- 相关推荐
[必备]数学学习方法
在平平淡淡的学习、工作、生活中,大家都会有学习的需求,掌握一定的学习方法,学习效率就会提高很多。想必很多人都在为找到正确的学习方法而苦恼吧?以下是小编为大家整理的数学学习方法,仅供参考,欢迎大家阅读。
数学学习方法1
导读:爱因斯坦将自己成功的秘诀概括为一个著名的公式成功=刻苦努力+方法正确+少说废话。可见,方法正确之于成功多么重要!高三是高中最为紧张及重要的阶段,下面为高三考生们准备的是高生数学149分的学习方法,以供考生们参考。
一、养成良好的数学习惯,注重归纳
多质疑、勤思考、好动手、重归纳、活应用这是学习数学良好的习惯。
习惯形成之后,会使自己学习感到有序而轻松,卓晗说,我读高一时数学是弱科,因此花的时间比较多;高二才有些起色;高三每天大概花60到90分钟,数学才渐渐提高并稳定下来。她认为题海战术,因人而异,主要还是多做老师给的好题,把老师所传授的知识翻译成为自己的特殊语言,并记在脑海中。
那么,高中数学有无省时省力的方法呢?有,这就是善于归纳。卓晗提倡按题型和知识点进行归纳,通过归纳总结,可以使所学内容条理清晰,使人透过现象看本质,并找到致错根源,避免犯已犯的错误。
二、遇难题量力而行
学数学遇到难题怎么办呢?卓晗说,量力而行即可。非考试时,尽量自己思考,若无果再请教老师、同学,尤其在高三后期,请教他人可节省很多时间。考试时,选择、填空题的难题尽量耐心做出,此时不要轻易吓唬自己,轻易放弃,可结合基本知识点与题意来解答,但要控制时间,否则影响做题速度;大题的难题,若时间较紧,心里就会有点慌了,但只能尽量让自己平静下来,将易做的小题先完成再思考较难的,来不及就放弃。
三、平时:培养数学思想
吴雪汀说,老师上课时经常强调学习数学应当有数学思想,如转化思想、类比思想等,这些思想在许多题目中都有广泛的应用,所以她平时十分注意数学思想的培养。
有些人总认为,数学要考得好,只要平时多做题就可以了。吴雪汀说这种题海战术并不科学,她自己平常做的题就不太多,但对于每一道题不是解出正确答案就将其丢在一边,而是不断地反复钻研,把一道经典的例题分析透、理解透,将里面所涉及的'知识点全部掌握,效果会比做很多题目来得更好。
四、复习:对与错都要反思
很多学生平时都会有自己的一本错题集,将做错的题目归纳整理。但吴雪汀觉得,不管是做对的题目还是做错的题目都有值得反思的地方。做错的题目,自然是要反思做错的原因,具体是因为哪个知识点不清楚而错;做对的题目,也不轻易放过,可能这次你做对了,下次反而做错了,因此反思这个题目里涉及的那些知识点是很重要的。
五、应考:别因小细节而失分
吴雪汀这次高考数学只失了一分,她在分析自己的失分原因时认为,应该是在做主观题时,某个步骤疏忽了。因此她也提醒学弟学妹们,做题时千万不要忽视小细节。虽然有时一些细枝末节的地方遗漏了,对于整个题目的正确答案不会有什么影响,但因为这种完全可以避免的失误而丢分,实在是很让人遗憾的。
数学一向都是许多文科生的弱项。文科生如何在数学考试中拿高分,吴雪汀的见解是,基础题一定要先做好,尽量不失分,对于那些较难的解答题则是能做多少就做多少。
高三数学的学习方法6
高考试题重在考查对知识理解的准确性、深刻性,重在考查知识的综合灵活运用。它着眼于知识点新颖巧妙的组合,试题新而不偏,活而不过难;着眼于对数学思想方法、数学能力的考查。高考试题这种积极导向,决定了我们在教学中必须以数学思想指导知识、方法的运用,整体把握各部分知识的内在联系。只有加强数学思想方法的教学,优化学生的思维,全面提高数学能力,才能提高学生解题水平和应试能力。
高考复习有别于新知识的教学。它是在学生基本掌握了中学数学知识体系、具备了一定的解题经验的基础上的复课数学,也是在学生基本认识了各种数学基本方法、思维方法及数学思想的基础上的复课数学。其目的在于深化学生对基础知识的理解,完善学生的知识结构,在综合性强的练习中进一步形成基本技能,优化思维品质,使学生在多次的练习中充分运用数学思想方法,提高数学能力。高考复习是学生发展数学思想,熟练掌握数学方法理想的难得的教学过程。
高考复习中数学思想方法教学的原则。
1、把知识的复习与思想方法的培养同时纳入教学目的原则。
各章应有明确的数学思想方法的教学目标,教案中要精心设计思想方法的教学过程。
2、寓思想方法的教学于完善学生的知识结构之中、于教学问题的解决之中的原则。
知识是思想方法的载体,数学问题是在数学思想的指导下,运用知识、方法"加工"的对象。皮之不存,毛将焉附?离开具体的数学活动的思想方法的教学是不可能的。
3、适当章节的强化训练与贯通复课全程的反复运用相结合的原则。
数学思想方法与数学知识的共存性、数学思想对数学活动的指导作用、被认知的思想方法只有在反复的运用中才能被真正掌握这一教学规律,都决定了成功的思想方法和教学只能是有意识的贯通复课全程的教学。特别是有广泛应用性的数学思想的教学更是如此。如数形结合的思想,在数学的几乎全部的知识中,处处以数学对象的直观表象及深刻精确的数量表达这两方面给人以启迪,为问题的解决提供简捷明快的途径。它的运用,往往展现出“柳暗花明又一村”般的数形和谐完美结合的境地。
在某种思想方法应用频繁的章节,应适当强化这种思想方法的训练。如在数学归纳法一节,应精心设计循序渐进的组题,在问题解决中提炼并明确总结联合运用不完全归纳法、数学归纳法解题这一思想方法,在学生能熟练运用的基础上,通过反复运用,才能形成自觉运用的意识。
数学学习方法2
数学是研究数量结构、变化、以及空间模型等概念的科学。它是物理、化学等学科的基础,并且与我们的生活息息相关。所以说,学好数学对于我们每个同学来说都是十分重要的。下头我向大家介绍一下初中数学的学习方法与技巧:
一、平时的数学学习:
1、课前认真预习。预习的目的是为了能更好得听教师讲课,经过预习,掌握度要到达百分之八十。带着预习中不明白的问题去听教师讲课,来解答这类的问题。预习还能够使听课的整体效率提高。具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15—20分钟。在时间允许的情景下,还能够将练习册做完。
2、让数学课学与练结合。在数学课上,光听是没用的。当教师让同学去黑板上演算时,自我也要在草稿纸上练。如果遇到不懂的难题,必须要提出来,不能不求甚解。否则考试遇到类似的题目就可能不会做。听教师讲课时必须要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”。
3、课后及时复习。写完作业后对当天教师讲的.资料进行梳理,能够适当地做25分钟左右的课外题。能够根据自我的需要选择适合自我的课外书。其课外题资料大概就是今日上的课。
4、单元测验是为了检测近期的学习情景。其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好。教师经常会在没通知的情景下进行考试,所以要及时做到“课后复习”。
二、期中期末数学复习:
要将平时的单元检测卷订成册,并且将错题再做一遍。如果整张试卷考得都不好,那么能够复印将试卷重做一遍。除试卷外,还能够将作业上的错题、难题、易错题重做一遍。另外,自我还能够做2—3张期末模拟卷。
三、数学考试技巧:
如果想得高分,在选择、填空、计算题上是不能丢分的。在考数学的时候思想不能开小差,并且遇到难题时不能想“没考好怎样办啊”等资料。在通常情景下,期末考试的难题都是不明白怎样做,但有可能突然明白的那种。遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析,如这次考试有两个空白的钟,还有去年七年级期末的几题填空。这些条件都对你的解题有很大帮忙。在期中、期末考试中有充足的时间,将自我的速度压下来,不是越快越好,争取一次做成功。大概留35分钟的时间检查。
最终提醒大家:多做题有必须作用,但上课听讲、认真答题及提高准确率、总结经验才是最重要的。还要将所学的知识用到生活中去,做到学以致用。当你运用数学知识解决了生活中实际问题的时候,你就会感受到学习数学的欢乐。
数学学习方法3
一、回归基础查缺漏
高考数学快速提分考生应当结合数学课本,把高考数学知识点从整体上再理一遍,要特别重视新课程新增的内容,看看有无知识缺漏,若有就应围绕该知识点再做小范围的高考复习,消灭知识死角。
二、重点知识再强化
高考数学以三角、概率、立体几何、数列、函数与导数、解析几何、解三角形、选做题为主,也是数学大题必考内容,这些板块应在老师指导下做一次小专题的强化训练,熟悉不同题型的解法。如果学校没有专门安排,考生可以把最近做过的综合试卷选五六份分类整理,把这些高考数学重点知识涉及的不同题型、解法较系统地温习一遍,快速提分就有望实现。
三、整理错题求提高
做错的数学题目就是弱点所在,找到错因,掌握了正确解法,考生的水平自然就得到提高。高考数学快速提分,为了避免重蹈覆辙,有必要把最近两个月考过的`数学试卷重新梳理一下,为高考数学快速提分做好准备,看题时要思考解题思路是怎么形成的,原先的错误如何避免。
四、适量练习保熟练
为了保持状态,考生每天要保持一定的高考数学模拟练习量,题量最好视考生自己的具体情况而定,时间控制在一小时左右,目的是巩固并扩大高考数学复习成果、不至于产生“生疏感”。把数学重点放在对基本概念的理解与应用上,坚决放弃偏、难、怪题。各地模拟试卷很多,应在老师指导下适当选用,不能拿一套就做一套,这样会累垮的,要大胆取舍,考生不是做完所有练习才上考场,而是通过做适量练习掌握方法数学才能快速提分。
高考数学题型及解题技巧
选择题
选择题是数学考试中常见的题型,我们想要提高选择题的正确率,就要求我们在平时练习的时候要注意归纳题干中的信息,排除干扰选项,找到正确的答案。
填空题
一般高考数学的填空题都在选择题之后,难度相比其他题型来说也会低不少,而且分值也不是非常高。数学考试的填空题主要考察我们最基础的能力。一般填空题的运算量都不算很大,只要我们熟练掌握各个知识点,都可以顺利的解答。
审题技巧
正确的审题是解答问题的关键,审题的过程包括明确条件,分析条件,确定解题思路。分析条件是指我们在数学考试的时候要找出题目中已知的条件。分析条件就是根据已知条件来找出隐含的条件,从掌握的信息来进行推导,以达到解题的目的。确定思路就是分析已知条件和最终解答之间的联系,需要用到哪些定理,运用哪些步骤,最后完成解答。
高中数学考试技巧
先易后难、先熟后生:先做简单题、熟悉的题,再做综合题、难题。应根据实际,果断跳过啃不动的题目,从易到难,可以增强信心。
先小后大:小题一般信息量少、运算量小,易于把握,不要轻易放过,应争取在做大题之前尽快解决,为解决大题赢得时间。
先局部后整体:对一个疑难问题,确实啃不动时,一个明智的策略是:将它划分为一个个子问题或一系列步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。
数学学习方法4
1,逐步树立信心。高数(工专)对以前的基础要求很少,三角公式在教材里就可查到。所以,像我一样,从“0”开始,一样可以过高数。
2,迈出重要的、关键的、决定性的第一步。多花些时间,着重先学透前三章,选做一些练习;第三章的“导数”,是后继内容“微分”、“积分”、“二重积分”的基础,也可以举一反三。学完了“导数”,自己能计算题目了,就会信心倍增。
3,紧扣大纲,但又要区分主次;可先适当跳过应用难题和难点。学习每一章之前,都要先看大纲;我分别用4种符号,在教材的'各节中标记出大纲的4种要求,这样就一目了然。另外,有些大纲的要求是“简单应用”、“综合应用”,比如“二次方程”等,但以往的试卷中并没有出题,可以缩减学习时间。我始终都没仔细学“微分学应用”这一章(注意会出题目),这样可以节省时间和精力。
4,把“例题”,当成“习题”,自己先做一遍,可以事半功倍。因为当你看到例题时,已经看过了相关的教材内容。有的人看书确实很认真,但不重视通过做习题来逆向检验和加深记忆,考试效果比较差。
看了教材,会做题目了,这样还不行;像“导数”、“积分”这些最基本、也是最重要的章节,要能够非常熟练的解题;所以,只有通过大量的习题,才能达到熟练的程序。往后学习才会觉得更容易,更有感觉。
5,通过以往试卷真题的练习,是复习和检验的重要环节。高数需要多些时间,不能像有些公共政治课程一样临时抱佛脚。
数学学习方法5
素质教育以培养创新精神和实践能力为目标,数学教学要实现这一目标,首先要解决学生数学能力的培养,而数学能力的核心是数学思维能力。正是如此,每位数学教师在进行课堂教学时,或多或少,或自觉或不自觉地总要设计一些问题,启发引导学生去思维。我们知道,数学思维教学必须全面考虑,依据不同的教材内容和不同课型的内在联系,提出不同的问题,从而多方面地培养学生的思维能力,提高学生良好的思维品质。下面本人根据多年来的教学实践,谈谈课堂问题设计与思维能力培养的关系。
一、设计发散型问题,培养学生的灵活思维能力
教学实践表明,学生思维能力的灵活程度与学生的发散思维水平密切相关。在日常教学中我们不难发现,优等生可以从同一道试题的题意产生出不同的假象,然后就每一种假想进行合理的思维推理,一旦思维受阻就无所事从,放弃解答。为此就要求我们教师在教学中必须适时合理且经常地设计发散型问题,引导学生多角度、多方面地思考问题。
数学可供设计发散式问题的内容比比皆是,只要我们能充分挖掘教材的内在联系,发挥自身的优势,就能很好地培养学生思维的灵活能力。
二、设计互变型问题,培养学生的逆向思维能力
通常评价一位学生思维灵活与否,其主要的判别条件之一,是考察学生逆向思维能力强不强。逆向思维是从对立的角度去考虑问题,也就是通常所说的:“反过来想一想”。初中教材中定义、公式、法则、图像等通常是按照正向思维方式给出,学生在学习中习惯于这种正向思维,而不习惯逆向思维,这就容易造成学生知识结构的缺陷,造成思维方法上的刻板僵化。所以在教学中,对于每一节教学内容,在向学生进行一定程度的正向思维训练后,应根据学情在教学的各层、各阶段中,适时地设计有一定梯度的互变式问题,培养学生的逆向思维能力。
三、设计陷阱式问题,培养学生的批判思维能力
没有批判就没有创新,因此培养学生的批判能力是我们教师义不容辞的责任。教学实践证明,适时地设计一些陷阱式问题,有利于培养学生的批判思维。这类题是为突破消极思维定势而有意设下的陷阱,使题型与方法错位,诱使学生“上当”、“中计”,从而使学生在失败中吸取教训,在“上当”、“中计”后幡然悔悟。在醒悟境界中学生会变得越来越聪明,思考问题越来越深刻,思维批判能力也就随之而生了。
四、设计变角型问题,培养学生的概括思维能力
变角式问题是指从同一事理的不同角度去提出问题,它与培养学生的概括思维能力密切相关。
设计变角式问题进行的训练,可以暴露问题,从而进行追根求源,防止思维定势的负迁移,克服思维的呆板性,提高学生的概括能力。
例如:农机厂职工到距工厂15千米的生产队检修农机,一部分人骑自行车先走,40分钟后,其余人乘汽车出发,结果同时到达。已知汽车的速度是自行车的3倍,求两种车的速度。当学生解完此题后,可变换角度提出下面的问题,让学生分析思考它们之间有何关系?
变式:甲、乙两人各做15个零件,甲先做40分钟后,乙才开始做,由于乙的工作效率是甲的3倍,结果两人同时完成了任务,求两人每小时各加工几个零件?
从表面上看来,它们分别是行程问题和工程问题,学生通过分析比较会发现,从某种意义上讲,距离就是工作总量,速度就是工作效率,因而行程问题和工程问题有着本质的联系,并能由此推及其它与这相关的数学问题的解答。
五、设计探究型问题,培养学生的创造思维能力
探究式问题是指做完一道习题后,保持已知条件不变,探究能否得出更深刻的结论;或改变命题条件、结论的若干元素,组成新型的`逆向的或更一般性的、高一层的命题,并探究它的正确性,这对于培养学生的锲而不舍精神和创新思维能力大有好处。
六、设计开放型问题,培养学生的缜密思维能力
缜密思维要求考虑问题全面,周密而不遗漏。数学教学中若能注重这方面能力的培养,不仅有助于学生提高数学能力,而且有益于学生严谨品格的培养。
数学教学中,我们常发现有的学生分析解决问题时,要么思路不清晰、考虑问题欠周密,导致解题不严密。教学实践证明,适时地设计一些开放型问题,有利于培养学生的缜密思维能力。
例如:解关于X的方程abx2-(a2+b2)x+ab=0,学生的通常解法是直接采用十字相乘法求得方程的两个根,而忽略了“当a=0,b≠0时及a≠0,b=0时原方程变为一次方程”的情况。因此为了提高学生合理分类,全面讨论问题的能力,从而防止“解”不完备,除了多进行实例教学外,还要结合教材设计一些开放式问题对学生进行针对性的训练,以便加强学生思维的纵向延伸于横向交流,使思考问题到达全面、深刻。
综上所述,课堂问题的设计直接或间接决定着学生思维能力的培养,而各种思维能力的发展是相辅相成、不容分割的。因此,必须根据学生的认知基础、智力发展规律、教学内容的特点和内在联系,综合平衡,精心设计课堂问题,全方位地培养学生的思维能力,提高学生的思维品质。
数学学习方法6
(1)细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
(2)总结相似的类型题目
当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
(3)就不懂的问题,积极提问、讨论
发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的`心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。
讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。
(4)收集自己的典型错误和不会的题目
同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。
(5)注重实战(考试)经验的培养
考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试,靠自己的考试经验来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中也要考虑每部分的完成时间 初中学习方法,避免出现不必要的慌乱。数学家教建议大家把“做作业”当成考试,把“考试”当成做作业。
以上,我们就初一数学经常出现的问题,给出了建议,但有一点要强调的是,任何方法最重要的是有效,同学们在学习中千万要避免形式化,要追求实效。任何考试都是考人的头脑,决不是考大家的笔记记的是否清楚,计划制定的是否周全。
数学学习方法7
数学是研究现实世界的空间形式和数量关系的一门科学。它的内容、思想和方法已广泛渗人自然科学和社会科学,成为现代文化的重要组成部分。学好数学对于我们适应生活,参加生产、进一步学习物理、化学、计算机等其他学科的知识具有重要的意义。由于数学学科具有高度的抽象性、严密的逻辑性,在学习过程中容易使人产生枯燥、乏味、畏难等消极情绪,影响了对数学的学习和数学成绩的提高。其实数学的学习是有一定方法和规律的,只要掌握合理的学习方法,正确认识数学学习和发展的规律,那么每一个同学都能树立起学习的信心,并培养起浓厚的学习兴趣,进而为数学成绩的提高和数学能力的发展打下良好的基础。
一、学会学习
课内学习是中学生学好各门功课的中心环节。学生最宝贵的时间都在课堂中度过,并且在老师的指导下,将人类经过几千年积累下来的大量知识和经验转化为自己的知识,课内学习是学好数学的关键,它主要包括三个环节:(1)课前认真准备;(2)课中积极思考;(3)课后力求发展。
(一)课前认真准备。课前准备包括复习旧课和预习新课,复习旧课应明确课本中必须掌握的知识点和能力点,看看哪些要背下来,哪些要理解、哪些要应用,做到胸中有数。平时掌握较好的打个“照面”,平时学习中的疑难点以及学习新课要用到的知识要重点突破,为学习新知扫除障碍,打开通道,使自己信心百倍地进入学习状态。预习新课应明确预习任务,了解新课内容,找出疑难和重点部分以及主要概念、定理、例题解法等;适当作笔记,记下会与不会部分,带着问题去听课,尝试做新课后面的练习题,锻炼自己独立获取知识的自学能力和探索能力。江苏洋思中学由一所乡镇普通学校一跃成为全国名校,学生成绩明显提高,其成功之处就是充分发挥了预习的作用。我们每一名同学要始终把预习作为学好功课的重要环节来对待,持之以恒,养成先预习后听课,先复习后作业的良好学习习惯。
(二)课中积极思考。我国著名教育家严济慈说:“听课,这是学生系统学习知识的基本方法。要想学得好,就要会听课。”凝神——这是听好课最基本最重要的因素。因为凝神是捕捉知识信息的原动力,凝神能使我们深思熟虑,凝神能激活人们的聪明才智。思索——学起于思,思源于疑。在预习中可能碰到不少疑难,当老师讲到这些疑难时,要边听边思考,听老师怎样带领我们渡过难关,想老师为什么这样解答或证明,听同学回答老师提问的独特见解或新颖解题思路。思考是接受知识、内化知识最强有力的保证。质疑——“提出一个问题远比解决一个问题重要”。这是物理学家爱因斯坦的一句名言。在通过听讲解决预习中的疑难的同时,又会产生新的疑难,同学们要善于质疑问难,选择合适的时机提出问题。当堂提问既可以趁“打铁,得到及时解答,又可以昭示其他同学,引起思考,共同讨论,集思广益,达成共识。动笔一“不动笔墨不读书”,这是徐特立老人的治学经验。勤写能使我们经常处在积极的思维之中,多练能避免出现眼高手低的错误,动笔能使我们更加准确和完美。
(三)课后力求发展。学习是一个系统过程,既有课前的预习准备,课上的听讲演练,还有课后的延伸和拓展,课上时间是有限的,解决的问题和学会的知识也是有限的,课后为我们的成长和发展提供了广阔的空间。课后要加强记忆,扩大积累,系统小结,形成网络,将学过的知识在头脑中“消化、简化、序化”,嵌人脑中已贮存的知识系统中,最后达到使知识“自由出入”,随时调遣,灵活运用的目标。
二、学会审题
所谓学会审题,就是要求解题前一定要通读题目,弄清题意。首先弄清题目的性质及其类型,搞淸已知条件是什么,要求的是什么,由已知求未知已经具备了什么条件,还需要什么条件,这些条件怎样来找。然后根据有关的概念、定律、公式、公理、定理、法则来寻找所需要的条件,并确定正确而简捷的解题步骤,特别是对关键性的字句要认真推敲、耐心揣摩。尽管一个题目其内容的呈现方式多样,有陈述式、疑问式、图象式、图表式等,但是题目中的条件一般来说是以三种方式出现的:一是题目中给出的具体数值;二是题目中给出的不是具体数值,而是叙述了一句话,如图形与图形之间的关系,一个量和另一个量之间的关系等;三是隐含条件,如字母的取值范围,边的关系,角的关系,某种变化中存在的规律等;在解题过程中不仅要认真审题,弄清问题的已知和结论,还要学会挖掘隐含条件。当找不到解题思路时,要看一看是不是用上了所有的已知条件,由已知可挖掘出哪些隐含条件。如果平时注意养成良好的审题习惯和严谨的科学态度,做到“审”有依据,“解”有方向,那么每一个同学的解题、论证能力就会大大增强。
常用的审题方法有下列几种:
(一)仔细读题,抓关键词句、搜索有用信息。如大量的应用题不像纯数学习题那样简短,而需更多的文字表述,那么审题时,就要“去粗存精”,把具有或代表一定数学意义或数学关系的词句挑选出来,这是解决应用问题的关键。
(二)逆向审题,抓住使结论成立的条件,执果索因。一些几何证明问题,难以直接入手证明,可采取逆向审题的方法,由结论出发,寻找使结论成立的条件,打通各种关碍,最后由条件出发,写出证明过程。
(三)数形结合、语言互译、辨明数学关系。大量的数学应用问题,借助于图形分析其数量关系,这就需要把文字语言译成符号语言;大量的几何证明问题需要把文字语言,结合图形译成符号语言才能完成证明过程;另一方面,有些应用题是以图象或图表的形式给出的,这时就要认真观察分析,把图表或图象语言译成符号语言或一般文字叙述来解决。各种语言的互译能够增强对问题的透视,进一步辨明数学关系,这对打开解决问题思路具有重要的意义。
三、学会类比
俄国教育家乌申斯基说过:“比较是一切理解和思维的基础。我们正是通过比较来了解世界上的一切的.。”这充分说明了比较在认识和学习过程中的重要作用。数学中的类比法是最常用的比较方法,也是重要的学习方法。类比的作用主要体现在两个方面:
(1)通过两类具有相同或相似属性的问题之间的对比,根据一类问题的某些已知特征或处理方法探索另一类问题的相应特征或相应处理方法。
(2)通过两类相关问题之间的对比,发现他们的共性与个性,弄清差异,形成规律性认识。在学习过程中有目的地把相同或相似的数学概念、定义、性质、公式、定理、法则进行比较,一方面突出某些概念和规律的共性,加深对问题的理解记忆,并能由此及彼,由例及类,触类旁通,从而获得规律性的认识。另一方面,突出某些概念和规律的个性,掌握概念和规律的实质,把握概念的内涵和外延,消除头脑中存在的错误或模糊认识。例如,学习《一元一次不等式》一部分内容时,可同《一元一次方程》一部分内容就概念、性质、解题步骤、解(解集)的情况及解(解集)的表示等方面进行类比。
学习公式可从取值、运算顺序,运算结果及公式表示的意义等方面进行类比,教材中按章节(或单元)划分,可类比学习的地方有二十多处,在此不再一一赘述。
学习过程是个体主动认识和发展的过程,利用类比的方法,可使我们已有的经验和知识进行迁移,运用已有的知识和已掌握的方法探索处理新问题的途径,有利于形成自觉探索、自主解决问题的良好学习习惯,这些习惯和方法的形成,对于我们未来的发展也是终生获益的。
例如,可类比一元一次方程的解法,探索一元一次不等式的解法;类比整式的加减乘除运算,探索二次根式的加减乘除运算;类比分数的基本性质及应用,探索分式的基本性质及应用。此外,还可以通过类比的方法对数学教材中的题型归类,既可以把习题由多变少,从而减轻学习负担,又能锻炼和提高自己的思维能力,可谓一举两得。
四、学会转化
数学思想是人们对数学知识和数学方法的理性认识,是对数学知识,数学方法的高度抽象和概括。其中转化思想就是将一种研究对象在一定条件下转化为另一种研究对象的数学思想方法。通常有“未知”向“已知”的转化,“复杂”向“简单”的转化,“实际问题”向“数学模型”的转化,“一般”向“特殊”的转化等。转化思想几乎贯穿整个初中数学学习的全过程,是数学中的常规思想和基本方法,在数学学习过程中,根据已有的知识和经验,通过观察、联想、变换等手段,把要解决的问题转化为已经解决或容易解决的问题,逐步形成自觉的转化意识,对解决问题能力的提高和良好思维品质的培养具有重要的作用。
(一)化“未知”为“已知”。数学这门学科具有系统性、层次性强的特点,绝大多数新知都是由它的先行旧知延伸和发展而来的,把新知识、新问题化归为旧知识、旧问题来解决,不但找到了解决问题的途径而且巩固发展了旧知识,能顺利实现“新知”向“旧知”的转化,“未知”向“已知”的转化。初中数学方程和方程组的解法,就是通过消元、降次实现“未知”向“已知”转化的。
(二)化复杂为简单。对于复杂抽象的数学问题,应用传统的思维方式问题容易受阻,或者解决起来十分麻烦,这就需要及时调整思维的方向,冲出常规思维的框框。灵活选取角度寻找解决问题的途径,把问题转化为新的可以解决的问题,达到化复杂为简单的目的。
例如:m为何值时,方程x+(m-5)x+1-m=0的一个根大于3,另一个根小于3。
若设x-3=t,则x=t+3,把x=t+3代入原方程得
t+(m+1)t+(2m-5)=0,这样把“一根大于3,另一根小于3”的情况就转化为“一根大于0,另一根小于0”的情况,由t1t2<0即2m-5<0,解得m<5/2
例如:从12点起,在什么时间,时钟的分针和时针第一次重叠。
这个问题从表盘的分格上或两针的夹角上考虑,是比较复杂的,如果把两针看士两个人,那么问题就转化为在环形跑道上的追及问题。
(三)化实际问题为数学模型。利用化归方法构造数学模型,解决学习、生产、生活中的实际问题,是学生必须具备的数学素养,也是培养学生创造性思维能力的重要途径。例如,在《正多边形和圆》一部分内容中有这样一个实际问题:“用美术瓷砖铺地面,’,解决这个问题,应舍弃材料的图案和质量,从数学的角度来考虑,就是选择什么形状的瓷砖铺地面。可以借助实际图形,结合已学过的正多边形的有关知识寻求合理答案,经过观察、对比可以发现,应选取正三角形、正四边形、正六边形的瓷砖铺地面。化归这个数学问题的实质是选取围绕角的顶点能拼成360°角的正多边形。再如20xx年中考23题。解答此题,就需要根据实际问题提供的数据,建立数学模型,转化成数学问题中的数量关系,根据抛物线的有关数学知识进行求解。
端外,转化的方式还有化抽象为具体,化形为数,化数为形,化一般为特殊等,不再赘述。
五、学会分析
在《大纲》和教育部《中考命题意见》中都强调在培养和考查学生“三大能力”的同时,着重培养和考查学生运用数学知识分析和解决实际问题的能力。在数学学习过程中,每一名学生都想知道,碰到一道稍复杂的题目,应如何着手思考,如何在较短的时间内找到正确的解题途径,并按照一定的逻辑关系将解题(证明)过程写出来。实践证明,学生们分析问题、解决问题的能力,在很大程度上依赖于是否学会分析。
分析就是把研究对象分解为它的各个组成部分、方面、因素、层次,然后分别加以研究,从而认识事物的基础或本质的一种思维方法。具体地说,分析法就是从数学题的结论出发,利用学过的公式、公理、定理或法则去推想使结论成立的条件,一旦这些条件具备,结论就成立。譬如要证明命题甲成立,就去寻找使命题甲成立的条件,若命题甲成立的条件可由已知条件直接推得,那么问题就解决了。如果所需的条件有一个或几个不在已知中,问题没有解决,可继续往下想,看已知中缺少的条件是否可直接由已知中具备的条件推出,如果可以,那么问题得以解决,如果还是不行,那就继续用同样的方法追溯,直到你所需要的某个条件已能由已知条件推得为止。简言之,分析法就是“执果索因”。
数学学习方法8
数学分析是基础课、基础课学不好,不可能学好其他专业课。工欲善其事,必先利其器。这门课就是器。学好它对计算科学专业的学生都是极为重要的。这里,就学好这门课的学习方法提一点建议供同学们参考。
1.提高学习数学的兴趣
首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必须的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以领略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。用兴趣推动学习,而不是用任务观点强迫自己被动地学习数学。
2.知难而进,迂回式学习
首先要培养学习数学分析的兴趣和积极性,还要不怕挫折,有勇气面对遇到的困难,有毅力坚持继续学习,这一点在刚开始进入大学学习数学分析时尤为重要。
中学数学和大学数学,由于理论体系的截然不同,使得同学们会在学习该课程开始阶段遇到不小的麻烦,这时就一定得坚持住,能够知难而进,继续跟随老师学习。
学习数学分析时要注意数学分析和高等数学要求不同的地方,否则你学习数学分析就与高等数学没有什么区别了;而且高等数学强调的是计算能力,数学分析强调的是分析的能力,分析的能力没有学到,就谈不上学好了数学分析。学好数学分析课程还有一个重要的原因是新生们体会不到的,数学分析的知识结构系统性和连续性很强,这些知识学得不扎实,肯定要影响后面知识的学习。同时将来考硕士,还是要考这门课程。如果大学第一年不把这门课程学好,将来可就难了。刚开始学习数学分析,会感觉很晕。对于老师所讲的知识,虽然表面上能听懂,但却不明白知识背后的真正原因,所以总是感觉学到的东西不实在。至于做题就更差劲了,课后习题都没几个会做的。其实感觉晕是很正常的,而且还得要晕上几个月才可能就会好的。所以要硬着头皮跟着老师学了下来。虽然感觉还是不太懂,虽然做作业仍然感觉很费劲,但始终不要放弃,这种状态是学习数学分析的一个必经之路,因此必须克服这个困难才能学好数学分析理论知识。
除了要坚持外,还要注意不要在某些问题的解决上花费过多的时间。因为数学分析理论十分严谨,教科书在讲解初步知识时,有时会不可避免地用到一些以后才能学到的理论思想,因而在初步学习时就对着这种问题不放是十分不划算的。比如说,在“数学分析”一开始学习实数系的确界存在基本定理时,由于当时根本没什么基础,所以对于“引入这个定理的目的是什么?”这个问题怎么想也想不通,甚至觉得这个定理没有什么实质的意义。但到后来学到了多元部分的数学分析,以及专业课“实变函数”时,才开始慢慢理解它的真正目的。这里之所以要说明是实数系有确界存在的性质,即相当于有一种连续的性质,目的就是为了后面的极限和连续做铺垫的,因为只有在自变量能够连续变化的时候,考虑因变量的相应变化才有意义,进而才能研究函数的性质。但是如果没有学到后面,只了解区间而不知其它一些怪异的点集时是很难想通这个问题的。
所以,在开始学习数学分析时,可以考虑采取迂回的学习方式。先把那些一时难以想通的问题记下,转而继续学习后续知识,然后不时地回头复习,在复习时由于后面知识的积累就可能会想通以前遗留的问题,进而又能促进后面知识的深刻理解。这种迂回式的学习方法,使得温故不但能知新,而且还能更好地知故。
但是,也并不是说在初学时就不去思考任何问题。相反,勤于思考是学好数学必备的好习惯,“数学是思维的体操”,只有坚持思考才能掌握它的理论体系和逻辑关系。因此,应该在学习时掌握尺度,既要保证有充分的思考,但同时又不能过于钻牛角尖。
3.了解背景,理论式学习
数学分析与中学数学明显的一个差异就在于数学分析强调数学的基础理论体系,而中学数学则是注重计算与解题。针对这个特点,学习数学分析就应该注重建立自己的数学理论知识框架。
要学习理论体系,首先就应该知道为什么要建立这种理论,它的作用是什么,这就要了解数学的历史背景知识。比如“数学分析”在一开始就强调对-N语言的掌握,而它的产生则是由于数学史上的“第二次数学危机”引起的。众所周知,Newton创立的微积分,虽然在其应用方面取得了巨大的成就,但微积分在那时的理论基础是相当混乱的。Newton在求导数时先将无穷小量看成非零数作为分母,后来又将其视做零而舍去,因此这就导致了逻辑上的错误。为了给微积分奠定正确而坚实的基础,大数学家威尔斯特拉森在Cauchy的基础上提出了用-N语言的方法来推出极限和导数的概念。借助-N语言,可以十分清晰地展示出函数取极限的过程,而且在逻辑上也非常清楚严谨。这样,当了解了这些历史背景知识之后,就觉得学习-N语言是很必要的`,学起来也就自然得多了。除了了解背景帮助我们学习理论知识外,还要下苦功夫去学习。在接触了这些陌生的数学理论一段时间后,可能觉得看起来已经懂了,但其实自己不一定能真正掌握,尤其是那些证明中内含的逻辑关系最容易出错。所以在学习时,应该适当地记忆理论知识,有时还应该默写定理,只有通过默写才能发现自己在理论上的漏洞,才能培养出自己严密的理论、逻辑能力,这对以后的学习都是很有帮助的。
4.把握三个环节,提高学习效率
(1)课前预习
适当的预习是必要的,了解老师即将讲什么内容,相应地复习与之相关内容。如果时间不多,你可以浏览一下教师将要讲的主要内容,获得一个大概的印象,这可以在一定程度上帮助你在课堂上跟上教师的思路,如果时间比较充裕,除了浏览之外,还可以进一步细致地阅读部分内容,并且准备好问题,看一下自己的理解与教师讲解的有什么区别,有哪些问题需要与教师讨论。如果能够做到这些,那么你的学习就会变得比较主动、深入,会取得比较好的效果。
(2)认真上课
注意老师的讲解方法和思路,其分析问题和解决问题的过程,记好课堂笔记,听课是一个全身心投入听、记、思相结合的过程。教师在有限的课堂教学时间中,只能讲思路,讲重点,讲难点。不要指望教师对所有知识都讲透,要学会自学,在自学中培养学习能力和创造能力。所以要努力摆脱对于教师和对于课堂的完全依赖心理。当然也不是完全不要老师,不上课。老师能在课堂教学把主要思路,重点与难点交代清楚,从而使你自学起来条理清楚,有的放矢。对于教师在课堂上讲的知识,最重要的是获得整体的认识,而不拘泥于每个细节是否清楚。学生在课堂上听课时,也应当把主要精力集中在教师的证明思路和对于难点的分析上。如果有某些细节没有听明白,不要影响你继续听其它内容。只要掌握了主要思路,即使某些细节没有听清楚,也没有关系。你自己完全能够在这个思路的引导下将全部细节补足,最后推出结论。应当在学习的各个环节培养自己的主动精神和自学能力,摆脱对教师与课堂的过分依赖。这不仅是今天学习的需要,而且是培养创造能力的需要。
(3)课后复习
复习不是简单的重复,应当用自己的表达方式再现所学的知识,例如对某个定理的复习,不是再读一遍书或课堂笔记,而是离开书本和笔记,回忆有关内容,不清楚之处再对照教材或笔记。另外,复习时的思路不应当教师讲课或者教科书的翻版,一个可供参考的方法是采用倒叙式。从定理的结论倒推,为了得到定理的结论,是怎样进行推理的,定理的条件用在何处。这样倒置思维方式,更加接近这个定理的发现的思路,是一种创造性的思维活动。
5.掌握方法,全面式学习
(1)概念的学习方法是:①阅读概念,记住名称或符号;②背诵定义,掌握特性;③举出正反实例,体会概念反映的范围;④进行练习,准确地判断;⑤与其它概念进行比较,弄清概念间的关系。
(2)公式的学习方法是:①书写公式,记住公式中字母问的关系;②懂得公式的来龙去脉,了解推导过程;③验算公式,在公式具体化过程中体会公式中反映的规律;④将公式进行各种变换,了解其不同的变化形式。
(3)定理的学习方法是:①背诵定理;②分清定理的条件和结论;③了解定理的证明过程;④应用定理证明有关问题;⑤体会定理与逆否定理、逆命题的联系。有的定理包含公式,如中值定理、定理,它们的学习还应该同公式的学习方法结合起来进行。
6.数学分析解题方法
在学习数学分析过程中,更多的困难来自于习题。
首先,大家要重视基本概念和基本原理的理解和掌握,不要一头扎进题海中去。上面已经提及,提高解题能力重要途径之一是掌握好基本概念和基本方法。另一方面,因为数学分析题型变化多样,解题技巧丰富多彩,许多类型的题目并不是只要掌握好基本概念和基本方法就会作的。需要看一些例题,或者需要教师的指点。不要因为某些题目一时找不到思路而失去信心。
至于如何解题,很难总结出几个适用于所有题目的通用的方法。怎样提高自己的解题能力?除了天生的智力因素之外,解题能力首先取决于基本概念和基本原理的理解与掌握程度。所以,多下功夫掌握基本概念和基本原理,尽可能地多做题目,在记忆的基础上理解,在完成作业中深化,在比较中构筑知识结构的框架,是提高解题能力的重要途径。另外,做题要善于总结,特别是从不同的题目中提炼出一些有代表性的思想方法。
下面是数学分析课程中部分内容的一些解题方法。
(1)数列的极限
重点:了解定义,即证明方法。特别是Cauchy收敛准则。学会反证法的表述法。
解法:
a.利用压缩映像或者数学归纳法及放缩法的到极限存在。然后,假设极限等于c,解出c的具体的值。
b.有时可以直接解出数列的通项公式,然后带入求得极限。c.Stolz公式。
(2)求函数的极限重点:同1)的重点解法:
a.对于一元的情况比较简单,注意应用极限性质时的条件要求。
b.对于多元的时候,先处理一个未知数,再处理第二个。不断利用放缩法。或者换元。
c.具体要了解上下极限、上下确界的含义。注意,极限存在也是一个条件,且这个条件是很强的。
(3)函数的连续性
重点:了解定义,和基本证明的方法。了解什么是一致连续性.解法:
a.证明f(x)和g(x)有交点的题目,如果是连续的,可以用介值定理,否则可以用实数系的定理来证明。
b.有些题目证明f(x)符合某些性质,可以先证明整数、再证明有理数。最后利用连续性来证明所有的实数满足条件.
c.了解什么是一致连续,能举得出连续但不是一致连续的各种函数图像的例子,对于解题时很有帮助的
(4)导数和微分
重点:会求导的各种技巧,并了解定义求导数的方法。了解可导和连续的关系。
解法:
a.一元微分是十分简单的。二元以上的微分,要用链式求导,可能会很繁琐,但要做到滴水不漏。另外,学会换元的方法。
b.对于求最值的题目,首先试试初等方法,不行就用Lagrange乘子法。c.熟练掌握三种中值定理。遇到证明不等式,就想办法往这三个中值定理靠,构造辅助函数。实在不行,就构造f(x)=左边,g(x)=右边。证明f(x)-g(x)递增或者递减,然后再取边界的情况讨论一下。
d.熟练掌握L’Hospital法则,注意它和Cauchy中值定理的联系。注意它的条件必须要导函数连续。c.有些题目可以不用L’Hospital,直接用Taylor级数代余项的展开。可能更为简洁。
(5)积分
重点:熟练不定积分。和多元微积分的各种方法。了解积分中值定理.解法:
a.一元微积分比较简单。多元微积分,强调技巧。熟练掌握包括换元、Green(Stokes)定理、Gauss公式。并且注意,使用他们要求有闭曲线,或者封闭曲面。如果没有封闭的面记得要补上那部分.b.含参变量的积分,掌握莱布尼兹求导公式,剩下的就是求导的各种技巧了。I(a)=f(a);I’(a)=f(a)I(a)题目里面没有要求求出函数解析式,只要求一些特殊的值。找到I(x0),I’(x0)的关系,同具体参见试题。
c.积分不等式:积分中值定理或者利用求导的方法证明,基本同前面的导数的情况。
d.学会利用级数展开的方法求积分,并了解一些特殊的定积分的值。
e.了解绝对收敛和相对收敛的区别。
(6)一致连续和一致收敛
重点:充分了解一致收敛的含义。解法:
a.大部分题目会和积分或者求和联系起来,首先证明(内闭)一致收敛,然后用定义证明,将积分区间分成两部分,分别趋近于不同的极限.
b.证明函数组一致收敛:AD判别法(注意还有关于积分的AD判别法,参见陈传璋的版本,归根到底就是Abel求和公式和分部积分法),或者按照定义作。可能要分成几个区间,注意这一点,此时是证明对于任意的e,在这几个区间中寻找最小的d,使得差小于e。而不是证明分别在这几个区间中,一致收敛。
c.证明函数组不是一致收敛的。得到一个数列{xn},如果fn(xn)不趋近于f(x)的话就不是一致收敛的。
d.逐项求导和逐项积分要求一致收敛(内闭一致收敛也可以)。由于积分和求导都是极限的运算,这就是所谓的极限互相穿越的意思。
掌握一定量的题型,对于一些题目,直接知道用什么方法做。有些题目没有头绪的时候,可先尝试找反例,然后想想为什么反例不成功,从中可以的得到不少的启发。还有要充分了解函数的各种性质。做题的时候脑子里要有函数图像。另外,充分了解定义,特别是一致收敛。了解为什么有时候一致收敛才有题目的结论,如果条件收敛,是不是也有这样的条件。多想几次就有了深刻的了解。遇到不清楚的地方赶快看书,多看几遍书对于理解题目是非常有用的。再有,尽可能多地参考一些书籍会使你开阔眼界,增长知识,加深理解。每个人有不同的风格。不同的切入角度,会使你有时候读一些问题豁然开朗。
7.学会利用参考书
尽可能多地参考一些书籍会使你开阔眼界,增长知识,加深理解。每个作者有不同的风格,不同的切入角度,学会利用参考书会使你对一些问题豁然开朗。
看参考书有两种方式,其一是通读某一本书,不过大家往往没有太多的时间去通读教材之外的书。所以我建议大家采用第二种方法:以问题为中心,有选择地读参考书,具体地说就是:如果你对数学分析中的某一部分,或者某个问题有兴趣,希望多了解一些,作比较深入的研究,那么可以查阅几本书,看一看其他书上对这个问题是怎样论述的,在学习的基础上,自己可以做一个小结,在是自学的重要方式。好的辅导书对于帮助自己学习数学分析也是有用的,但是使用辅导书要注意方法,不要仅仅停留于逐个地看例题,看得懂不等于会做,想到思路不等于做得完全正确。如果你想扎扎实实地提高解题能力,就要认真地、独立地解题,通过自己动脑动手体会解题的思路、方法和技巧。
最后,就是平时没有事的时候多想想,想想一些定理,自己想不同的方法证明。想想如果没有其中的某些条件,定理是否仍然成立。
总之,掌握了一定方法,再加上自己的努力,必能学好数学分析这门课,为后继课程的学习打下扎实的基础。
数学学习方法9
学生的数学学习活动应该以探究为主,让学生在这一过程中经历知识的形成过程。不过要想将探究落到实处,让学生真正动起来,并不是一件容易的事。课堂上经常也将大量的时间留给学生,让他们进行各式各样的探究。当有部分学生已经知道问题的答案时,在他们的`带动下,探究活动就流于形式,效果甚微。
如何发挥探究的作用,在教学《长方形和正方形面积的计算》时,我进行了一些有益的尝试。因为还没有学到面积的计算,这几天学生都是利用数面积单位的方法来计算一些图形的面积,今天也不例外,一开课,我就让学生数一数我摆的图形的面积,以此激趣,学生也想摆,于是,要求学生用平方厘米块摆长方形,并以表格的形式记录下长、宽、面积,比较面积与长和宽的关系,初步感知面积与长、宽厘米数的关系。然后再提高思维含量,要求学生用12个平方厘米块摆想象中的长方形,并记录下有关数据,比较发现长方形面积与长、宽的关系。在这一过程中,由于有前面的基础,几组同学汇报后,不少学生就能根据长和宽的数值,猜出相应长方形的面积,几个心急的学生已经等不住了,直接说出了结果:长方形的面积=长×宽,随后进行了几轮验证,全班同学达成共识。一直到此时,学生才知道我们今天的教学内容。
做如此安排的理由其实很简单,我只想让学生的探究活动更有效,改变学生在课堂上简单操作工的角色,将动手和动脑二者合二为一,为此活动前我没有告诉新课的内容,避免操作流于形式,学生课堂的表现及学习效果证明我的想法、做法是正确的,这样探究活动才是有效的。
数学学习方法10
1、培养良好的学习习惯。
良好的学习习惯包括制定学习计划、课前预习、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
制定计划明确学习目的。合理的学习计划是推动我们主动学习和克服困难的内在动力。计划先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
课前预习是取得较好学习效果的基础。课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,上课更能专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。
及时复习是提高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的`新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。
独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”。
解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。
2、循序渐进,积极归因,防止急躁。
由于高一同学年龄较小,阅历有限,为数不少的同学容易急躁。有的同学贪多求快,囫囵吞枣,想靠几天“冲刺”一蹴而就。学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。让高一同学学会积极归因,树立自信心,如:取得一点成绩及时体会成功,强化学习能力;遇到挫折及时调整学习方法、策略,更加努力改变挫折,循序渐进,争取在高考成功。
3、注意研究学科特点,寻找高中数学学习方法。
数学学科担负着培养运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。其中运算能力的培养一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行,教学中进行一题多解思考,优化运算策略;逻辑思维能力是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高,使用归类、网联策略。
区别好几个概念:三段式推理、四种命题和充要条件的关系;空间想象能力对平面知识的扩充既要能钻进去,又要能跳出来,结合立体几何,体会图形、符号和文字之间的互化;运用所学知识分析问题、解决问题的能力,就是要重视应用题的转化训练,归类数学模型,体会数学语言。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理,方法因人而异,但学习的四个环节预习、上课、作业、复习和一个步骤归纳总结是少不了的。
数学学习方法11
多做练习。
要想学好数学,必须多做练习,但有的同学多做练习能学好,有的同学做了很多练习仍旧学不好,究其因,是“多做练习”是否得法的问题,我们所说的“多做练习”,不是搞“题海战术”。后者只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广,等等,还要真正掌握方法,切实做到以下三点,才能使“多做练习”真正发挥它的作用。
必须熟悉各种基本题型并掌握其解法。
课本上的每一道练习题,都是针对一个知识点出的,是最基本的题目,必须熟练掌握;课外的习题,也有许多基本题型,其运用方法较多,针对性也强,应该能够迅速做出。
许多综合题只是若干个基本题的有机结合,基本题掌握了,不愁解不了它们。
在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。
数学是思维的世界,有着众多思维的技巧,所以每道题在命题、解题过程中,都会反映出一定的思维方法,如果我们有意识地注重这些思维方法,时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时在解这一类的题目时就易如反掌了;同时,掌
握了更多的思维方法,为做综合题奠定了一定的基础。
多做综合题。
综合题,由于用到的知识点较多,颇受命题人青睐。
做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。
“多做练习”要长期坚持,每天都要做几道,时间长了才会有明显的.效果和较大的收获,相信大家是没问题的吧。
中小学数学公式大全之追及问题
同学们认真看看,下面是老师对数学中关于追及问题公式的讲解,希望同学们很好的掌握。
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
相信上面对数学中追及问题的相关公式知识已经很好的掌握了吧,希望同学们在考试中取得优异成绩哦,加油吧!
中小学数学公式大全之流水问题
下面是对数学中,关于流水问题的公式内容讲解,相信同学们会从中学习的更好的吧。
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
以上对数学中流水问题知识的内容讲解学习,希望可以给同学们的学习很好的帮助,预祝大家在考试中取得优异成绩哦。
数学学习方法12
俗话说,“习惯成自然”,良好的学习习惯对学习有着重要的促进作用。比如:课前预习新课的习惯,可以在教师教授新课之前大致了解课程内容,有助于把握重点带着问题听课,从而提高课堂学习的质量;作业认真书写的习惯,不仅可以保证作业的美观整洁,提高作业的质量,还能够培养一丝不苟的严谨作风。反之,不良的习惯也会成为学习进步的绊脚石,不少成绩比较差的学生,脑子都不笨,但往往上课心不在焉、作业马马虎虎、做事丢三拉四。
1、抓住课堂四十五分钟,学会听课
听课也有不少学问。学会听课,对初中生的学习进步至关重要。课堂学习是学习的最主要环节,四十五分钟课堂学习效益的高低,某种程度上决定着学生学习成绩的好坏。也许有的家长和学生会想,每个人都有一双耳朵,听课谁不会呀。其实不然,听课也有不少学问呢。学会听课,对初中生的学习进步至关重要。 首先,要集中注意听。心理学研究表明:注意能够帮助我们从周围环境所提供的大量信息中,选择对当前活动最有意义的信息;同时,使心理活动维持在所选择的对象上,还能使心理活动根据当前活动的需要作适当的分配和调整。所以,注意对于学习尤为重要。集中注意、专心致志才能学有所得;心不在焉、心猿意马往往一无所获。
其次,要带着问题、开动脑子听。有些同学听课不善于开动脑子积极思维,看似目不转睛,但一堂课下来心中却不留痕迹。俗话说:疑是一切学习的开始。带着问题听课,就能使听课有比较明确的目标和重点,增强听课的针对性,从而提高课堂学习效率;带着问题听课,还能促使自己积极动脑,紧跟老师的教学节奏,及时理解和消化教学内容。
再次,要积极举手发言,认真做好笔记。教与学应是双向交流、互相促进的。学生在课堂中,应该积极主动地参与教学。积极举手发言就是一种参与,它既能较好的促使自己专心听课、动脑思维,还能锻炼语言表达能力。
“不动笔墨不读书”、“好记性不如烂笔头”,都是说边学习边动笔的好处。笔记不仅是学习新知识的方法,也是复习旧知识的依据,同时我们还可以从笔记中发现新的问题。很多家长感到对孩子在学校里的学习无从了解和把握,其实,每天查看一下他们的课本和笔记,就是一种好方法。
2、合理安排时间,有计划地进行学习
时间是个常量,需要合理安排;学习是艰苦的劳动,也是有规律可循的。
(1) 几个需要在老师家长引导下需要处理好的关系。
玩与学的关系,主与次的关系,发展兴趣和打好基础的关系。这里,家长必须帮助指导孩子处理好以下几个关系:
首先是处理好玩和学的关系。学习是初中学生的主要任务,主要的时间和精力自然应该花在学习上。但是,学习又不是初中学生生活的全部,初中学生精力充沛、兴趣广泛,适当和有益的活动(包括“玩”)也是他们生活的重要组成部分。有些家长只注重孩子的学习,把孩子的闲暇时间安排得严严实实,不让孩子有娱
乐和活动的时间;有些家长却对孩子的课余活动放任自流,这都不利于学生的学习进步和全面发展。要指导学生学会劳逸结合,学习时专心致志、静得下心来;活动时生龙活虎、放得开来。学习和玩不仅是不矛盾的,而且可以相得益彰。 其次是处理好主和次的关系。初中阶段学习知识的密度大大增加、学习知识的广度也大大增加,这就需要学生能够处理好各种知识内容之间的.主次关系。学科之间有差异,基础学科、工具学科是初中学习的重中之重,直接影响其他学科的学习,一定要学得扎实。学科内容本身也有主次,概念、原理及其形成是主,知识的灵活运用是主,自己学习的薄弱环节是主,在学习的过程中应该花更多的时间和精力。
再次是处理好发展兴趣和打好基础的关系。兴趣是学习动力产生的直接原因,孩子对哪一门功课感兴趣,这门学科也就往往能够取得比较好的成绩。但是,初中学生思想和心理还不够成熟,兴趣也往往不够稳定,有些孩子对兴趣的理解也比较片面。表现在学习方面主要有以下情况:一会儿喜欢这,一会儿喜欢那,见异思迁,结果什么也没学好;光凭兴趣学习,自己认为不感兴趣的就敬而远之,结果就成了“跛脚”。其实,初中的学习是整个人生学习的基础,首先要学好每一门功课,初中学习过了关,高中阶段就可能比较顺利;即便是通常被认为是“副课”的历史、地理、生物等学科,实际上都是将来社会生活中必不可少的。所以,培养兴趣必须以打好基础为前提。
(2) 遵循记忆规律安排学习
遗忘呈现出“先快后慢”的规律。这规律给我们指导孩子的学习提供了重要的依据。
最早用实验方法研究记忆规律的心理学家艾客浩斯发现,学习刚结束,遗忘就相伴开始了。第二天忘得最多最快,第二天需要复习的时间较长,如果第二天复习了,第三天就遗忘少了,需要复习的时间也较短;如果第三天复习了,第四天遗忘得就更少了??。总之,遗忘呈现出“先快后慢”的规律。这规律给我们指导孩子的学习提供了重要的依据。
及时复习。初中生学习存在一种普遍的倾向,就是随学随丢,做完教师布置的作业了事。到考试时,临时抱佛脚,从头开始复习。要改变这种前学后忘,到后面问题成堆的现象,关键要做到“及时”,特别是对于那些字母符号、公式、外语单词等意义性不强的学习材料,一定要做到趁热打铁,及时复习。这好比在堤坝塌方之前,及时加固,要比垮了再修,付出更小的努力。
分散学习。“及时复习”固然重要,但也不能“一劳永逸”。学习的规律告诉我们,分散复习比集中复习效果更好。以学习外语单词为例,如果当天学习了20个单词,一位同学在当天晚上集中复习一小时,加以巩固;另一位同学当晚复习半小时,第二天再复习15分钟,第四天复习10分钟,一周后再复习5分钟。结果后者记忆的效率明显高于前者。利用分散学习的道理,家长可以指导孩子采用“卡片”复习的方法。例如复习英语单词,把卡片分为左右两边(或正反两面),分别写上中文词义和英语单词,然后自制七个袋子(或信封),每袋内放置一周中某一天应复习的卡片,复习时,用手遮住一面,回忆另一面的内容。当天复习以后,就放入隔天的袋里,以此往复有规律地交替复习,效果十分明显。其他如数学公式等各种知识均可用卡片来进行复习。
过度学习。我国著名科学家茅以升在83岁高龄时,仍能熟练背诵圆周率小数点后一百位,别人问他有什么好的记忆方法,他回答说;“说起来很简单:重复!重复!再重复!”在学习中,我们都有这样的体会,我们记忆某些内容,到
刚能勉强背诵时就停止了学习,结果过了不久就不会准确回忆。如果能“一鼓作气”,再多学几遍,效果就大大提高;而且这样熟练的记忆,保持时间也特别长久,这就是“过度学习”。一般而言,过度学习保持在50%-100%范围内。举例子说,背诵一首唐诗,如果用十遍刚好能基本背出,那么最好能再读3-6遍,这样就能烂熟于心,倒背如流了。过度学习要与及时学习和分散学习有机结合起来。
3、形成适合自己的有效的各科学习方法
因“科”制宜,才能有的放矢地学好各门功课。初中阶段的学习,学科逐渐细化,各门学科都有自己明显的特点和规律。理科类数学重抽象思维,要善于融会贯通;文科类语文外语等重知识积累,要善于联系实际。只有把握各学科的特点,因“科”制宜,才能有的放矢地学好各门功课。
数学学习方法13
预习是课前对要讲的数学内容进行了解,以便掌握听课的主动权。由于预习是学生独立学习的尝试,对学习内容是否正确理解,能否把握其重点,关键等,都能在听课中得到检验,矫正,有利于提高我们的学习能力和养成自学的习惯,所以它是数学学习中的重要一环。数学学科具有很强的'逻辑性和连贯性,新知识往往是建立在旧知识的基础上。因此,预习时就要找出学习新知识所需的知识,并进行回忆或重新温习,一旦发现旧知识掌握得不好,甚至不理解时,就要及时补上,克服因没有掌握好或遗忘带来的学习障碍,为顺利学习新内容创造条件。否则由于掌握旧知识的缺陷,从而造成学习的困难。
预习时,一般采用边阅读,边思考,边书写的方式,把内容的要点联系划出来,写下自己的看法或弄不懂的地方与问题,从而确定听课时要解决的主要问题,以提高听课效率。在时间的安排上,预习一般放在复习和作业之后进行,即做完功课后,把下次课要学的内容看一遍,其要求则根据当时具体情况灵活掌握。如果时间允许,做做练习题;时间不允许,可以少思考一些问题,不必强求一律。 根据课程设置七年级的同学在预习上应该具备更多的时间,所以同学们在初中刚开始一定要养成预习的学习习惯。
数学学习方法14
1、合理安排学习计划
根据小升初的形势,六年级寒假就应该是综合复习的时候。这样从三年级暑假开始算起,到六年级寒假只有两年半的时间。我们建议学生在两年半时间里一定要扎实学习奥数知识。整个学习过程要按梯度进行,切莫一味做难题,根据学生学习情况,一步一个台阶。兼顾竞赛、仁华、重点学校培训班,早做规划,早做准备。
2、巩固基础知识
由于还有一年就要转入小升初的复习阶段,所以五年级之前的奥数基础内容一定要掌握好。之前的奥数内容以应用题、计算为主。对于基本应用题建议利用方程的方法求解,可以达到事半功倍的效果。计算问题需要对基本的简算方法了如指掌,因为这些方法也是以后分数计算和综合混合运算的基础。
3、多做专题练习
五年级是接触专题最多的时期,小学阶段的重要知识点和难点也都集中在这个阶段。其中数论、行程问题、排列组合是重中之重,如果这几个专题掌握的不好,想上一个理想的中学是非常困难的。做专题练习也不能光看做了多少道题,要保证练一道会一道,真正的理解并掌— —
握所做的'题目,日积月累,几个重点难点也就不再是老大难问题了。
4、选择合适的班型
秋季的课程将继续依从《新概念奥林匹克丛书》的安排,实行科学的数学课程体系。该体系由《数学思维训练导引》已出版、《数学思维训练课本》未出版和《数学思维训练教师用书》未出版三个部分组成。丛书有很强的系统性、趣味性、实用性、性。它的难度由低到高分为三个层次:兴趣篇、拓展篇、超越篇,分别对应新华数课本班、新华数竞赛班和新华数尖子班。无论是注重打牢奥数基础的学生,还是希望在奥数竞赛上摘金夺银的学生,在这里都可以找到适合你的课程。经过暑假的学习,你一定对自己的实力和潜力有所了解,在秋季的学习中,学生和家长可以根据自身的实力,选择合适的班型。
5、积极参加各种竞赛
尽早参加数学竞赛,能够帮助孩子开阔眼界,拓展思维。另外熟悉比赛题型,为五、六年级在重要竞赛中获奖无疑打下了很好的基础。
数学学习方法15
1.提高数学解题的能力
数学解题能力体现在知识合理联想与正确运用,严谨的逻辑思维和推理论证,正确、有序、简洁的运算,有效的空间想象和准确表现,自然的数学应用和灵巧的创新意识。《考试说明》中的五种能力要求是图形题的空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力。所有这些方面都必须步步到位、强化训练、渐次提升。如何做呢?面对一个数学题,我们要思考:
1.本题还有没有其它解法,哪个方法更好?(一题多解,发散思维);
2.本题用到了哪些基础知识、基本思想、方法?是如何运用的?(升华思维,提高境界);
3.通过比较书本或老师提供的参考答案,自己的解答有何优点和缺点?
2.及时进行自我检测,优化思维品质
每复习完一个单元后,及时组织单元小综合检测,代数、立体几何、解析几何复习完成后作单科小综合训练。其目的是进一步巩固和熟练所复习过的知识,训练一般由本年级教师自己命题,并控制其难度,着眼于基本内容、基本方法的考查,是一种过关性的训练。此外,高三数学第一轮复习中学生应做好以下工作:①默写本章主要概念、定理、公式,阐述其内容、本质;②复述重要定理的证明思路;③回忆本单元的主要题型、解法和技巧,总结出一些具有普遍意义的思路、方法,对同一类问题的解题方法要认真体会,学会“一把钥匙开一把锁”
3.合理分配学习时间
对于数学学科要根据不同的阶段来区别对待。在高三的前期,就是在高一、高二的.时候,必须给数学分配比较大的学习时间,因为在高考,不管是文科或者理科,数学都是一门拉分的科目,分配学习时间的时候,必须有所倾斜,而在高三学期的后半学期,复习时间以每半个小时为宜,让自己不至于手生,做题的时候,有非常大的敏感度,能够保持一个反应非常快的状态,花半个小时差不多了,不要花太多的时间,否则就会挤占复习文综的时间了。
【数学学习方】相关文章:
数学学习技巧:学习数学就是学习解题10-07
数学的学习技巧10-08
数学学习总结04-29
如何学习初中数学10-22
数学学习技巧06-21
学习数学的高效方法11-17
数学的学习方法11-15
初中数学的学习技巧10-08
数学全年学习规划10-26
初中数学的学习总结10-08