学习方法

数学学习方法

时间:2024-07-20 12:00:32 学习方法 我要投稿

【合集】数学学习方法

  在平日的学习、工作和生活里,大家都意识到了学习的重要性,掌握学习方法,能够帮助大家节省学习时间,提高学习效率。那么,都有哪些实用的学习方法呢?下面是小编收集整理的数学学习方法,希望对大家有所帮助。

【合集】数学学习方法

数学学习方法1

  第一,心理准备。所有同学必须做好心理准备,迎接高中艰苦的学习生活。初中数学和高中数学有着非常明显的区别。初中数学课程主要以具体的数字,符号,函数等为研究对象,学习一些基本的数学运算,掌握基本数学方法,研究一些基本的数学性质,相对比较容易理解,为高中数学的学习打下基础。而高中数学课程以抽象符号,函数为载体,深入研究一些数学性质。由于高中课程抽象,学生理解难度较大。从考试的数据也能明显的看出这一点:中考数学满分120分,由于题目相对容易,基础题及单一知识点题目相对较多,所以高分人数相对较多,110分以上学生大有人在。而高考作为选拔性考试,有明确的难度要求,近年来,满分150分的高考数学试卷,北京市的平均分保持在80~90分之间,可见难度之大与中考不同。

  所以,许多初中成绩优秀的同学在高中成绩下滑严重,自信心受到打击,对学习失去信心,丧失兴趣。所以,同学们必须做好心理准备,迎接新的挑战。

  第二,知识准备。为了更好的完成初高中数学的衔接。从知识上,同学们应做到以下两点:首先,应该对初中知识进行一遍复习,尤其是一元二次方程和函数两大部分内容,这些内容是高中数学的基础,所以必须做到熟练掌握。其次,预习高中上学期所学内容,提前接触高中知识。高中知识比较抽象,相对难以理解。并且课本相对容易,题目相对综合,所以在暑假,同学们应该起码做到理解课本内容,以便在开学之后更好的学习,完成更深入的题目。高一上学期所学的函数部分,是整个高中数学和核心,也是高考的重点,良好的掌握可让同学们受益三年。

  第三,状态准备。这个暑假对于同学们来讲相对时间比较长。必要的放松必不可少,但是在开学之前,同学们应该及时调整状态,以便以一个良好的状态进入到高中的学习。我建议同学在开学(军训)前20天,大概就是8月之后,不要组织出游活动。保证每天有一定的学习时间,适应开学后的生活。从数学角度来看,应该每天看看高中课本,并且做一定量的练习题目。

  高中的学习虽然很艰苦,很有挑战性,但是只要同学做好充分的准备,一定可以顺利的完成初高中的衔接,跟上高中学习生活的节奏,取得良好的成绩。

  有关提高数学的思维想象力的推荐

  一、利用计算机绘制生动、形象的立体图形,使学生通过对直观图形透彻的观察,理解抽象的理论概念。

  在多面体与旋转体的体积这一章中,主要内容是柱、锥、台、球四种体积公式的推导,关键是对立体图形分析与理解。

  为了帮助学生在观察图形的基础上从感性认识向理性认识过渡,我们运用我校的计算机设备,与专职电脑编程人员密切合作,设计编制了图形软件来辅助教学。我们先根据讲解的需要设计出基本图形,再配合编程人员利用计算机先进的绘图系统进行绘制。在绘制过程中,我们利用画面的连续移动构成动画来体现切割、旋转、移动等动态动作。在讲解祖原理时,其主要内容为:两个等高的几何体,若被平行于底的平面截得的两个截面面积相等,则这两个几何体的体积相等。为了体现其中的关键点:两个几何体任意位置的平行截面相等,我们绘制了多幅不同位置截面的图形,并将截面涂上鲜明的色彩,按顺序编排好,连续播放时即形成了截面上下移动的动画效果,使学生形象地认识到不同位置的平行截面处处相等。又如在讲解锥体的体积公式推导时,由于要将三棱柱分割成三个三棱锥,图形变化较大,学生不易理解,因此我们将切割过程从头至尾展现给学生,在讲解时又将所要比较的两个三棱锥逐步恢复到切割前的状态,再分开。随着分开一复原一再分开的移动过程,学生们清楚自然地得出了所要推证的结论,同时也使得教师的讲解轻松而且顺理成章。有了锥的体积公式,我们又进一步依据大锥被平行于底的平面截去一小锥得到台体的思路,利用已推导出的锥体体积公式去推导台体的体积公式。我们利用动画效果使一平面进行移动呈现出动割大锥的过程,即让平面从大锥锥体某处以平行于底的方式插入,从另一侧抽出,留下切割的痕迹,进而将截得的小锥移到其它位置,将剩下的台体展现给学生。这一过程的加入,在学生的头脑中非常深刻地留下了台体与锥体的联系,可以说是过目不忘,收到了很好的效果。

  二、充分利用计算机绘图多功能的优越性,从多方位、多角度、多侧面描绘立体图形,解决平面立体图形与真实立体图形在视觉上的差异。

  我们在平面上绘制立体图形就要考虑到视觉差异的问题。比如,在纸上画一个立方体,它的`某些面就必须呈平行四边形,才给人一种体的感觉,而实际上立方体的各个面均为正方形。为了不使学生把直观感觉当作概念,我们设计了一些旋转变形动作。在讲球的体积公式时,应用祖原理,找到了一个与半球体积相等的几何体,即与半球等高的圆柱中间挖去一个圆锥,证明的关键是推导出二者在等高处的平行截面面积相等。从图上看,这两个截面分别为椭圆和椭圆环,而实际形状应为圆和圆环。为了更形象地说明问题,我们将这两个截面设计为从原位置水平移动出来,再水平旋转90度使其成为竖直放置,这样两个截面就恢复了实际形状。同时我们又让环形截面中的小圆逐渐缩小至一点,使圆环变成与另一截面大小一样的圆,通过二者色彩的互换闪烁,使学生形象直观地感觉到是两个面积相等的截面,然后通过理论证明它们的面积相等。这样,从直观到理论两方面的配合,加深了学生的理解,使得这个难点顺利解决。

  三、利用多媒体辅助教学,引导学生通过观察图形主动积极地去寻找解题思路。

  现代教学论的思想核心是确认教师在教学中的主导地位的同时,认定学生在学习活动中的主体地位。因此教学的最终目的是启发和调动学生的主动性、积极性,让学生会学.在多媒体教学的尝试中,为了打破传统教学中的老师讲,学生听的习惯,我们将课上的习题从一个正方体中,如图那样截去四个三棱锥后,得到一个正三棱锥,求它的体积是正方体体积的几分之几根据题意设计成动画情景。一个正方体依次被切去了四个角,把切去的部分放到屏幕的四角,中间剩下一个三棱锥,求三棱锥的体积。学生根据画面的演示,立即想到剩余部分是由整体减去切掉的。有了思路后,再从画面中清晰地推导出每个角的体积是整体的1/6,进而得出所求体积为整体的1/3.这样,通过画面的演示,不需教师讲解,学生自己就可以找到求解方法,同时在无形中途立了间接求体积的概念。通过多媒体教学,我们发现它具有不可比拟的优越性。首先,多媒体教学使课上教学省力;它能直观、生动、形象地进行教学,有利于引起学生的注意力,充分调动学生的积极性,并且使教师的板书量大大减少。其次,多媒体教学增大了课容量,加强了知识间的连贯性。由于多媒体教学直观、生动、形象地突出了教学重点,浅化了教学难点,使学生理解知识的进度加。

数学学习方法2

  数学是一门思维性、逻辑性、连贯性很强的学科,它是符号、数字、推理与运算、图形的结合,学生在学习中注意力往往容易分散,教师如果不注意对学生兴趣的培养,则极容易使学生觉得枯燥无味,产生厌学情绪,兴趣是最好的老师,是行为的原动力,托尔斯泰曾说:成功的教学需要的不是强制,而是激发学生的兴趣。“一个人对学习有了兴趣,就能全身心的投入学习中,一定要注意采用多种教学手段去培养和激发学生的兴趣”。其中学习方法的掌握,也能促进学生学习的'兴趣。古人云“学而时习之”“温故而知新”对今天的学生来说仍是很有用的学习方法,复习时,归纳总结我认为是其中重点之一,掌握归纳的内容是关键,及时的归纳能使学习效果显著,事半功倍。

  归纳的内容包括以下几种:

  一、归纳知识

  尤其是数学知识前后联系紧密,且知识呈现一种上升趋势,若能归纳好,有关知识就能熟练应用。例如:函数内容,八年级内容中,先讲函数定义,然后学习正比例函数,一次函数,进而研究函数的图像与性质,点坐标与解析式的关系,确定解析式的方法,为九年级学习的反比例函数,二次函数提供了研究的方法。

  二、归纳解题方法

  解题方法虽然很多,但总有一些常用方法,例如:证明“线段相等”是很常见的题型,常见方法有:中点定义,等量代换,等量加减,全等三角形对应边相等,等角对等边,轴对称性质,中心对称性质,平行四边形的对边相等,矩形对角线相等,等腰梯形对角线相等,角平分线性质,线段垂直平分线性质等,然后总结常见方法有:全等三角形对应边相等,平行四边形对边相等,矩形对角线相等,等角对等边,线段垂直平分线性质等,这样做题中就会比较容易确定解题方法。

  三、归纳几何内容分析问题的方法

  数学问题的解决,分析问题最关键,综合法最常用,另外还有根据经验猜测法,例如:“五角星形状图形五个内角之和是180度”,则从三角形内角和是180度考虑,把五个内角之和转化为某一个三角形的内角和。

  四、归纳易错易混知识及考点

  学生对于知识的掌握局限于当堂学会,对于作业中出错的问题不重视,以致于在考试中错误的问题仍得不到修正,所以应该让学生学会归纳易错题型及知识点。例如在学习一元一次方程解法中,对于每一步需要注意的问题都要进行归纳,对于去分母这一步要注意每一项都乘以公分母,一定不要漏项,尤其是无分母项一定不要漏乘;另外分子要当做一个整体来对待,必要时要对分子加括号,尤其分子是一个多项式时要加括号,对于去括号这一步要注意符号问题,如果括号前是负号一定要各项都改变符号,不要漏掉后面的项,对于移项这一步要注意,以等号为界限,从等号一边移到另一边才需要变号,只在等号一边交换位置而不过等号,一定不要变号,合并同类项这一步要注意系数相加减中的减法,减去一个数等于加上这个数的相反数,一定要按这个要求做,系数化为一这一步要注意在结果中系数做的是分母,还要注意符号问题一定不要掉符号。

  每章节的考点题型也必需要归纳,例如:分式这一章考点有分式的性质,分式有意义的条件,分式的值为零的条件,分式的加减乘除混合运算,分式的化简求值等考点,另外分式的化简求值是中考必考题型。

  新课标要求下的学生不但要学习,而且要学会学习,学会合作,学会交流,学会创新,学会发展,更要为终身学习储备学习方法。

  所以在教学中要注意培养学生的学习方法,尤其是归纳总结要培养。作为教师我们的任务不仅要很好的传播和学习已经形成了知识,而且要注意培养学生独立观察,尽量让学生动脑思考,学生动口表述,尽量让学生发现问题,归纳总结问题,一定要体现教师主导作用,学生主体地位。

数学学习方法3

  数学学习是很多小学生和家长最为头疼的问题,很多小学生学习数学不好,面对这一难题,小编仅根据自己的亲身经历分析学习数学的方法:

  一、学会主动预习

  新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

  二、在老师的引导下掌握思考问题的方法

  一些学生对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题。如有这样一道题让学生解“把一个长方体的高去掉2厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”同学们对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师的引导下逐渐掌握解题时的思考方法。这道题从单位上讲,涉及到长度单位、面积单位;从图形上讲,涉及到长方形、正方形、长方体、正方体;从图形变化关系讲:长方形→正方形;从思维推理上讲:长方体→减少一部分底面是正方形的长方体→减少部分四个面面积相等→求一个面的面积→求出长方形的长(即正方形的一个棱长)→正方体的体积,经老师启发,学生分析后,学生根据其思路(可画出图形)进行解答。有的学生很快解答出来:设原长方体的底面长为X,则2X×4=48得:X=6(即正方体的棱长),这样得出正方体的体积为:6×6×6=216(立方厘米)。

  三、及时总结解题规律

  解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:

  (1)本题最重要的特点是什么?

  (2)解本题用了哪些基本知识与基本图形?

  (3)本题你是怎样观察、联想、变换来实现转化的?

  (4)解本题用了哪些数学思想、方法?

  (5)解本题最关键的一步在那里?

  (6)你做过与本题类似的题目吗?在解法、思路上有什么异同?

  (7)本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,学生解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。

  四、拓宽解题思路

  在教学中老师会经常给学生设置疑点,提出问题,启发学生多思多想,这时学生要积极思考,拓宽思路,以使思维的广阔性得到较好的发展。如:修一条长2400米的水渠,5天修了它的20%,照这样计算剩下的还需几天修完?根据工作总量、工作效率、工作时间三者的关系,学生可以列出下列算式:

  (1)2400÷(2400×20%÷5)—5=20(天)

  (2)2400×(1—20%)÷(2400×20%÷)=20(天)。

  教师启发学生,提问:“修完它的20%用5天,还剩下(1—20%要用多少天修完呢?”学生很快想到倍比的方法列出:

  (3)5×(1—20%)÷20%=20(天)。如果从“已知一个数的几分之几是多少,求这个数”的.方法去思考,又可得出下列解法:5÷20%—5=20(天)。

  再启发学生,能否用比例知识解答?学生又会想出:

  (4)20%∶(1—20%)=5∶X(设剩下的用X天修完)。这样启发学生多思,沟通了知识间的纵横关系,变换解题方法,拓宽学生的解题思路,培养学生思维的灵活性。

  五、善于质疑问难

  学启于思,思源于疑。学生的积极思维往往是从有疑开始的,学会发现和提出问题是学会创新的关键。著名教育家顾明远说:“不会提问的学生不是一个好学生。”现代教育的学生观要求:“学生能独立思考,有提出问题的能力。”培养创新意识、学会学习,应从学会提出疑问开始。如学习“角的度量”,认识量角器时,认真观察量角器,问自己:“我发现了什么?我有什么问题可以提?”通过观察、思考,你可能会说说:“为什么有两个半圆的刻度呢?”“内外两个刻度有什么用处?”,“只有一个刻度会不会比两个刻度更方便量呢?”,“为什么要有中心的一点呢?”等等,不同的学生会提出各种不同的看法。在度量形状如“V”时,你可能会想到不必要用其中一条边与量角器零刻度线重合的办法。学习中要善于发现问题,敢于提出问题,即增加主体意识,敢于发表自己的看法、见解,激发创造欲望,始终保持高昂的学习情绪。

  六、归纳的思想方法

  在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的思想方法。

  七、符号化的思想方法

  数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。符号化思想在小学数学内容中随处可见,数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。

  八、统计的思想方法

  在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法小学数学除渗透运用了上述各数学思想方法外,还渗透运用了转化的思想方法、假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等。从教学效果看,在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。

  总结一下:

  (1)细心地发掘概念和公式;

  (2)总结相似的类型题目;

  (3)收集自己的典型错误和不会的题目;

  (4)就不懂的问题,积极提问、讨论;

  (5)注重实战(考试)经验的培养。

数学学习方法4

  伟大哲学家恩格斯说“数学是研究现实世界的数量关系和空间形式的科学”。数学更是一门艺术,是人类思维的自由创造。数学学习方法指导,是数学教学理论研究和实践中的一个重要课题。学生在学习内容的同时,还要检查、分析自己的学习过程,要进行自我检查、自我校正、自我评价。学法指导的目的,就是最大限度地调动学生学习的主动性和积极性,激发学生的思维,帮助学生掌握学习方法,培养学生学习能力。学会学习就是主动学习和善于学习。它不仅指学习者学习目的明确、学习动机强烈、学习态度积极,学习中能克服困难并能持之以恒坚持;更强调学习者要善于运用灵活多样的学习方法和策略,将思考与创新精神贯穿于具体的学习活动及整个学习过程中,从而实现有效学习和创造性学习。

  高一是数学学习中承前启后的一个关键时期。要学好数学,首要任务就要对数学的学科特点、学习过程中的规律性和方法性有一个全面的认识。

  一、初高中数学学科特点的差异

  1、数学语言更加抽象化。

  初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言等。

  2、思维方法向理性层次跃迁。

  高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了更高的要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需逐步形成辩证型思维。

  3、知识内容在量上剧增。

  高中数学与初中数学又一个明显的`不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。这就要求第一,要做好课后的复习工作,记牢大量的知识;第二,要理解掌握好新旧知识的内在联系,使新知识顺利地同化于原有知识结构之中;第三,因知识教学多以零星积累的方式进行的,当知识信息量过大时,其记忆效果不会很好。因此要学会对知识结构进行梳理,形成板块结构。如表格化,使知识结构一目了然;类别化,由一例到一类,由一类到多类,由多类再到统一,使几类问题同构于同一知识方法;第四,要多做总结、归类,建立主体的知识结构网络。

  二、不良的学习状态

  1、学习习惯因依赖心理而滞后。

  许多学生进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权。表现在不制定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。

  2、思想松懈。

  有些学生把初中的那一套思想移植到高中来。他们认为自己在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中,因而认为读高中也不过如此,高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。存有这种思想的学生是大错特错的。中考的题目并不具有很明显的选拔性,但高考就不同了,目前我国还不可能普及高等教育,高等教育可以说还是属于一种精英教育,只能选拔一些成绩好的学生去读大学,因此高考的题目具有很强的选拔性,如果心存侥幸,想在高三时再发奋一、二个月就考上大学,那到头来就会后悔莫

  及。

  3、学不得法。

  老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分学生上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,机械模仿,死记硬背,还有些学生晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

  4、不重视基础。

  一些“自我感觉良好”的学生,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”。到考试中不是演算出错就是中途“卡壳”。

  5、进一步学习条件不具备。

  高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数值的求法,实根分布与参数变量的讨论,三角公式的变形与灵活运用及实际应用问题等。有的内容还是初中教材都不讲的脱节内容,如不采取措施,查缺补漏,就必然会跟不上高中学习的要求。

  三、 科学地进行学习

  高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动学习为主动学习,才能提高学习成绩。

  1、培养良好的学习习惯。

  良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习等多个方面。

  ① 制定计划。

  制定计划,明确学习目的,合理安排时间,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨练学习意志。

  ② 课前自学。

  这是上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。

  ③ 专心上课。

  “学然后知不足”,这是理解和掌握基本知识、基本技能和基本方法的关键环节。课前自学过的学生上课更能专心听课,他们知道什么地方该详细听,什么地方可以一带而过,该记的地方才记下来,而不是全盘抄录,顾此失彼。

  ④ 独立作业。

  这是掌握独立思考,分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的必要过程。这一过程也是对学生意志毅力的考验,通过作业练习使学生对所学知识由“会”到“熟”。

  ⑤ 及时复习系统小结。

  这是高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。 小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。

  2、循序渐进,防止急躁。

  由于学生年龄较小,阅历有限,不少学生容易急躁。有的学生贪多求快,囫囵吞枣。有的想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。许多优秀的学生能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了相当熟练的程度。

  3、注意研究学科特点,寻找最佳学习方法。

  数学学科担负着培养运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。总之,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,课上与课下结合,学法与教法结合,教师指导与学生探求结合,统一指导与个别指导结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法。

数学学习方法5

  很多数学零基础的同学想跨专业考研,最终因为数学这一拦路虎而放弃。大家都存在此类疑问,没有基础能学好数学吗?事实上只要考生端正心态,将基础知识打牢固,考研是没有问题的。下面说一下这类考生该如何着手准备复习。

  高等数学:高等数学的分值重,是三门课程中最为重要的一科,在学习高数的过程中,要注意每种题型的训练,重点是总结,把在基础阶段不懂的知识点,强化记忆,然后系统地梳理知识点。认真研读大纲要求,在复习的过程中明确考试重点,充分把握重点。

  高数第一章不定式的极限,考生要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、两个重要极限、洛必达法则等等,还要总结求极限过程中常用到的转化、化简的方法。对函数的连续性的探讨也是考试的重点,这要求考生要充分理解函数连续的定义和掌握判断连续性的方法。对于导数和微分,其实重点不是给一个函数求导数,而是导数的定义,也就是抽象函数的可导性,理清连续、可导、可微之间的关系,分清一元与多元的`异同。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,在求积分的过程中,一定要注意积分的对称性,利用分段积分去掉绝对值把积分求出来。中值定理一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于微分部分,隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学一里面还包括了三重积分,掌握积分区域具有可加性、二重积分对称性的应用、二重积分直角坐标和极坐标的变换、二重积分转换成累次积分计算这些知识点。另外还有曲线和曲面积分,这是数一必考的重点内容。一阶微分方程,掌握几个教材中的几种类型的求解就可以了。还有无穷级数,要掌握判别敛散性、幂级数的展开和求和常用的方法和技巧。

  线性代数:线性代数考试题型不多,计算方法比较初等,但是往往计算量比较大,导致很多考生对线性代数感到棘手。从理论的角度出发,线性代数的很多概念和性质之间的联系很多,特别要根据每年线性代数的两道大题考试内容,找出所涉及到的概念与方法之间的联系与区别。例如向量组的秩与矩阵的秩之间的联系,向量的线性相关性与齐次方程组是否有非零解之间的联系,向量的线性表示与非齐次线性方程组解的讨论之间的联系,实对称阵的对角化与实二次型化标准形之间的联系等。掌握他们之间的联系与区别,对做线性代数的两个大题在解题思路和方法上会有很大的帮助。

  复习过程中,综合掌握“一条主线,两种运算,三个工具”。一条主线是解线性方程组,两种运算是求行列式、矩阵的初等行(列)变换,三个工具是行列式、矩阵、向量。其中,向量组线性相关性是难点,要理解记忆各条定理,理清其中关系,多做题巩固知识点。特征向量与二次型虽不难,但年年必考,计算能力要跟上,多做题才能提高正确率。

  概率论与数理统计:概率论与数理统计课程的主要特点是概念和公式繁多,章节的关系松散,应用题比较抽象,所以复习时要注重这些概念的理解。第一、二章是基础,很少单独命题,经常结合后面的章节进行考察,但这两章要深刻理

  解,只有这部分内容透彻理解后面的内容才能容易掌握。概率部分要重点掌握的是二维随机变量的概率分布、边缘分布、条件分布、独立性等概念,要把定义和对应计算公式掌握的很熟练。另外,数学期望、方差、协方差、相关系数等数字特征的概念及计算公式也要重点复习,因为这几个概念是每年必考,并且主要考计算。最后,这部分难点是多维随机变量的函数的分布。这个考点最近几年每年必考,并且主要以大题的形式出现。虽然是难点,但是方法还是比较固定的,掌握每种题型的方法即可。大数定律和中心极限定理不是考试的重点,考纲要求是了解,所以只要掌握定理的条件和结论。数理统计部分主要围绕三大统计量分布,点估计是这部分内容的重难点,经常会考解答题。统计量的评选标准中的无偏估计要重点复习,有效性和相合性了解即可。区间估计和假设检验这么多年考的比较少,所以也是了解一下,找几个小题做一下就行了。

数学学习方法6

  1.先看笔记后做作业

  一些高中生很沮丧。老师说,他已经听清楚了。但是为什么自己做这个题这么难呢?

  原因是学生对老师所说的话的理解没有达到老师要求的水平。因此,每天做作业之前,一定要先阅读课本的相关内容和当天的课堂笔记。

  通常一个好学生和一个坏学生的区别是坚持下去的能力。尤其是当习题不匹配时,作业往往不是老师讲的那种类型的问题,所以不能比较消化。

  如果不重视这一实施,长期实施,将会造成巨大的损失。

  2.问题后加强反思

  学生们必须清楚,他们所坐的.问题不能成为考试的题目。

  我想用我正在解决的问题的思路和方法。因此,要做好自己每一个问题的反思。总结你的收益。

  综上所述,这是一个什么内容,用什么方法的问题。实现知识碎片化,问题串成一串,随着时间的推移,建立起科学的网络体系的内容和方法。

  3.主动复习总结提高

  总结这一章是很重要的。初中时是老师为学生作总结,做得细致、深刻、完整。

  高中是做自己的总结的,老师不仅不做,而且是在哪里说,在哪里考试,不留下复习的时间,也没有明确指出做总结的时间。

  4.积累资料随时整理

  注意积累复习材料。将你的笔记、练习、单元测试和考试按时间顺序排列。

  每次你读的时候,标出你下次读的重点。这样,复习资料的能力越精要越好,一目了然。

数学学习方法7

  数学物理让人愁,大量习题冲破头。

  公式定理最重要,习题跟上气死牛。

  先说数学,数学是让很多理科和文科学生头疼的科目。我也不好把握它应该怎么学习,但是最近我确实偿到了学习的快乐。我是这样学习的。

  数学重要的课本的见解和例题,大家要把握好这个点,一定要注意课本,就是说你刚刚学完一节,作习题时如果没有思路,你就要好好的回忆课本讲了什么,要做到课本与习题的巧妙结合。建议高一高二的同学,分几步走。

  课前要预习。很多书都这么说,可是很多同学都不屑,但是我要告诉你,如果您能落实好预习,你的数学就可以好一半,你预习时的态度要端正,不是看一遍书就完事,而是要认真的思考,看看讲解的内容和例题是怎么联系的。然后看懂后就做书上习题,不要小看书的习题,进几年高考题目有好多都是根据书的习题改的,这个要做好的。一定要做出数来,对照答案。

  上课听讲要认真。看看老师是怎么演绎数学的,看看老师的说法和你预习时的一样不,最好记下老师的例题,这例题绝对经典,可以当作对象研究的。

  课下学习不可缺。课下认真的完成老师布置的作业,体会课上所讲的内容,不会的及时问老师。还有就是课外的练习册最好别买,因为根据我上了高三的.经验,买的就是浪费的,千万别买啊!如果你觉得没有事情做了,那么你就学习英语和语文吧!这两科如果学好了,高三都可以不用复习的。但是大家要记住,数学必须把问题全部落实,不能拖。还要和老师及时的沟通哦。

  物理,这是我每次考试不用复习的科目,因为我们班主任就是物理老师,他在领我们学习的过程中,总结了很多的题目,而且我们做的题已经很多了,不用惧怕。

  物理其实就是几个公式然后在题目中运用一下,我根本说不好到底怎样学,因为有些人有问过我,我说了半天他们都不明白,但是我最后说和你老师去谈谈吧,最后他们成绩还真的提高了。我要说的是,大家要及时的和老师交流你的体会,哪里不行,怎么学老师都会告诉你。

  老师上课的例题是最重要的,好的物理老师就是看上课会不会有经典例题。所以大家只要重视上课和课后习题的讲解就OK了。但是重要还是习题精做啊!

  化学生物课本重,习题不宜过多弄。

  精做习题无空洞,再看课本莫闲中。

  化学被成为理科中的文科,需要记忆的东西很多。但是虽然多还是很有规律的,但是规律也得记忆啊!还不如就是最简单的,看课本,不厌的看,看的越多越好,如果你一学期能认真的看7遍的话,化学成绩没个不高,但是我必须强调,看书的时候要带着疑问和思考,去看,只有这样你才会明白那些知识,我现在高三也总是每天抱着课本看,化学还是满有意思的。我说了这么多无非是强调课本的重要性。

  习题是巩固课本最好的东西,大家要妥善处理这些题目,而且量要较其他理科科目多一,毕竟得抓好基础知识,高一高二就是打基础的时候,基础的好的话,高三会很轻松的,所以高一高二的新友要好好的落实基础。另外还是强调老师的重要性,不会就问他,不懂就问他。

数学学习方法8

  一、数学学习的基本环节与原则

  在校学生的学习,是在教师指导下进行的,课堂学习一般由四个环节组成:首先要听老师的课,这就是听课的一环;为了消化和掌握课堂上所传授的知识,需要做练习,这就是作业的"一环,为了进一步把所学的知识巩固起来,并了解其内在联系,需要记忆和归纳整理,这就是复习的一环;为了使下一节课学得更主动,事先需要阅读新课,这就是预习的一环。这四个环节的'每一部分都有它的独立意义和独立作用,而各部分之间又相互衔接,相互影响,相互制约。这四个环节组成一个小循环,也就是一个学习周期。学习的周期就是学习的车轮运转一周的轨迹,善于学习的人应该从车轮运转一周的撤印中找到它的起止点和中间环节,把四个环节组成定型的学习周期,组成一个学习系统,使每个环节都能充分发挥它们的作用,这样就能取得好的学习效果。

  二、数学学习的基本过程

  学生学习独立新知时,一般要经历以下五个基本步骤。

  第一步,对所学知识事物或数的变化发展过程进行初步感知。

  如考察事、物的存在、演变的条件与过程;参与对所学知识的演示、操作与实物及再现事物的存在、变化和发展过程,进而获得对所学知识的初步感受。

  按触和初步认识新知——建立感性认识

  开展联想——形成新知表象

  探究新旧知识的内在联系——第二次感知

  抽象概括新知本质特征——向理性知识转化

  记忆新知——巩固

  应用新知——将知识转化为能力

  重视学生学数学的基本过程的研究,对改进教学方法、加强学法指导,提高教学质量具有十分重要的意义。

数学学习方法9

  数学需要熟练的计算,所以课后要加强练习,只有通过做练习才有计算的能力。

  用好的参考书,在典型的参考书中所举的例子都是非常经典的问题,你可以看一看,理解理解,做一做,就可以测试知识。

  初稿是数学学习和实践中必不可少的,不要认为它是初稿,就乱涂乱画,学生经常因为抄袭初稿而对解题步骤造成错误的结果。数学是一门精确的科学,只有精确到分数才可以。

  学习是需要复习巩固错误的地方才能进步,数学学习也是如此。需要准备一份数学错误集,积累错误,并经常用于评审。

  每天都要规划好学习数学的时间,只有保证好充足的时间才能提高学习成绩。不要游手好闲,有时间就学,没有时间就不去碰,这是学不好的。

  平时在学校学习的.人都差不多一样,可成绩差距怎么会这么大呢?关键在于休息时间。别人玩得开心,而你在学习,努力工作,利用业余时间学习更多,你会比别人做得更好,取得更好的成绩。

  这时候就要把平时不会的问题,问问同学,查查百度,看看书,做做练习册。

  你可以根据教学进度制作数学练习册,预约班级优秀的同学做一些练习。互相推荐一些经典练习书,多做有难度的好问题,不使用铁海战术,只需要做最具有代表性的,最好的问题就可以了。

  也不能忘记基础。不要粗心。谨慎为上策。

  考试之前,看看重点题型,基础知识点,老师讲过的卷子。

数学学习方法10

  一、高中数学快速提分的方式

  1、背概念、公式、定理、图像

  如果你现在是三四十分的话,你第一件事就是要背上面的这些,现在跟着老师走一轮,那么要把老师提到过的每一个概念,公式定理与图像都背下来,刚开始会很辛苦,毕竟高中数学的一些概念还是比较抽象的,但是小数老师告诉你,你背一段时间后,你会有很明显的变化的!

  要求:每个概念公式定理图像都要背下来哦,你可以找你同桌提问你,比如,提问函数,你要知道函数的概念,函数的相关性质都有哪些,这些性质的概念又是什么等。现在你可以不理解,但必须滚瓜烂熟!

  注:这是最痛苦的一个阶段哦,加油!

  2、背例题老师上课会讲一些例题,那第二步就是要把这个例题背下来,包括题目条件,求解与解法。

  达标要求:你能合上课本,自己写出题目条件与求解,并能默写出步骤来!要找到题目中的关键词,也就是题眼,也就是你之前背的概念公式定理图像中的出现的那些词,这才是题眼!因为解题的时候,我们的解题思路从哪来,就是从我们学过的知识转化过来的!

  注:这一步相对上一步来说,简单了一点,因为题目是具体的,不抽象,背起来稍微容易一点!但是要注意抓住重点,那就是例题中的.题眼!不要只记里面的数字啊,否则,数字换一下,你就不会做了!

  3、对例题的每一步转化写上来龙去脉

  例题背下来之后,你也能分辨出题目的题眼了,也会了解题步骤了,接下来就要调动你的大脑来思考了!你要把每一步涉及到的公式概念都写出来,比如:求函数的定义域,你记过求定义域的方法,那让你求的定义域时,首先是二次根号下被开放式必须大于等于0,所以有lgx大于等于0,又因为这是一个对数函数,想一想对数函数的图象,找到函数值大于等于0对应的x值就是此函数的定义域了!

  要求:每一步都要弄清楚,你不知道转化的,一定要问,此时可以不计较数量,重视质量就可以了!这个质量是你自己真正能写出来了!

  注:数学题逻辑思维比较强,一定要分析每一步,不要感觉自己会了,就不写了!

  4、重新做例题(不是把答案背上去哦)

  你弄明白之后,接下来就是要真正把他当做一道新题去做了,你完全按照做新题的方法,审题,找到题眼,然后想一想这些题眼该怎么转化,以前自己学过的知识怎么运用,不同知识之间怎么结合,然后一步步的去做这道题,在做题的过程中,还要注意计算的易错点!

  二、巩固数学基础的方式

  首先课堂紧跟老师,认真听每一节课,记好课堂笔记,有些学生喜欢自己课后自学,课堂不爱听讲,这是极错误的,因为老师对于高考的了解和对知识的掌握,远远胜过我们自学,紧跟老师是打好基础最关键的一步。

  对课本基础知识的学习,我们强烈建议大家使用思维导图,可以把课本上的知识都画成树状层,这样更容易理解、记忆,这样知识点不再是孤立而是成了一个网,这比光看书效果要好很多很多。

  此外,想学好数学,大量刷题确实很有必要,但你真的会刷题吗?多数同学虽然也做了大量的题目,但成绩还是不好,核心原因就是做题忽略了最重要的一步,那就是总结反思。每做完一道题目,大家还需要总结一下,问一下自己下面这些问题:它考查了哪些知识、自己有没有掌握、题目的解题思路在哪里、突破口是什么、属于哪种题型、此类题型有什么共同的套路、此类题型应该用什么方法来解答。只有多问自己几个为什么,你才能真正吃透一道题,达到做一道题会一类题。

  做题并不是越多越好,要知道题海战术只是手段,我们最终的目的还是通过做题加深对知识的理解,掌握解题套路,提高做题速度,如果做题不总结,你刷再多题效果也不会明显。

数学学习方法11

  数学学习方法指导:良好习惯、终身受益 小学阶段是儿童正式接受学习的最初阶段,是良好学习习惯形成的关键时期,培养良好的学习习惯是形成学生学习能力的重要方面,也是发展个性的重要方面,因此掌握良好的学习方法是获得成功的关键。 以下十条习惯是每一个合格的学生应该养成的。

  一、自觉预习习惯

  1、了解所要学习的新知识;

  2、准备好上课所需的书、本、文具及资料;

  3、运用工具书帮助预习;

  4、把遇到的不懂之处和难点标记下来。

  二、仔细观察习惯

  1、有意识地运用视、听、味、嗅、触等感觉器官来观察事物;

  2、观察全面、清楚、找出特点及特征。

  三、认真听讲习惯

  1、集中注意力、专心听讲;

  2、听清楚所讲内容;

  3、边听边想、理解内容;

  4、能记下有关要点。

  四、乐于交流习惯

  1、敢于发表自己的见解;

  2、耐心地听完别人的话再发言;

  3、说话清楚、完整、简洁明了;

  4、吸引他人发言的长处,补充和纠正自己的观点。

  五、勤于阅读习惯

  1、集中注意力认真阅读;

  2、边读边思考,理解阅读内容;

  3、反复阅读,并使用圈划等方法理解题意,正确解题。

  六、独立作业习惯

  1、先复习后作业;

  2、做作业时一心一意,不兼做其它的事情;

  3、独立作业不抄袭;

  4、作业字迹工整、格式规范;

  5、做完作业及时检查、发现错误及时纠正。

  七、乐于动手习惯

  1、经常使用学具帮助学习;

  2、通过作图、演示等来帮助自己学习;

  3、敢于动手进行小发明、小创造的`尝试。

  八、及时笔记习惯

  1、听课时把听到的内容及时记下来;

  2、经常归纳、比较运算方法。

  九、及时积累习惯

  1、意识的积累;

  2、对获取的信息进行分类和整理。

  十、善用时间习惯

  1、有制定作息时间的习惯;

  2、遵守作息时间表

数学学习方法12

  1.请概括的说一下学习的方法:

  曰:像做其他事一样,学习数学要研究方法。我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。

  2.请谈谈超前学习的好处:

  曰:首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。

  其次,够消除对新知识的隐患。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。

  再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识加工。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。

  最后,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放这少数地方的理解上,即好钢用在刀刃上。事实上,一节课,能集中注意力的时间并不太多。

  3.请谈谈联想与总结。

  曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。

  4.那么我们怎样预习呢?

  曰:先说说学习的目标:

  (1)知道知识产生的背景,弄清知识形成的过程。

  (2)或早或晚的知道知识的地位和作用:

  (3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。

  再说具体的做法:

  (1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形理解概念的最高境界是意会。一定要在理解概念上下一番苦功夫后再做题。

  (2)对公式定理的预习,公式定理是使用最多的规律的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。

  (3)对于例题及习题的处理见上面的(2)及下面的.第五条。

  5.请你再谈谈关于做题。

  曰:做题是学好数学的必要条件。题不在多而在精。你们要注重对基本题解决方法的挖掘和解题规律的总结。如解不等:0由分子分母异号可化为或去分母化为两个一次不不等式组。它包含了一般的解不等式的思考、解决方法。有时你们会遇到很难解的题。如果做不出来,可模仿别人,但模仿的不仅仅是形式,更重要的是人家的思考方法,为什么必然发生一样。就是说,每作一道题都要说出想法,是哪条规律指导着你?具体的做法可落实在一题多解,一法多用,一题多变上,这些最能锻炼你从多角度思考问题、与其他知识建立联系的能力。

  经过精心的整理,有关高二数学学习:高手为您讲解高二数学学习方法的内容已经呈现给大家,祝大家学习愉快!

数学学习方法13

  考察主要还是基础,难题也不过是在简单题的基础上加以综合。所以课本上的内容是很重要的,如果课本上的都不能掌握,就没有触类旁通的资本。

  对课本上的内容,上课之前最好能够首先一下,否则上课时有一个知识点没有跟上的步骤,下面的就不知所以然了,如此恶性循环,就会开始厌烦数学,对来说是很重要的。课后针对性的练习题一定要认真做,不能偷懒,高中语文,也可以在课后时把例题反复演算几遍,毕竟上课的时候,是在进行题目的演算和讲解,在听,这是一个比较机械、比较被动的接受知识的过程。也许你认为自己在上听懂了,但实际上你对于解题的理解还没有达到一个比较深入的程度,并且非常容易忽视一些真正的解题过程中必定遇到的难点。“好脑子不如赖笔头”。对于数理化题目的解法,光靠脑子里的大致想法是不够的,一定要经过周密的笔头计算才能够发现其中的难点并且掌握化解,最终得到正确的计算结果。

  其次是要善于总结归类,寻找不同的题型、不同的知识点之间的共性和联系,把学过的知识系统化。举个具体的例子:代数的.函数部分,我们学习了指数函数、对数函数、幂函数、三角函数等好几种不同类型的函数。但是把它们对比着总结一下,你就会发现无论哪种函数,我们需要掌握的都是它的表达式、图象形状、奇偶性、增减性和对称性。那么你可以将这些函数的上述内容制作在一张大表格中,对比着进行理解和。在解题时注意函数表达式与图形结合使用,必定会收到好得多的效果。

  最后就是要加强课后练习,除了作业之外,找一本好的参考书,尽量多做一下书上的练习题(尤其是综合题和应用题)。熟能生巧,这样才能巩固课堂学习的效果,使你的解题速度越来越快。

数学学习方法14

  刚步入初中的学习和生活,你会发现与小学有了很大的不同,科目繁多,知识面拓宽。特别是数学,更是从具体发展到抽象。学好数学,有一个好老师固然重要,但好的学习方法和良好的学习习惯更为重要。这里教你学习数学的一些方法,你可要记住并努力做到啊。

  1.做好预习:单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。坚持预习,找到疑点,变被动学习为主动学习,能大大提高学习效率噢,兴趣是最好的老师嘛。

  2.认真听课:听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点(记住预习中的疑点了吗?更要听仔细了),听例题的解法和要求,听蕴含的数学思想和方法,听课堂小结。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题,大胆猜想。记,当然是指课堂笔记了,不是记得多就是有效的知道吗?影响了听课可就不如不记了,记什么,什么时候记,可是有学问的`哩,记方法,记技巧,记疑点,记要求,记注意点,记住课后一定要整理笔记。

  3.认真解题:课堂练习是最及时最直接的反馈,一定不能错过的,不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆,很重要噢。

  4.及时纠错:课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,审题出问题了吗?概念模糊了吗?时间紧没来得及?不会做吗?切忌不要动不动就以粗心放过自己(形成习惯可就麻烦了),如果思路正确而计算出错,及时订正,必要时强化相关计算的训练。概念模糊和审题出错都说明你的学习容易出现似懂非懂却还不自知的状态,这可是学习数学的大忌,要坚决克服。至于不会做,当然要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

  5.学会总结:大人们常说,数学是一环扣一环,这意思是说知识间是紧密相关的,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,学习的目的性,必要性,知识性做到了然于心,融会贯通,解题时就能做到入手快,方法直接简单,即使平时课堂上没练到的题型,也能得心应手,即举一反三。

  6.学会管理:管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷,这可是大考复习时最有用的资料知道吗?

  以上六步法可是很有效的,一定要坚持,相信你一定能学好数学。这里预祝新初一的所有同学学习进步,身体健康,快乐成长。

数学学习方法15

  摘要:学习数学不仅要有强烈的学习愿望和学习热情,而且还要有科学的学习方法,才可能把数学学好。从分析数学学习活动可知,学习方法既受课堂教学的制约,又具有自身的一些特点。所以,我们一方面提出与课堂教学相配合的学习方法,另一方面又根据数学学习的自身特点,概括出一些特殊的学习方法。学习数学不仅要有强烈的学习愿望和学习热情,而且还要有科学的学习方法,才可能把数学学好。从分析数学学习活动可知,学习方法既受课堂教学的制约,又具有自身的一些特点。所以,我们一方面提出与课堂教学相配合的学习方法,另一方面又根据数学学习的自身特点,概括出一些特殊的学习方法。

  一、预习、听课、复习、作业的方法

  与数学课堂教学相适应的学习方法,就是预习、听课、复习、作业的方法等的基本方法。

  1、预习的方法

  预习是上课前对即将要上的数学内容进行阅读,了解其梗概,做到心中有数,以便于掌握听课的主动权。预习是独立学习的尝试,对学习内容是否正确理解,能否把握其重点、关键,洞察到隐含的思想方法等,都能及时在听课中得到检验、加强或矫正,有利于提高学习能力和养成自学的习惯,所以它是数学学习中的重要一环。

  数学具有很强的逻辑性和连贯性,新知识往往是建立在旧知识的基础上。因此,预习时就要找出学习新知识所需的知识,并进行回忆或重新温习,一旦发现旧知识掌握得不好,甚至不理解时,就要及时采取措施补上,克服因没有掌握好或遗忘带来的学习障碍,为顺利学习新内容创造条件。

  预习的方法,除了回忆或温习学习新内容所需的旧知识(或预备知识)外,还应该了解基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里,等等。预习时,一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或弄不懂的地方与问题,最后确定听课时要解决的主要问题或打算,以提高听课的效率。在时间的安排上,预习一般放在复习和作业之后进行,即做完功课后,把下次课要学的内容看一遍,其要求则根据当时具体情况灵活掌握。如果时间允许,可以多思考一些问题,钻研得深入一些,甚至可做做练习题或习题;时间不允许,可以少一些问题,留给听课去解决的问题就多一些,不必强求一律。

  2、听课的方法

  听课是学习数学的主要形式。在教师的指导、启发、帮助下学习,就可以少走弯路,减少困难,能在较短的时间内获得大量系统的数学知识,否则事倍功半,难以提高效率。所以听课是学好数学的关键。听课的方法,除在预习中明确任务,做到有针对性地解决符合自己的问题外,还要集中注意力,把自己思维活动紧紧跟上教师的讲课,开动脑筋,思考教师怎样提出问题,分析问题,解决问题,特别要从中学习数学思维的方法,如观察、比较、分析、综合、归纳、演绎、一般化、特殊化等,就是如何运用公式、定理,了解其中隐含着的思想方法。

  听课时,一方面理解教师讲的内容,思考或回答教师提出的问题,另一方面还要独立思考,鉴别哪些知识已经听懂,哪些还有疑问或有新的问题,并勇于提出自己的看法。如果课内一时不可能解决,就应把疑问或问题记下,留待自己去解决或请教老师,并继续专心听老师讲课,切勿因一处没有听懂,思维就停留在这里,而影响后面的听课。一般,听课时要把老师讲课的要点、补充的内容与方法记下,以备复习之用。

  优秀经验分享:太多的人总是抱怨学不进去,记不住,思维转得慢,大脑不好使,吸取知识的能力太差,学习效率太低。读书的学习不好,经商的赚钱不多!作者本人以前也和读者有着同样的困惑,在我考上公务员,然后后来又转行经商,然后再读MBA,后来再考托福,一路的高压力考试中,从开始就学习了很多的学习方法,记忆方法,包括各种潜能开发培训班都上过一些,还有吃补脑的药也有一些,不过感觉上懂了理论,没有太多的实践,效果不太明显,吃的就更不想说了,相信太多的人都吃过,没有作用。06年的时候,无意间在百度搜索到一个叫做“精英特快速阅读记忆训练软件”的产品,当时要考公务员,花了几百块钱买了来练,开始一两个星期没有太明显的效果,但是一个月的训练之后,效果非常理想,阅读速度和记忆能力在短时间内提高很多,思维这些都比以前更敏捷,那个时候一两个小时可以看完一本书,而且非常容易记住书中的内容。这个能力在后来的公务员考试、MBA、托福以及生活中都很大程度上成就了我,这也是我今天要推荐给诸位的最有分享价值的好东西(想学的朋友可以到这里下载,我做了超链接,按住键盘左下角Ctrl键,然后鼠标左键点击本行文字即可连接。)基本上30个小时就够用了。非常极力的推荐给正在高压学习的朋友们,希望你们也能够快速高效的学习,成就自己的人生。最后,经常学习的同学,我再推荐一个学习商城“爱贝街”,上面的产品非常全,有一个分类是潜能开发,里面卖的产品比市场上便宜很多哦~(按住键盘左下角Ctrl键,然后鼠标左键点击本行文字即可连接。)

  3、复习的方法

  复习就是把学过的数学知识再进行学习,以达到深入理解、融会贯通、精炼概括、牢固掌握的目的。复习应与听课紧密衔接、边阅读教材边回忆听课内容或查看课堂笔记,及时解决存在的知识缺陷与疑问。对学习的内容务求弄懂,切实理解掌握。如果有的问题经过较长时间的思索,还得不到解决,则可与同学商讨或请老师解决。

  复习还要在理解教材的基础上,沟通知识间的内在联系,找出其重点、关键,然后提炼概括,组成一个知识系统,从而形成或发展扩大数学认知结构。

  复习是对知识进行深化、精炼和概括的过程,它需要通过手和脑积极主动地开展活动才能达到,因此,在这个过程中,提供了发展和提高能力的极好机会。数学的复习,不能仅停留在把已学的知识温习记忆一遍的`要求上,而要去努力思考新知识是怎样产生的,是如何展开或得到证明的,其实质是什么,怎样应用它等。

  4、作业的方法

  数学学习往往是通过做作业,以达到对知识的巩固、加深理解和学会运用,从而形成技能技巧,以及发展智力与数学能力。由于作业是在复习的基础上独立完成的,能检查出对所学数学知识的掌握程度,能考查出能力的水平,所以它对于发现存在的问题,困难,或做错的题目较多时,往往标志着知识的理解与掌握上存在缺陷或问题,应引起警觉,需及早查明原因,予以解决。

  通常,数学作业表现为解题,解题要运用所学的知识和方法。因此,在做作业前需要先复习,在基本理解与掌握所学教材的基础上进行,否则事倍功半,花费了时间,得不到应有的效果。

  解题,要按一定的程序、步骤进行。首先,要弄清题意,认真读题,仔细理解题意。如哪些是已知的数据、条件,哪些是未知数、结论,题中涉及到哪些运算,它们相互之间是怎样联系着的,能否用图表示出来,等等,要详加推敲,彻底弄清。

  其次,在弄清题意的基础上,探索解题的途径,找出已知与未知,条件与结论之间的联系。回忆与之有关的知识方法,学过的例题、解过的题目等,并从形式到内容,从已知数、条件到未知数、结论,考虑能否利用它们的结果或方法,可否引进适当辅助元素后加以利用是否能找出与该题有关的一个特殊问题或一个类似问题,考察解决它们对当前问题有什么启发;能否把分开,一部分一部分加以考察或变更,再重新组合,以达到所求结果,等等。这就是说,在探索解题过程中,需要运用联想、比较、引入辅助元素、类比、特殊化、一般化、分析、综合等一系列方法,并从解题中学会这一系列探索的方法。

  第三,根据探索得到的解题方案,按照所要求的书写格式和规范,把解的过程叙述出来,并力求简单、明白、完整。最后还要对解题进行回顾,检查解答是否正确无误,每步推理或运算是否立论有据,答案是否说尽无遗;思考一下解题方法可否改进或有否新的解法,该题结果能否推广(事实上中学课本中不少题目是可以推广的)等,并小结一下解题的经验,进而发展与完善解题的思想方法,总结出带有规律性的东西来。

  二、“由薄到厚”和“由厚到薄”的学习方法

  “由薄到厚”和“由厚到薄”是数学家华罗庚多次提到的治学方法,他认为学习要经过“由薄到厚”和“由厚到薄”的过程。“由薄到厚”是理解和弄懂所学的数学知识,知其然并知其所以然。学习不仅要理解和记住概念、定理、公式、法则等,而且还要想一想它们是如何得来的,与前面的知识是怎样联系着的,表达中省略了什么,关键在哪里,对知识是否有新的认识,有否想到其他的解法等等。这样细加分析、考虑后,就会对内容增添某些注解,补充一些的解法或产生新的认识等,出现了“书越读越厚”。

  但是学习不能到此止步,还需要把学过内容贯串起来,加以融会贯通,提炼出它的精神实质,抓住重点、线索和基本思想方法,组织整理成精炼的内容,这就是一个“由厚到薄”的过程。在这过程中,不是量的减少,而是质的提高,所以具有更重要的作用。通常在总结一章、几章或一本书的内容时,就要有这种要求,运用这种方法。这时由于知识出现高度概括,就更能促进知识的迁移,也更有利于进一步学习。

  “由薄到厚”和“由厚到薄”是一个螺旋上升的过程,它具有不同的层次和要求,学习中需要经过从低到高多次的运用,才能收到应有的效果。这一学习方法体现着“分析”与“综合”、“发散”与“收敛”的辩证统一,就是说数学学习需要这两者统一起来。

  三、接受学习与发现学习相结合的方法

  数学学习应是有意义接受学习和有意义发现学,如何使两者互相配合、有机结合,充分发挥各自和综合的效力这是学习方法的一个重要方面。

  接受学习,不论是听系统的讲授,还是以定论的形式给出的教材,都不涉及任何的独立发现。但在学习过程中,学生处于积极、主动的状态,并非只是单纯的接受,他们总不断地向自己提出问题,如定理是如何发现或产生的,证明的思路是怎样想出来的,中间要攻破哪几个关键的地方。许多数学家都十分强调“应该不只胀到书面上,而且还要看到书背后的东西。”在进行接受学习时,还要增添某些发现学习的万分,从中学习创造、发明的思想和方法,而不仅仅停留在知识的接受上。发现学习,是依靠自己对所提供的材料或问题的观察、比较、分析、综合等,独立地了现的解决某问题,从而获得新知识。在解决问题时,要真正理解问题中所涉及的要领、原理、公式、定理和法则,懂得每步操作的意义,以及提出假设、检验假设的目的等。解决问题,总需要联想以往学习过和知识与方法,一时回忆不起来的,还要重新复习,以求进一步理解的应用。有是遇到困难问题,甚至还在查看参考书或请教老师者能解决。可见,这期间也穿插着接受学习。

  数学学习既需要接受学习,以便在短时间内获得大量前人积累起来的宝贵知识财富,也需要发现学习,以利于思维、培养创造能力。因此,学习要根据自身的年龄、学习能力特点和教学内容的要求,使两者紧密结合起来。

  数学课本既是教师的教学之本,也是学生学习知识的依据。但是有的老师仅把它单纯地作为习题集,只在布置作业时,才让学生接受课本;有的老师偶尔要求学生翻翻数学课本,读读课本里的数学定义、法则等。这与指导学法、培养学生良好的学习习惯与自学能力相差甚远。教学生掌握阅读教材的方法,正是为了他们离开教师的辅导,能够自己看学习,具有一定的自学能力。

  教给学生阅读课本的方法,主要指教会学生“粗、细、精”地阅读课本。所谓“粗读”就是浏览一遍教材,知其大意;所谓“细读”就是对教材要逐字句地读,要钻研教材的内容、概念、法则和公式,正确地掌握例题的格式;所谓“精读”就是要概括内容,最好能把自然段和单元段的概括文字写在教材的旁边,在深入理解教材的基础上进行适当记忆。当然,当学生大都比较熟练地掌握了这三种阅读方法之后,或对那些比较敏捷的学生来说,并不一定要求他们每次都机械地进行“三读”。

  学生阅读课本有上课前的预习、课堂上的阅读和课后复习三个环节。怎样针对不同的对象指导他们阅读数学课本呢?

  (1)对于识字不多,思考能力有限的低年级的学生来说,应采取在老师指导下讲解和阅读相结合的办法。如对刚入学的小朋友,首先要帮助他们初步了解数学课的特点,知道数学课要学习哪些知识,看数学课本的插图时要看清、数准图上各种东西的个数。接着教他们学会有顺序地阅读教科书,即要从上到下,从左往右地看;教学10以内数的认知看主题图时,要学会先整体后部分地看。又如,低年级教材中的知识是用各种图示表示的,教师要把指导重点放在帮助学生掌握看图方法上,努力使他们做到四会:

  一要会看例题插图,能比较准确地进述图意;

  二要会看标有思维过程的算式,看懂计算方法;

  三要会看应用题的图示,能根据图示理解题意,搞清数量之间的关系、思考解答方法;

  四要会看多种练习形式,懂得练习题的要求。

  (2)对于已积累了一定的知识和具有一定能力的中年级学生来说,教师可采用半工半读半扶半放的方式进行培养。如教师既可先讲后读,具体指导学生阅读课本的方法;也可骗制阅读提纲,让学生带着提纲阅读课本,寻找答案,帮助学生理解教材。

  (3)对于具有一定自学能力的高年级学生来说,则可采取课前预习、启发引导、独立阅读的办法。如指导预习时,教师对学生要有明确的要求,要有预习的范围,要提出必要的思考题或实验作业,要检查预习情况。课堂上教师可以放手让学生去读读、讲讲、论论、练练的方式进行自学与讨论,要求他们在把握知识的基础上理清知识体系,进一步提高认知水平。

【数学学习方法】相关文章:

数学的学习方法05-16

数学的学习方法06-14

数学的学习方法11-15

数学学习方法12-11

数学如何学习方法08-10

数学的学习方法及技巧11-08

数学学习方法05-26

数学高效学习方法05-26

数学的学习方法(精品)07-01

数学的有效学习方法10-05