材中所要学习的内容及笔记,回顾课堂讲授的知识、方法,同时熟记公式、定理。然后独立完成作业,解题后再反思。

  (1)如何将文字语言转化为符号语言;

  (2)如何将推理思考的解题过程用文字书写表达出来;

  (3)正确地由条件画出图形。刚开始可有意让学生模仿、训练,逐步使学生养成良好的书写习惯,这对培养学生的思维能力和学生今后的学习都十分重要。

  四、课后复习巩固方法的指导

  (1)适当多做题,养成良好的解题习惯。

  要想学好数学,做一定量的题目是必需的,刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律,熟悉掌握各种题型的解题思路。对于一些易错题,可备有错题集,写出自己错误的解题思路和正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正。

  (2)细心地挖掘概念和公式

  很多同学对概念和公式不够重视,这类问题反映在三个方面:

  一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在单项式的概念(数字和字母积的'代数式是单项式)中,很多同学忽略了“单个字母或数字也是单项式”。

  二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。

  三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?

  建议:更细心一点(由观察特例入手),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

  (3)总结相似的类型题目

  在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。

  建议:“总结归纳”是将题目越做越少的最好办法。

  (4)收集自己的典型错误和不会的题目

  做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。建议大家收集自己的典型错误和不会的题目。

初中数学学习方法12

  一、初中生数学学习方法的现状与分析

  通过近三年的课堂教学实践,初中生数学学习的基本方法可归结为:读、听、思、说、记、写、纠、用,并存在一定的缺陷和不足。主要表现在:

  1.诸多学生不会阅读数学课本内容,总以为阅读课本就是看结论,呆读硬背,不仅没读懂读透,而且应变能力和实际应用能力都较差,严重制约了自学能力的发展。

  2.学生不能充分认识到老师讲课的重要作用,听课时抓不着重点,导致顾此失彼,精力分散,听课效率下降,效果极其底下。

  3.学生思考问题常常受思维定势的干扰和影响,不善于分析转化和进一步思考,其思路狭窄、滞后,甚至受阻,挫伤其学习的积极性,不利于他们的学习。

  4.口头表达能力差。主要表现在解题时会却无法表达。回答老师提问时,口头表达的内容不精炼,不生动,欠准确,或答非所问。

  5.识记知识多是机械记忆,理解记忆少,满足于记住结论,而不立足于去理解、概括、联想,导致认知网络不能完整建立。

  6.书写格式混乱,条理不清楚,作图不规范,缺乏应有的严谨性和规范性。尤其是几何问题更为突出。

  7.学生在作业或测试后,对出现的错误,不能及时纠正,找不出错误的原因及矫正的方法。

  8.由于学生对知识的记忆是机械的,重知识结论,轻知识发生的过程及来源,导致不能用所学知识去解决实际问题,应用能力差。

  二、指导学生数学学习学法的.对策

  针对上述存在的诸多问题,作为教师又如何去指导学生的学习呢?本人认为应从以下几个方面去培养学生的“读、听、思、说、记、写、纠、用”的能力。

  1.重课本内容读的指导

  南宋朱熹说过:“幼时读书,背至滚瓜烂熟,不甚了了,成年逐渐感悟,回思意味深长。”这表明一个人学习,读和悟,读是第一位的。因此要认真指导学生阅读数学课本,从课本的各个方面去去深入理解内容。一是读标题,要求学生细细体会标题,能提纲挈领地抓住教材的主要内容;二是读例题,在预习时应要求学生带着问题读例题,并初步理解解题方法;三是读插图,它们可使学生更形象、具体、准确地理解文字的内容;四是读算式,按算式各部分的原理读,按算式所表示的意义读,这样可以弄清算式的概念和意义;五是读结语,要求学生对结语逐字逐句地理解分析,以便准确地把握。

  同时读书时要抓好三点:一是粗读,即边读边圈、点、勾、画,大体弄懂教材内容,对理解有困难的地方作记号;二是精读,即在教师讲解的基础上细嚼课文,把握重要的数学概念、公式、法则、思想及方法;三是研读,即当每一章节内容学完后,整理学过的知识,弄清体系,小结归纳要点,形成知识网络。

  2.抓教学过程听的指导

  数学教学中指导学生听课,先从培养学习兴趣入手来集中学生的注意力,使其激活原有的认识结构,打开“听门”,专心听讲。其次,要指导学生会听课,主要从以下几方面去努力:一是注意听教师每一节课开始所讲的教学内容、重点和学习要求;二是注意听教师在讲解例题时关键读粉的提示和处理;三是注意听教师对概念要点的剖析和概念体系的串联;四是注意听教师每一节课的小结和对某些较难习题及例题的提示等。

  3.注重激启学生说的指导

  在数学教学中。怎样激发启发学生说呢?第一,启发学生说思路,说思维过程。课堂上要让每个学生都有说自己想法的机会,可以让学生根据某一个问题,独自小声说,同桌之间练习说,四人小组相互说,教师学生共同说……等等。通过说,培养学生语言的条理性和思维的逻辑性。第二,引导学生用简明、准确、规范的数学语言,完整地回答问题,在引导学生观察、分析、推理、判断后,启发学生用自己的话总结,概括出定义、法则或公式,使感性认识上升到理性认识。

  4.培养学生写的指导

  数学教学中,教师要指导学生学会做学习笔记;指导学生将数学语言转化为数学符号;指导熟练掌握数学常用书写格式,指导他们学会作图,培养学生的直观思维能力。

  5.严格学生纠错的指导

  (1)设置“陷阱”,诱使学生得出错误

  有的放矢地选一些颇具迷惑性的题目,在易错的节骨眼上设“陷阱”,先诱使学生陷入歧途,制造思维冲突,再引导学生在自查自理中挣扎出来,达到学生深刻理解概念和知识的目的。

  (2)适时恰当引入错例,引导学生独立评析错误

  对于例题的错误解法由学生独立地对错误进行评析和判断,引导学生独立寻找错误加以分析,让其自己进行矫正。

  (3)强调学生用知识意识的指导

  所谓数学应用就是人们在自己工作、学习和生活中,碰到各种各样的实际问题时,会想到用数学方法解决它。如何指导及培养呢?一是培养学生观察生活中的数量,记住一些常用数量;二是注意用实际问题引发数学新知识,并及时用新知识解决提出的问题;三是要告诉学生,数学图形是思考的工具。数形结合,培养学生的用图能力和直观思维能力;四是安排一定的室外数学实习,让学生去讨论实际的数学问题;五是收集一些报刊或书籍,让学生体会到数学应用的广泛性;六是鼓励学生发现和修改课本或学习资料中不合实际的问题。

  总之,学法指导必须与新课程实施同步,应从初一年级抓起,循序渐进,持之以恒,协调发展。教师应善于研究学生学法的现状并加以分析,研究数学方法与学生指导策略,指导有序,对症下药,因人而异,因材施教,让学生知其然,也知其所以然,形成自学能力,提高学习效率。只有这样才能有助学生由“学会”向“会学”转化,真正把素质教育落到实处,使新课程的实施落到实处。

初中数学学习方法13

  一:平时的数学学习:

  1、课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.

  具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.

  2、让数学课学与练结合.在数学课上,光听是没用的..当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.

  听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.

  3、课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.

  4、单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”.

  二:期中期末数学复习:

  要将平时的单元检测卷订成册,并且将错题再做一遍.如果整张试卷考得都不好,那么可以复印将试卷重做一遍.除试卷外,还可以将作业上的错题、难题、易错题重做一遍.另外,自己还可以做2-3张期末模拟卷.

  三:数学考试技巧:

  如果想得高分,在选择、填空、计算题上是不能丢分的.在考数学的时候思想不能开小差,而且遇到难题时不能想“没考好怎么办啊”等内容.在通常情况下,期末考试的难题都是不知道怎么做,但有可能突然明白的那种.

  遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析,如这次考试有两个空白的钟,还有去年七年级期末的几题填空.这些条件都对你的解题有很大帮助.在期中、期末考试中有充足的时间,将自己的速度压下来,

  不是越快越好,争取一次做成功.大概留35分钟的时间检查.最终提醒大家:多做题有一定作用,但上课听讲、认真答题及提高准确率、总结经验才是最重要的.还要将所学的知识用到生活中去,做到学以致用.

  当你运用数学知识解决了生活中实际问题的时候,你就会感受到学习数学的快乐.

初中数学学习方法14

  初一在整个初中阶段很重要,有扎实的基础,会使学习更加轻松。下面就为您推荐内容初中数学概念学习方法。希望您学习成绩突飞猛进。

  初中数学概念学习方法

  在数学学习中,数学概念的学习毫无疑问是重中之重,概念不清,一切无从谈起。那么对干巴巴的数学概念如何学好呢。为此,提供一套行之有效的数学概念学习法。具体地说,有以下几种方法:

  一、温故法

  学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。

  二、操作法

  对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的.发生和发展过程。

  三、类比法

  这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。

  四、喻理法

  为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念.

初中数学学习方法15

  初中数学是一个整体。

  初二的难点最多,初三的考点最多。

  相对而言,初一数学知识点虽然很多,但都比较简单。

  很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后,就凸现出来。

  这里先列举一下在初一数学学习中经常出现的几个问题:1、对知识点的理解停留在一知半解的层次上;2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;3、解题时,小错误太多,始终不能完整的解决问题;4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏;5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点;以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。

  相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。

  那怎样才能打好初一的数学基础呢?(1)细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。

  例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。

  二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。

  这样就不能很好的将学到的知识点与解题联系起来。

  三是,一部分同学不重视对数学公式的记忆。

  记忆是理解的基础。

  如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

  (2)总结相似的类型题目这个工作,不仅仅是老师的事,我们的同学要学会自己做。

  当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。

  这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。

  其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。

  久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。

  我们的建议是:“总结归纳”是将题目越做越少的最好法。

  (3)收集自己的典型错误和不会的题目同学们最难面对的,就是自己的错误和困难。

  但这恰恰又是最需要解决的问题。

  同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。

  另外一个就是,找出自己的不足,然后弥补它。

  这个不足,也包括两个方面,容易犯的错误和完全不会的内容。

  但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。

  我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。

  我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。

  (4)就不懂的问题,积极提问、讨论发现了不懂的问题,积极向他人请教。

  这是很平常的道理。

  但就是这一点,很多同学都做不到。

  原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。

  抱着这样的'心态,学习任何东西都不可能学好。

  “闭门造车”只会让你的问题越来越多。

  知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。

  这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。

  直到无法赶上步伐。

  讨论是一种非常好的学习方法。

  一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。

  需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。

  我们的建议是:“勤学”是基础,“好问”是关键。

  (5)注重实战(考试)经验的培养考试本身就是一门学问。

  有些同学平时成绩很好,上课老师一提问,什么都会。

  课下做题也都会。

  可一到考试,成绩就不理想。

  出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。

  心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。

  每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。

  做题速度慢的问题,需要同学们在平时的做题中解决。

  自己平时做作业可以给自己限定时间,逐步提高效率。

  另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。

  我们的建议是:把“做作业”当成考试,把“考试”当成做作业。

  以上,我们就初一数学经常出现的问题,给出了建议,但有一点要强调的是,任何方法最重要的是有效,同学们在学习中千万要避免形式化,要追求实效。

  任何考试都是考人的头脑,决不是考大家的笔记记的是否清楚,计划制定的是否周全。

【初中数学学习方】相关文章:

如何学习初中数学11-23

如何学习初中数学10-22

初中数学的学习总结10-08

初中数学的学习技巧10-08

学习初中数学的技巧04-01

初中学习数学的学习方法09-30

初中数学学习技巧07-28

初中学习数学的方法09-30

初中数学听课与学习技巧10-05

初中数学的学习方法10-05