教案

分数除法教案

时间:2022-10-27 22:32:03 教案 我要投稿

有关分数除法教案集锦10篇

  作为一名无私奉献的老师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。我们该怎么去写教案呢?下面是小编收集整理的分数除法教案10篇,仅供参考,希望能够帮助到大家。

有关分数除法教案集锦10篇

分数除法教案 篇1

  【教学内容】

  《义务教育课程标准实验教科书数学》(人教版)六年制六年级上册第三单元《分数除法》的整理与复习

  【单元主题分析】

  本单元的概念比较多,尤其是比的初步认识这节中相似的概念较多,并且容易混淆,因此复习时要着重使学生弄清各个概念之间的联系和区别。计算是数学的基础,做题时掌握计算方法,培养良好的计算习惯。在做分数四则混合运算时,注意运算顺序,选择适合自己的方法计算,并通过交流了解其他算法。值得强调的是:掌握分数除法的计算方法,能正确进行计算,是学生必须掌握的一项技能,也是本单元的教学重点。但是,在计算过程中把除法转化为乘法,对学生来说是数学认识上的一次飞跃。另外,分数除法应用题历来是学生学习中的难点,它经常需要学生灵活应用数量之间的关系。。分析数量关系是解决实际问题的一个重要步骤。让学生知道分数应用题应该怎样想,学会思考的方法。还可以将它与比的应用进行对比,发现这两种题型是可以互相转化的。

  【复习目标】

  1、学生自主复习本单元的概念,进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。引导进一步理解分数除法和比的意义、计算及应用。

  2、通过梳理与沟通,让学生感悟相关知识的联系和区别。如分数乘除法解决问题,求比值、化简比,比和除法、分数之间的关系等。

  3、培养学生良好的复习习惯。

  【复习重点】

  能比较熟练地进行分数除法、求比值以及化简比的计算;会正确地用方程或算术方法解答文字题。

  【复习难点】

  使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数除法应用题,提高学生解答分数应用题的能力.

  【教具准备】

  课件、练习纸

  【复习过程】

  一、回顾整理、汇报交流

  师:昨天,老师布置同学们复习并整理分数除法这一单元,完成了吗?把你整理的内容先在小组内交流一下吧!

  (生小组交流)

  师:我选了几份有代表性的,想看看吗?

  (学生汇报)

  ①简单列出本单元提纲 ②总结出个别重要的知识 ③虽然知识点零碎,但很全面

  师:能把这么多零碎的知识全面的总结出来,看来你们很用心地对本单元进行了复习!可是,你们知道吗?复习不仅仅是回顾所学的知识,更重要的是找到知识间的联系,总结出学习方法,真正达到温故而知新!

  二、练中梳理、沟通联系

  师:请看(出示线段图) 什么图?仔细看,你能看明白什么?

  生:b是单位“1”,分成了5份,a占了3份;a是b的 —理解的真好!

  师:它可以用一个怎样的数量关系式来表示呢?

  生:b× =a

  师:你能把它改写成两个除法算式吗?

  生:a÷b=

  a÷ =b

  师:为什么这样改?(积÷因数=因数)

  所以说,分数除法的意义与整数除法相同,都是已知两个因数的积与一个因数,求另一个因数的运算。

  师:想一想,两个数相除还可以用什么形式表示?

  生:比。

  师:什么是比?

  师:那么a比b是 ?

  生:a:b=

  师: 是什么?(比值)

  它还可以表示a与b的比是3:5

  在a÷b= 这儿它是商

  看来,比与分数以及除法之间,是有一定的联系的。有什么联系呢?

  (生说,然后示课件)

  有没有区别呢?(运算、数、关系)

  师:既有密切的联系,又有本质的.区别!

  师:好了,下面看这儿 a÷ =b,如果a是2,你能算出b是多少吗?

  (生计算)

  师:说一说,怎么算的?

  师:除以 ,算的时候变成了乘 ,依据什么?

  分数除法的计算方法是什么?(生说)

  乘除数的倒数,这样,就把分数除法的计算转化成了乘法。(示转化)

  师:想一想,像这样,a是2,b是 , a与b的比还是( )吗?

  (生有认为是,有的认为不是)

  师:究竟是不是呢?(算算看)

  生:(① 2÷ =2÷ =2× = )→这是求比值的方法,得到比值还是

  师:②看看这种方法可以吗?2: =(2×3):( ×3)=6:10=3:5=

  ↓ ↓

  为什么前项×3 后项也×3 ?

  这是通过化简比,得出结果还是3:5

  问:化简比依据是什么?

  对比:谁能说一说:求比值与化简比有什么不同?

  生:求比值可以用前项÷后项,是一个商,结果可以是小数,分数或整数。

  而化简比是根据比的性质,化成最简整数比,结果必须写成比的形式。

  师:其实,求比值的计算中,常常会用到分数除法的计算方法。

  三、解决问题,提升方法

  1、根据线段图提简单的分数除法问题

  师:如果a是六年级女生有300人 ,你能提出什么问题呢?

  生:六年级总数?

  师:可以吗?还可以怎么提?(示题)会做吗?

  生:300÷

  师 为什么用除法?题目的关键是哪句话?

  生:女生是男生的

  师:根据条件,可以写出什么数量关系式?

  生:(男生)× =300

  师:现在知道为什么用除法了吗?

  师:还可以用什么方法?

  生: 〤=300

  2、稍复杂的分数除法问题

  师:如果把条件换一换:女生比男生少 怎么做呢?

  (生做,然后汇报交流)

  师:对比这两题,你有什么发现?

  生:男生是单位“1”,未知 。

  师:求单位“1”可以用什么方法?

  生:可以用方程,也可以用除法。

  师:用除法做是根据了除法的意义,而用方程相当于顺着题目的意思列式,把分数除法问题转化成分数乘法法问题 ,这样就简单了。

  3、比的应用

  师:我把题目全换一换(示投影),变成了什么问题?

  生:比的问题

  师:能直接列式吗?

  生:列式解答

  师:把比转化成分数

  问:为什么不用方程?

  生:单位“1”知道,是800人。

  师:这种按比分配的问题,也转化成了求“一个数的几分之几是多少”的分数乘法问题。

  小结:这样把知识联系起来,问题就简单多了,应用起来也更灵活了!

  四、综合练习,自我检测

  师:经过我们再次整理,就把本单元这些散落的知识点穿在了一起,形成一个知识网。找到了联系,明确了方法,老师这儿还有一份检测题,有信心完成吗?

  (分发练习纸,根据完成情况反馈交流)

  (分析错因,大多是计算出错)

  小结:看来掌握方法固然重要,细心认真的学习习惯也很重要!

  五、课堂小结

  师:咱们六年级的同学,面临对小学六年所学知识的复习。希望今天这节课对你们以后的学习能有所帮助,有所启发!

  附练习题

  一、 填空

  1、8:10= =40÷( )=( )(填小数)

  2、20千克:0.2吨的比值是( ),最简整数比是( )。

  二、计算

  ÷2 ÷

  ×8÷ ( ÷

  三、应用

  一本书的 是80页,已看的与未看的页数比是9:1。已经看了多少页?

分数除法教案 篇2

  教学目标

  1.结合具体情境,掌握分数四则混合运算的顺序,能正确进行计算。

  2.能运用所学知识解决简单的实际问题,提高综合解题的能力。

  3.培养学生认真审题、准确计算的好习惯。

  重点难点

  重点:掌握分数四则混合运算的顺序。

  难点:正确计算分数四则混合运算。

  教具学具

  投影仪。

  教学过程

  一、导入

  1.笔算下面各题。

  24÷4+16×5-37 46+50×[(900-90)÷9]

  提问:整数四则混合运算的顺序是什么?

  2.计算下面各题。

  二、教学实施

  (5)分析运算顺序。

  提问:这两个算式里分别含有几级运算?应该先算什么,再算什么?

  指名让学生回答,并说明运算顺序。全班同学各自在练习本上计算,做完后集体订正。

  2.巩固练习。

  完成教材第33页“做一做”。

  学生说明运算顺序。

  3.变式练习。

  学生可以先讨论怎样计算,再明确顺序进行计算。

  老师说明:一般情况下,在分数、小数混合的式子里,通常把小数化成分数进行计算。

  三、课堂作业新设计

  1.填空。

  四、思维训练参考答案

  思维训练

  1.D 2.略

  教材习题

  教材第33页做一做

  板书设计

  分数四则混合运算

  运算顺序

  (1)不含括号的分数混合运算的运算顺序:在一个分数混合运算算式里,如果只

  含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二

  级运算,再算第一级运算。

  (2)有括号的'分数混合运算的运算顺序:在一个分数混合运算的算式里,如果既

  有小括号又有中括号,要先算小括号里面的,再算中括号里面的。

  备课参考教材与学情分析

  例3以吃药片为题材,通过解决问题,引出涉及分数除法的混合运算,使学生看到已经掌握的混合运算顺序,同样适用于分数运算。例3下面的“做一做”是需要用到分数乘除混合运算解决的实际问题。

  课堂设计说明

  1.加强意义理解,加强分数除法与整数除法、分数乘法的联系,加强复习,使学生利用已有知识进行自主探索。

  2.通过解决问题,理解分数混合运算的顺序。

  教学例3时,可以先复习以前学过的四则混合运算顺序。出示例题后,可以让学生先说出已知条件与问题,再说说自己解决这个问题的思路。可以从问题入手想,也可以从条件出发思考。列出综合算式后,让学生说说运算顺序,再进行计算。

  3.注重直观操作,渗透数学的思想和学习方法。

  直观操作——主要体现在计算方法的理解过程中。在例题教学和习题练习中,关注学困生的情况,需要多次演示,强化数量关系的理解(已知一个数的几分之几是多少,求这个数)。

分数除法教案 篇3

  教学目标

  1.使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.

  2.掌握分数除以整数的计算法则,并能正确的进行计算.

  3.培养学生分析能力、知识的迁移能力和语言表达能力.

  教学重点

  正确归纳出分数除以整数的计算法则,并能正确的进行计算.

  教学难点

  正确归纳出分数除以整数的计算法则,并能正确的进行计算.

  教学过程

  一、复习引新

  (一)说出下面各数的倒数.

  0。3 6

  (二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么.(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算.)

  (三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法.(板书课题:)

  二、新授教学

  (一).教学分数除法的意义(演示课件:分数除法的意义)

  1.每人吃半块月饼,4个人一共吃多少块月饼?

  教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个 ?求4个 是多少怎样列算式?( )

  2.两块月饼,平均分给4人,每人分得多少块?怎样列式?

  列式:2÷4

  3.两块月饼,分给每人半块,可以分给几个人?

  列式:

  教师提问:说一说结果是多少?你是如何得出结果的?

  4.组织学生讨论:分数除法的意义.

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算.

  5.练习反馈.

  根据: ,写出 ,

  (二)教学分数除以整数的计算法则

  1.出示例1.把 米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)

  (1)求每段长多少米怎样列算式?

  (2)以小组为单位讨论一下得多少呢?

  米平均分成2段就是要把6个 米平均分成2份,每份是3个 米是 米.

  (3)教师板书整理.

  (米)

  2.教师质疑:如果把 米铁丝平均分成3段、6段怎样计算?

  也可以这样想:把 米铁丝平均分成3段,就是求 米的 是多少,列式是:

  把 米铁丝平均分成6段,就是求 米的 是多少,列式是:

  3.教师继续质疑:如果把 米铁丝平均分成4段每段长多少米?怎样计算?

  (米)

  为什么采用转化成分数乘法这种方法比较好呢?

  组织学生观察 在转变中,什么变了,什么没变?讨论分数除以整数的`计算法则.

  4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数.

  三、巩固练习

  (一)计算下面各题.

  学生独立完成,教师巡视,进行个别辅导.

  (二)求未知数

  1. 2.

  (三)判断.

  1.分数除法的意义与整数除法的意义相同.( )

  2.已知两个分数的积与其中一个分数,求另一个分数,用除法解答.( )

  3. ( )

  4. ( )

  5. ( )

  (四)解答下面各题.

  1.把 平均分成4份,每份是多少?

  2.什么数乘以6等于 ?

  3.一个正方形的周长是 米,它的边长是多少米?

  四、课堂总结

  这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

  五、课后作业

  (一)计算下面各题.

  (二)解下列方程.

  六、板书设计

  分数除法

分数除法教案 篇4

  教学目标

  1.通过一组习题,学生能够理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。

  2.通过学生试做例1,在理解算理的基础上总结出分数除以整数的计算法则,并能正确地进行计算。

  3.培养学生分析能力、知识的迁移能力和语言表达能力。

  教学重点和难点

  正确的归纳出分数除以整数的计算法则,并能正确地进行计算。

  教学过程设计

  (一)复习导入

  1.投影,看乘法算式写出两道除法算式。

  67=42

  ( )( )=( )

  ( )( )=( )

  问:谁还记得整数除法的意义是什么?

  板书:积 一个因数 另一个因数

  师:这节课我们来学习分数除法的意义和计算法则。(板书课题)

  首先研究分数除法的意义。(板书:意义)

  (二)新授教学

  1.分数除法的意义。

  我们来看下面的问题。(投影出示)

  (1)每人吃半块月饼,5人一共吃几块月饼?

  问:谁会列式计算?

  问:你是怎么想的'?

  (2)两块半月饼,平均分给5个人,每人分得多少月饼?

  问:怎样列式计算呢?

  问:没有学过分数除法,得数怎么得来的?

  (3)两块半月饼,分给每人半块,可分给几个人?

  问:谁会列式计算?

  问:为什么这样列式,怎样算出的得数?

  观察这三个算式,它们之间有什么联系?

  同桌讨论,指名回答。

  生:后两道除法是根据第一道乘法变化而来的,被除数相当于乘法中的积,除数是乘法中的一个因数,商是乘法中的另一个因数。

  板书:积 一个因数 另一个因数

  问:与整数除法对比一下,分数除法的意义是什么?

  同桌互相说一说,指定2~3名学生说。

  板书:已知两个因数的积与其中的一个因数,求另一个因数的运算。

  师:同学们说得好极了!书上是怎么说的?打开书第30页看下面几行字,边读边画出来。

  做一做:(同学们做在书上。投影订正。)

  根据下面的乘法算式和分数除法的意义,写出两个除法算式的得数。

  问:你根据什么写出得数的?

  师:分数除法中的商可以根据与它有关的乘法得出。但是不能每道除法都这么做,下面我们来研究分数除以整数的计算法则。(板书:法则)

  2.分数除以整数的计算法则。

  为什么这样列式?

  (2)根据题意画出线段图。

  生:把1米平均分成7份,取其中的6份。

  (3)4人一组讨论:怎样计算出每段长多少米呢?试说一说算理。

  师:有道理,结果也正确,还有别的方法吗?

  师:这种方法也有道理,分数除以整数到底哪种方法好呢?同学们任选一种方法做下面一题。

  学生做完后提问:你们用的哪种方法?有用第一种方法的吗?为什么不用?

  师:看来第一种方法不能解决所有的分数除以整数的题。第二种方法是可以的。

  (4)观察第二种方法,看哪儿没变,哪儿变了?是怎么变的?

  生:被除数不变,除号变乘号,除数变成了它的倒数。

  (5)试着说一说分数除以整数的计算法则。

  板书:分数除以整数( )等于分数乘以这个整数的倒数。

  想:为什么要空几个字的地方?为什么要加0除外三个字?(补充板书:0除外)

  问:谁再来说一说分数除以整数的计算法则。同桌互相说一说。要真正理解。

  计算法则是否会用呢?我们来自测一下。

  投影做一做,学生做在书上,投影订正。

  (三)巩固练习

  1.计算下面各题。(投影)

  2.判断下面的计算过程是否正确。对的举,错的举,并说明理由。(投影出示)

  (2)题为什么对?举错的说说你的想法?1的倒数是几?

  (3)错在被除数变倒数了,而除数没有变。问:这道怎么改?

  (4)错在除号没有变成乘号。怎么改?

  (5)错在除数没有变成倒数。怎么改?

  去计算。)

  师:同学们审题非常认真,判断力很强。我们做题时就不应该出现上面的错误了。

  下面我们计算几道题,看谁能正确运用计算法则。

  3.计算:

  4.想一想:如果a是一个自然数,

  (3)用一个数检验上面的结果是否对。

  (四)课堂总结

  这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

  (五)作业

  课本32页第3,4,5,6题。

  课堂教学设计说明

  这节课有两部分内容。第一部分是分数除法的意义。在处理这部分内容时,首先出示一组整数乘除法的复习题,复习整数除法的意义,然后通过书中一组分数乘除法题,让学生观察三个算式之间的关系,再与整数一组题比较,发现道理完全一样,从而很自然得出分数除法的意义。第二部分内容是分数除以整数的计算法则,这是本节课的重点和难点。通过画图帮助学生理解题意,让学生讨论试做例1的方法,引导学生自己说出两种不同的思路,老师都加以肯定,然后让学生任选一种方法计算。

分数除法教案 篇5

  教学目标

  1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法

  2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

  教学重点

  找准单位1,找出等量关系.

  教学难点

  能正确的分析数量关系并列方程解答应用题.

  教学过程

  一、复习、引新

  (一)确定单位1

  1.铅笔的支数是钢笔的 倍. 2.杨树的棵数是柳树的 .

  3.白兔只数的 是黑兔. 4.红花朵数的 相当于黄花.

  (二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

  1.找出题目中的已知条件和未知条件.

  2.分析题意并列式解答.

  二、讲授新课

  (一)将复习题改成例1

  例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

  1.找出已知条件和问题

  2.抓住哪句话来分析?

  3.引导学生用线段图来表示题目中的数量关系.

  4.比较复习题与例1的相同点与不同点.

  5.教师提问:

  (1)棉田面积占全村耕地面积的 ,谁是单位1?

  (2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).

  (3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

  解:设全村耕地面积是 公顷.

  答:全村耕地面积是75公顷.

  6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

  (1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

  (公顷)

  (根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

  (二)练习

  果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?

  1.找出已知条件和问题

  2.画图并分析数量关系

  3.列式解答

  解1:设一共有果树 棵.

  答:一共有果树640棵.

  解1: (棵)

  (三)教学例2

  例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?

  1.教师提问

  (1)题中的已知条件和问题有什么?

  (2)有几个量相比较,应把哪个数量作为单位1?

  2.引导学生说出线段图应怎样画?上衣价格的

  3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价 =裤子的单价)

  4.让学生独立用列方程的方法解答,并加强个别辅导.

  解:设一件上衣 元.

  答:一件上衣 元.

  5.怎样直接用算术方法求出上衣的.单价?

  (元)

  6.比较一下算术解法和方程解法的相同之处与不同之处.

  相同点:都要根据数量间相等的关系式来列式.

  不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.

  三、巩固练习

  (一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?

  提问:谁是单位1?数量间相等的关系式是什么?怎样列式?

  (米)

  (二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?

  (三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?

  1.课件演示:

  2.列式解答

  四、课堂小结

  这节课我们学习了列方程解答的方法.这类题有什么特点?解题时分几步?

  五、课后作业

  (一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?

  (二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?

  (三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?

  六、板书设计

分数除法教案 篇6

  设计说明

  分数除法问题的解决是本单元教学中的一个难点。为了突破这个难点,鼓励学生用方程解决分数除法问题,本节课的教学设计重视发挥学生的主体作用,让学生自己发现问题,亲自感受题中数量之间的关系,并在讨论、交流的学习活动中发现规律,从而让学生体会并归纳出用方程解决分数除法应用题的关键,即从题目的关键句中找出数量之间的相等关系,进而帮助学生学会用方程的方法解决有关分数除法的问题。

  苏霍姆林斯基曾说过:“在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、成功者,而在儿童的精神世界中,这种需要特别强烈。”因此,本节课的教学设计给学生提供了充分的探究空间,先让学生独立思考,探究解题方法,再在学生独立探究的基础上,让学生小组合作讨论、交流,探究不同的解题方法,使学生对分数除法问题的数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。

  课前准备

  教师准备 PPT课件

  教学过程

  第1课时 分数除法(三)(1)

  ⊙创设情境,激趣导入

  1.谈话激趣。

  师:我们学校的春季运动会快要开始了,同学们喜欢开运动会吗?为什么喜欢开运动会呢?(学生思考后汇报)

  师:大家都喜欢哪些项目?(学生举手,教师进行统计)

  2.体会等量关系。

  师:咱们班喜欢跑步的人真多呀,大约是全班人数的。你们能说一说这个信息中存在着什么样的等量关系吗?(学生思考后汇报:全班人数×=喜欢跑步的人数)

  3.导入。

  师:不仅我们学校这个时候开运动会,淘气所在的学校也准备开运动会,而且他们学校的学生都在积极地参加训练,争取在运动会上夺得冠军,为班级争光。

  ⊙合作交流,探究新知

  问题。

  师:(出示课件)这是他们训练时的情境,请同学们仔细观察,从这幅图中你能发现哪些数学信息?

  (学生观察后汇报:有6名同学在跳绳,是操场上参加活动总人数的)

  师:同学们观察得真仔细,那么你们能根据这些数学信息提出问题吗?(学生自由提问题)

  设计意图:兴趣是学习的内动力,为了激发学生学习的`兴趣,充分利用情境图,鼓励学生根据信息大胆地提出数学问题,不仅能使学生的思维活跃,热情高涨,还能使学生主动地投入到学习活动中来。

  师:同学们提的问题都非常好,老师这里也有一个问题,你们愿意解答吗?(愿意)

  出示问题:操场上参加活动的总人数是多少?说一说,你是怎么想的?

  (学生先独立思考,然后与同桌说一说自己的想法)

  2.解决问题。

  (1)画图解决问题。

  师:你们能说一说题中所表示的意义吗?试一试,能不能通过画图来解决这个问题呢?

  (学生先交流题中所表示的意义,然后尝试通过画图解决问题并汇报)

  预设

  生:通过画图,我知道是6人,是3人,这样推算下来,操场上参加活动的总人数是27人。(如果学生采用其他画图方法来解决,教师也要给予肯定)

  (2)用方程法解决问题。

  ①分析题中的等量关系。

  师:你知道题中的关键句是哪句话吗?这句话蕴涵了什么样的等量关系?(学生交流,得出:参加活动总人数×=跳绳人数)

  ②自由解决问题。

  师:根据这样的等量关系,你能列方程解决问题吗?快来试一试吧!(学生思考,独立解决问题,教师巡视指导)

  ③汇报。

  师:同学们,谁能说说你是怎样解决这个问题的?

  预设

  生:我是根据“参加活动总人数×=跳绳人数”列方程解决问题的。

  解:设操场上有x人参加活动。

分数除法教案 篇7

  教学目标:

  1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。

  2、通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。

  3、通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。

  教学重点:

  理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:

  分数除以整数计算法则的推导过程。

  教学准备:

  多媒体课件、长方形纸等。

  教学过程:

  一、旧知复习,蕴伏铺垫

  复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。

  1、展示问题:

  (1)什么是倒数?

  (2)你能举出几对倒数的例子吗?

  (3)如何求一个数的倒数?

  2、展示多媒体:笑笑和淘气去买白糖。

  问题1:他们每人买了两袋白糖,一共买了多少袋白糖?

  问题2:这些白糖一共重2千克,每袋白糖有多重?

  问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?

  二、创设情境,理解意义

  展示多媒体:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

  1、利用准备好的纸,先把纸平均分成7份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的`这部分占整张纸的几分之几。

  2、汇报

  三、大胆猜想

  学生通过操作,明白2/7是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。

  四、再次探究

  1、学生很快发现有些算式是无法用以上结论计算出来的,如4/7÷3,分子4除以3是除不尽的。

  2、让学生动手分一分、涂一涂,然后再让他们进行小组交流。

  3、得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。

  板书: 分数除法(二)

  除以一个整数(零除外)等于乘这个整数的倒数。

分数除法教案 篇8

  教学目标

  1.使学生理解两个整数相除的商可以用分数来表示.

  2.明确分数与除法的关系,加深学生对分数意义的理解.

  教学重点

  理解、归纳分数与除法的关系.

  教学难

  用除法的意义理解分数的意义.

  教学步骤

  一、铺垫孕伏.

  1.读题说得数.

  3.2+1.680.8×0.514-7.40.3÷1.54.8×0.02

  7.8+0.91.53-0.70.35÷150.4×0.80.8-0.37

  2.口述表示的意义.

  3.列式计算.

  (1)把40棵树苗平均分给5个小组栽,每组栽多少棵?

  (2)把8米长的钢管平均分成2段,每段长多少米?

  二、探究新知.

  1.新课导入.

  出示例2:把1米长的钢管平均截成3段,每段长多少米?

  板书:1÷3

  教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)

  2.教学例2.

  (1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数来表示,1米的就是米.(板书米)

  (2)学生完整叙述自己想的过程.

  (3)反馈练习.

  ①把1米长的钢管,平均分成8段,每段长多少?

  ②把1块饼平均分给5个同学,每个同学得到多少块?

  3.教学例3.

  出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?

  (1)读题列式:3÷4

  (2)动手操作:怎样把3块饼平均分给4个同学呢?

  (3)学生交流.

  甲生:先把每个圆剪成4个块,然后把12个平均分成4份,再把3个拼在一起,每份是块.

  乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个拼在一起,得到每个分块.(在3÷4后板书块)

  (4)看图根据乙生分饼的过程说出表示的意义.

  ①乙生把3块饼平均分成了4份,这样的一份是3块饼的,即

  ②甲生把1块饼平均分成了4份,表示这样的3份的数是.

  (5)都是,意义有何不同?(结合算式说出的两种意义)

  明确:表示把3平均分成4份,取其中的1份;

  还表示把单位“1”平均分成4份,取这样的3份.

  (6)反馈练习:说说下面分数的两种意义

  4.归纳分数与除法的关系.

  (1)教师提问:怎样用分数来表示整数除法的商呢?

  学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的`商.

  (板书:)

  教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数.

  (2)讨论:用字母表示分数与除法的关系有什么要求?

  (3)反馈练习.

  三、全课小结.

  通过今天的学习,你明白了什么?

  四、随堂练习.

  1.填空.

  分数可以用来表示除法算式的().其中分数的分子相当于(),分母相当于().

  2.用分数表示下列各式的商.

  4÷511÷1327÷35

  9÷913÷1633÷29

  3.列式计算.

  (1)把5米长的绳子,平均分成12段,每段长多少米?

  (2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  (3)小明用15分钟走了1千米路,平均每分走几分之几千米?

  五、布置作业.

  用分数表示下面各式的商.

  3÷47÷1216÷4925÷249÷9

分数除法教案 篇9

  单元教材分析:本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。主要内容包括分数除法的意义和计算;解决问题;比的意义与基本性质,求比值一化简比,以及比的应用。通过本单元的`学习,学生可以比较系统大掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。

  单元教学目标:

  1、理解并掌握分数除法的计算方法,回进行分数除法计算。

  2、回解答已知一个数的几分之几是多少求这个数的实际问题。

  3、理解不的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值

  4、能运用比的知识解决有关的实际问题。

  学情分析:

  本单元学习之前,学生基本上完成了分数加、减以及分数乘法的学习。学生可以根据整数除法的意义理解分数除法的意义。

  教学目标:

  1、让学生理解分数除法的运算意义。

  2、掌握分数除以整数的计算方法。

  3、培养学生的计算能力和分析能力。

  教学过程:备注

  活动一:

  出示例1

  每盒水果糖重100克,3盒有多重?

  1、读题理解题意

  2、列式100*3=300

  3、把乘法算式改成两道除法算式

  300/3=100300/100=3

  4、用千克做单位怎样列式?

  1/10*3=3/10

  5、|用同样的方法改写成除法算

  小结:分数除法的意义

  活动二:

  出示例2

  把一张纸的4/5平均分成2份,每份是这张纸的几分之几?自己试着折一折,算一算

  1、把4/5平均分成2份,就是把4个1/5平均分成2份,每份就是2个1/5,就是2/5

  2、把4/5平均分成3份,每份就是4/5的1/2,也就是4/5*1/2

  3、根据上面的折纸实验和算式,你发现什么规律?

  小结:(略)

  活动三:

  巩固练习:

  1、31页做一做1、2

  板书设计

  略去设计

分数除法教案 篇10

  教学要求:

  1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重难点:

  分数除法应用题的特点及解题思路和解题方法。

  教学过程:

  一:复习

  1、根据条件说出把哪个数量看作单位1。

  (1)棉田的面积占全村耕地面积的2/5。

  (2)小军的体重是爸爸体重的3/8。

  (3)故事书的本数占图书总数的1/3。

  (4)汽车速度相当于飞机速度的1/5。

  2、找单位1,并说出数量关系式。

  (1)白兔的只数占总只数的2/5。

  (2)甲数正好是乙数的3/8。

  (3)男生人数的1/3恰好和女生同样多。

  3、一个儿童体重35千克,他体内所含水分占体重的4/5,他体内的水分有多少千克?

  集体订正时,让学生分析数量关系,说出把哪个数量看作单位1,并说出解答这个问题的数量关系式,即:体重4/5=体内水分的重量。同学们都能正确分析和解答分数乘法应用题,分数除法应用题又如何解答呢?今天这节课我们就一起来研究。(板书课题:分数除法应用题)

  二、新授

  1、教学例1。一个儿童体内所含的水分有28千克,占体重的4/5。这个儿童体重有多少千克?

  (1)指名读题,说出已知条件和问题。

  (2)共同画图表示题中的条件和问题。

  (3)分析数量关系式

  提问:根据水份占体重的4/5,可以得到什么数量关系式?

  学生回答后,教师说明:例1和复习题的第二个已知条件相同,因此单位1相同,数量关系式也相同,都是把体重看作单位1,数量关系式是:体重4/5=体内水分的重量。

  根据学生的回答,把线段图进一步完善。

  提问:根据题目的条件,我们已经找到了这一题的数量关系式:体重4/5=体内水分的重量。现在已知体内水分的重量,要求儿童体重有多少千克,可以用什么方法解答?(引导学生说出用方程解答。)

  让学生试列方程,并说出方程表示的意义。

  让学生把方程解完,并写上答案。

  出示教材的检验,提问:要检验儿童的体重是不是正确,应该怎样做?(用求出的体重乘4/5,看看是不是等于水分的千克数。)

  2、比较。

  提问:我们再把例1与复习题比较,看看这两题有什么相同的地方,有什么不同的地方?

  根据学生的回答,帮助学生整理出:

  (1)看作单位1的数量相同,数量关系式相同。

  (2)复习题单位1的量已知,用乘法计算;

  例1单位1的量未知,可以用方程解答。

  (3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位1,根据单位1是已知还是未知,再确定是用乘法解还是方程解。

  三、巩固练习

  1、做书P34做一做

  要求学生先按照题目中的想说出想的过程,说出数量关系式,再列方程解答。订正时要说一说是按照什么来列方程的。

  2、做练习九第1题。

  先让学生找出把哪个数量看作单位1,说出数量关系式,再列方程解答。

  四、小测:(略)

  五、小结:这节课我们研究了什么问题?解答分数应用题的关键是什么?单位1已知用什么方法解答?未知呢?

  六、布置作业

  练习九第2题

  教后反思:学生在已学过的分数乘法应用题的基础上,能找出关键句,并根据关键句说出相对的数量关系式。为孩子创造做数学的机会,通过让学生积极参与知识的形成过程,让学生运用已有的知识经验,从不同的角度,用不同方法获取新知识,在不同程度上都得到发展。使学生不但知其然,还知其所以然。同时又使学生的观察力、想象力、思维能力和创新能力得到培养和发展,在学会的过程中达到会学的`目的。

  再根据题目的条件判断单位1的量,是已知的就乘法计算;单位1的量是未知的就用方程来解答;并学会了怎样验算。教学中不仅要重视知识的最终获得,更要重视学生获取知识的探究过程。结论仅是一个终结点,而探究结论、揭示结论的过程则是由无数个点组成的线、面、体,在探究的过程中,只有让学生动手做数学,学生很可能获得超出结论自身的价值的若干倍的数学知识。

  小测:列出数量关系式,并列式解答。

  1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)

  2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)

  小测:列出数量关系式,并列式解答。

  1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)

  2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)

【分数除法教案】相关文章:

分数除法教案02-07

《分数除法》教案02-23

分数与除法教案12-15

分数除法教案范文04-26

分数除法教案15篇02-14

分数除法教案(精选14篇)02-17

有关分数除法教案集合9篇02-03

分数除法的意义和计算法则教案02-26

分数除法教案集合七篇10-25

关于分数除法教案集锦10篇10-19