- 相关推荐
幂的乘方与积的乘方教学方案
【明确学习目的,激发学生学习兴趣。】
一、知识回忆
(1)an的意义?即an=;
(2)aman=,可叙述为
(3)可不能“光说不练”哟!试试看:
计算:(-a)3(-a)5=;-a2a3=;
b6=b2b();(-y)3(-y)4(-y)5=。
【复习巩固已经学过的内容,引入将要学习的内容】
二、自学探究
让我们来完成下面各题:
(1)(23)4=23×23×23×23=2(),即(23)4=;
(2)(52)3=52×52×52=5(),即(52)3=。
通过计算、比较指数之间的关系,你得出什么结论了吗?
【通过具体数字的运算,学生易于掌握,】
再验证一下:
(1)(a3)4=a3a3a3a3=a(),即(a3)4=;
(2)(a2)3=a2a2a2=a(),即(a2)3=。
你上面得到的结论还成立吗?
。
【由数字到字母,循序渐进,降低了学生学习的难度,利于学生对学习内容的探究,利于提高学生探究的兴趣】
我们在验证一下一般情况:
(am)n=amam……am=am+m+m+……+m
=a(),
即(am)n=;
由此,我们可以得出幂的乘方的运算法则:
。
即(am)n=。
【最终得出结论,形成知识。】
试试看,我们会用这个公式了吗?
1、判断正误,错的改正:
(1)(x3)2=x5();(2)x2x3=x6();
(3)x3x2=(x3)2=x6();(4)(-x4)3=x12()。
【基本练习,考察学生对概念的理解与掌握情况。】
2、计算:
(1)(105)3;(2)(x4)2;(3)(-x2)3.
【增加了联系的难度,为学生形成能力奠定基础。】
3、计算:
(1)﹝(y3)4﹞2;(2)(-x3)2(x4)2;
(3)-x3(-x3)2;(4)(-x3)2+x2x3x.
【通过练习,考察学生对所学内容以及相关内容的掌握情况,利于形成一定的知识体系。】
谈谈你的收获:
。
4、若2a=3,2b=5,求23a+2b+2的值。
(先想一下:23a=,22b=。)
5、比较433和522的大小。
(提示一下:你能判断出52和43的大小吗?你能得出什么结论?)
【灵活运用所学的知识解决有关问题,既利于学生对所学知识的巩固,又有利于学生对所学内容的升华。】
三、反馈检测:
A
(1)(am)n=;(2)aman=;
(2)x3x4x5=;(4)(-x2)3=;
B
计算:
(1)2(a5)2(a2)2-(a2)4(a3)2;
(2)[(-m5)4(-m2)7];
C
已知x2n=2,求4x4n–6x6n–8x8n的值。
四、学后反思
本节课你学习了什么内容?
你有什么收获?
你还有什么不明白的地方?
你觉得什么最重要?
【幂的乘方与积的乘方教学方案】相关文章:
幂的乘方与积的乘方教案范文10-12
有理数的乘方教案11-10
商家积赞活动方案05-06
等积变形的策略10-26
厚积才能薄发作文11-10
不知香积寺随笔散文10-10
厚积方能薄发作文06-02
因数和积的变化规律的数学教案10-09
教学的方案04-15
教学方案04-22