分数与除法教案
作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,借助教案可以有效提升自己的教学能力。那么优秀的教案是什么样的呢?以下是小编精心整理的分数与除法教案,欢迎阅读,希望大家能够喜欢。
分数与除法教案1
一、教学目标:
1、知识与技能:
(1)会在分数乘除法应用题中找出单位“1”,会判断单位“1”是已知的还是未知的。
(2)会列式解答分数乘除法应用题。
2、过程与方法:
通过整理、交流、合作、探究,体验探究的乐趣,感受数学的价值,培养学生“学数学,用数学”的意识。
3.情感与态度:激发学生对找单位“1”的情感体验,有意培养学生的解答应用题意识,并最终养成正确解答应用题的良好习惯。
二、教学重点:
会在分数乘除法应用题中找出单位“1”,会判断单位“1”是已知的还是未知的。
三、教学难点:
会列式解答分数乘除法应用题,用所学知识解决实际问题。
四、教学过程:
一、预学
课前学生诵读“数学经典”
师生谈话:
师:同学们都看过西游记吗?最喜欢里面哪个人物?为什么?
生:看过,最喜欢孙悟空的勇敢机智,不怕困难的精神。
师:今天老师就带大家一起重温西游戏故事,体验成功的乐趣,大家喜欢吗?
(一)四基训练
根据已知条件先找出“1”的量,再找出数量关系。
1、花果山有45只小猴子,老猴子的只数是小猴子的4/5
()×4/5=()
2、水帘洞里有12只大石碗,相当于小石碗数量的1/3
()×1/3=()
3、孙悟空体重40千克,占猪八戒体重的1/5
()×1/5=()
(二)自主探究
1、镇元大仙的人参果树上结了80个人参果,孙悟空一棒子打落了3/8,打落了多少个人参果?
2、师徒四人在翻越"狮驼岭"大战时,猪八戒消灭了150个妖怪,是沙僧消灭妖怪数量的5/7,沙僧消灭了多少个妖怪?
3、孙悟空在车迟国与虎力大王斗法比求雨.孙悟空施法时,大雨整整下了48小时。虎力大王求雨的时间比孙悟空少5/8,虎力大王求雨时大雨下了多少小时?
4、孙悟空在狮驼岭与大鹏妖怪斗法,大鹏每秒可飞行48千米,要比孙悟空的速度快1/5,孙悟空施展法力时每秒可飞行多少千米?
问题:
(1)找出各题里的“1”,说说它是已知还是未知,用方程解答还是用算术方法解答呢?
(2)找出数量关系。
A:()×3/8=()
B:()×5/7=()
C:虎力大王求雨的时间=()Ο()×5/8
D:()Ο()×1/5=大鹏的速度
(3)列式或列方程
学生首先自主学习十分钟,当有质疑时可互学或小组内组学,从而进入互学环节。
二、互学
(一)小组交流,展示点评:
先在小组内交流
小组长组织,组内成员依次交流
小组内讨论导学目标中的每个问题,组长并记录好。
(二)由小组在班内展示,学生点评
提示:台上交流的小组交流时,其他小组要与台上小组做好互动,如果有同学说错了(及时指正)或不完整要做好补充。
中心发言组发言结束后,由主持人或组长总结本组学习的内容或本组在发言时的表现。然后由各位学生对这个小组做出评价,老师可以进行总评,适当的发言。
预设:
虎力大王求雨的时间=()+()×5/8
有少数学生不会判断加还是减,关键在于不知道哪个量多哪个量少。
1、找数量关系。
A:树上结的果子数×3/8=打落的果子数
B:沙僧消灭妖怪的数量×5/7=猪八戒消灭妖怪的数量
C:虎力大王求雨的时间=孙悟空求雨的时间-孙悟空求雨的时间×5/8
D:孙悟空的速度+孙悟空的速度×1/5=大鹏的速度
(3)列式或列方程
A:80×3/8
师点拨板书:
以a为单位1,a已知,求b(另一个量)b=a×()/()
B:解:设沙僧消灭妖怪的数量为X个5/7X=150
师点拨板书:
以a为单位1,a未知,求a,设a为XX×()/()=b(是已知的另一个量)
C:48-48×5/8
师点拨板书:稍复杂的
以a为单位1,a已知,求b(另一个量)b=a+(-)a×()/()
D:解:设沙僧的速度为XX+1/5X=48
师点拨板书:稍复杂的
以a为单位1,a未知,求a,设a为XX+(-)X×()/()=b(另一个量)
三、评学:
(一)巩固反馈
1、孙悟空在王母娘娘的蟠桃园里捣乱,打落了120个红色的桃子,打落的青色的'桃子比红色的桃子还要多1/3,孙悟空打落了
多少个青色的桃子?
2、唐僧的体重为60千克,比孙悟空体重多1/5,孙悟空的体重是多少千克?
3、花果山的猴子真多,老猴子和小猴子共有81只,其中老猴子的只数是小猴子只数的4/5。花果山里老猴子和小猴子各有多少只?
(1)找出各题中的“1”,是已知还是未知?你确定可以用什么方法解决问题更合适?
(2)你能准确的找出题里的数量关系吗?请根据数量关系列式或列方程。
(二)拓展提升
孙悟空和猪八戒比法力,在一座高大的山中间要开出一条平整的大路。孙悟空单独做用8分钟就可以完工,猪八戒单独做得用12分钟才可以完工。如果孙悟空先开凿3分钟后,猪八戒再加入合作,他们师兄二人还需要几分钟就可以完工?
属于哪类型的分数应用题?
解决此类应用题要注意哪些问题?
(三)随堂检测
1、松树有80棵,是柳树的棵数的5/8,柳树有多少棵?
2、美术小组有25人,手工小组的人数比美术小组少1/5,手工小组多少人?
3、松树有80棵,比柳树的棵数多5/8,柳树有多少棵?
分数与除法教案2
教学目的
1理解分数除法的意义,掌握分数除法的计算方法。
2进一步培养学生抽象概括的能力和计算能力。3进一步渗透转化的数学思想。教学重点理解分数除法的意义,掌握分数除以整数的计算方法。教学难点培养数学能力,渗透转化思想。课型讲练课教法讨论、讲解教具投影
板书设计1分数除以整数例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?解:4/52 = 0.82 = 0.4(米)4/52 = 42/5 = 0.4(米) 4/52 = 4/51/2 = 0.4(米) 课后小结内容设计合理,结构紧凑,一步一步让学生体会分数除以整数,可以有多种方法解答,只有把除以整数改写成乘整数的倒数,这样才是最简便的,学会了把新知改变成旧知来解决问题的这种学习方法,拓展了思路,活跃了思维。 教学过程意图媒体教师活动学生活动
一、复习导入新课为迁移做准备
明确分数除法意义投影 板书 投影 小结 板书1列式计算:一袋洗衣粉重1/2千克,4袋洗衣粉重多少千克?1/24 或41/22改编并列式:把上题改编成两道除法应用题① 4袋洗衣粉重2千克, 一袋洗衣粉重多少千克?2 4 = 1/2(千克)②一袋洗衣粉重1/2千克, 几袋洗衣粉重2千克?21/2 = 4(千克)3讨论:结合以上三题,请同学们思考分数除法的意义。通过以上数学活动,同学们已经明确了分数除法与整数除法的意义相同,是已知两个因数的与其中的一个因数,求另一个因数的运算。那么分数除法又怎样计算呢?今天我们就来研究这个问题。课题:分数除法指名口答 求4个1/2是多少。 生编题,师板书。 根据上题数量关系说出结果
二、新课学习分数除法的计算方法
学习分数除法的计算方法板书 激发兴趣 汇报 板书
板书 1出示例1:把一根长4/5米的'铁丝,截成相等的两段,每段长几米?理解4/5米的意义 ?米 ?米
4/5米通过以上活动,我们进一步理解了题意,你能否根据题意把它转化成已学过的知识进行计算?解:①4/52 = 0.82 = 0.4(米)②4/52 = 42/5 = 0.4(米) ③4/52 = 4/51/2 = 0.4(米)重点说明③把4/5米平均分成2份,求每份是多少,就是求4/5米的1/2是多少米?列式是4/51/2。2尝试计算方法:三选一计算3/85 1/32 5/93①3/85 = 3/81/5 = 3/403/85 = 35/8 = 0.6/8 = 3/403/85 = 0.3755 = 0.075②1/32 = 1/31/2 = 1/6 1/32 = 12/3 = 0.5/3 = 1/6③5/93 = 5/91/5 = 5/27哪种方法最好,为什么?3用这种最简便方法计算:7/1314
5/9104归纳计算法则:①口述做上述两题的方法②除以10 改写成乘1/10。③1/10是10 的倒数。分数除以整数(0除外),等于分数乘这个整数的倒数。审题列式 理解意义
讨论方法
选择自己喜欢的方法计算其中一题 讨论③最适用 小组讨论 为什么要0除外
三、练习巩固分数除法的计算法则投影
投影 1计算:14/157 4/53 4/1182填空:2/35 = 2/3( )3/79 = 3/7( )5/610 = 5/6( )19/208 = 19/20( )3/116 = 3/11○1/65/66 = 5/6○( )12/173 = ( )○( )3课后讨论:2/73你会做,32/7你行吗?认真计算
分数与除法教案3
第课时分数与除法
1、通过学习,使学生进一步理解分数的意义,知道分数还可以表示除法的商,被除数相当于分数的分子,除数相当于分数的分母,学生能够用分数表示整数除法的商。
2、通过学习,使学生进一步理解分数的意义,知道分数还可以表示数量,理解并掌握1个的几分之几就是几分之几个,几个的几分之一就是几分之几个。
3、能运用分数与除法的关系解决相关的问题。
4、让学生经历分数与除法的关系的探究过程,经历求一个数是另一个数的几分之几的解答过程。
【重点】理解和掌握分数与除法的关系。
【难点】理解用分数可以表示两个数相除的商。
【教师准备】 PPT课件,口算卡片。
【学生准备】 3个完全相同的圆片,剪刀。
填一填。
(1)表示的意义是()。
(2)的分数单位是(),它有()个这样的分数单位。
【参考答案】
(1)4个是多少
(2)7
老师出示口算卡片,学生口答。
8÷4= 15÷5= 12÷3=
5÷4= 6÷5= 7÷3=
师:比较这6道题的商,你发现了什么
预设生:上面3题的商没有余数,下面3题的商都有余数。
师:以前计算整数除法时,如果遇到除不尽或得不到整数商的情况,我们就只算到个位,然后写出余数是几,有了分数以后,就可以解决这个问题了。除法的商怎么能用分数表示呢除法与分数有什么关系呢这就是我们今天要研究的问题。(老师板书课题:分数与除法)
由比较两组口算题的'结果引入课题,使学生明确用分数可以表示除法的商。
师:请同学们回忆一下,在计算除法时,如果遇到除不尽或得不到整数商的情况,我们是怎样处理的。
预设生:可以用小数表示商,或者除到个位后,用余数表示结果。
师:你们知道吗有了分数,再遇到这种情况,我们就可以用分数来表示商。想不想知道怎样用分数来表示除法的商(想)要想知道怎样表示,就要先理解分数与除法的关系。(老师板书课题:分数与除法)
通过老师提问,引起学生思考,激发学习欲望。
一、教学例1,掌握用分数表示除法的商的方法。
1、PPT出示例1。
(1)学生看图、读题,思考解答方法。
(2)指名回答:求每人分得多少个,怎样列式
预设生:根据题意应该列式为:1÷3。
(3)用PPT出示:用一个圆表示一个蛋糕,把一个圆平均分成3份,其中1份涂色。让学生根据图意说出结果是多少。
预设生:每人分得个。
老师根据学生回答板书:1÷3=(个)。
2、巩固练习。
用分数表示下面各题的商。
3÷7= 5÷8= 9÷10=
21÷32= 4÷11= 6÷13=
【参考答案】
使学生了解用分数表示商的方法。
二、教学例2,使学生理解分数与除法的关系。
1、PPT出示例2。
(1)学生看图、读题,思考解答方法。
(2)指名回答:求每人分得多少个,怎样列式
预设生:根据题意应该列式为:3÷4。
(3)让学生拿圆片代替月饼实际分分,可能有不同的分法。然后让学生汇报。
(4)用PPT出示:把3个月饼平均分成4份,其中1份是3个四分之一个月饼,再把这3个四分之一拼起来,可以看出得到了四分之三个月饼。然后让学生说出结果是多少。
预设生:每人分得个。
老师根据学生的回答进行板书:3÷4=(个)。
2、老师引导学生观察除法算式与分数,探究它们之间的关系。
(1)用文字进行表述例1和例2的算式。
1÷3=
3÷4=
被除数÷除数的结果怎样表示得到:
被除数÷除数=
(2)学生在小组中学习用语言描述分数与除法之间的关系,然后指名回答。
预设生:被除数相当于分数中的分子,除数相当于分数中的分母,除号相当于分数中的分数线。
(3)小组讨论,用字母表示出分数与除法的关系,然后派代表发言。
预设生:a÷b=。
(4)引导学生思考b可以是0吗学生通过小组讨论后明确,因为除数不能为0,所以分数的分母不能为0,因此b也不能等于0。
老师根据学生的回答进行板书。
a÷b=(b≠0)
被除
除数
数
(5)教师小结:现在学习了分数与除法的关系,复习题中表示的意义,还可以看作把“4”平均分成5份,表示这样一份的数。
通过小组讨论,使学生明确分数与除法的关系。
三、教学例3,使学生经历求一个数是另一个数的几分之几的过程,进一步理解分数的意义,知道分数还可以表示两种数量比较的关系。
1、PPT出示例3。
(1)学生读题,理解题意。
(2)出示自学要求:
①想一想,答案是多少
②有什么办法说明自己的答案是正确的怎样说明
③题中的两个问题有什么关系
学生根据自学要求翻开教材第50页,自主学习、交流,老师巡视了解学情,对学生进行指导。
(3)组织学生汇报自学情况,展示答案。
自学要求①:
预设生:求“鹅的只数是鸭的几分之几”就是求7只是10只的几分之几,用除法计算,列式为:7÷10,根据分数与除法的关系可知结果是。求鸡的只数是鸭的多少倍,也用除法计算:20÷10=2。
自学要求②:
预设生:可以通过画图分析,证明自己的答案是正确的。
(根据学生回答,展示学生画的图或用PPT出示教材第50页的图)
自学要求③:
预设生:第1问是求一个数是另一个数的几分之几;第2问是求一个数是另一个数的几倍。这两个问题都用除法计算。
2、老师引导学生小结:求一个数是另一个数的几分之几,或几倍,都用除法计算。两个数相除,如果商是整数,那么用几倍来表示;如果商不是整数,那么用几分之几来表示。(老师板书)
3、师:根据题意,你们还能提出其他的数学问题并解答吗
(1)学生在小组里讨论,提出问题并解答。
(2)各小组展示提出的问题和解答的过程。
预设生1:我们提出的问题是:鹅的只数是鸡的几分之几解答是:7÷20=。
生2:我们提出的问题是:鸭的只数是鸡的几分之几解答是:10÷20=。
……
4、巩固练习。
五、(1)班有男生23人,女生22人。
(1)女生人数是男生人数的几分之几
(2)女生人数是全班人数的几分之几
(3)男生人数是全班人数的几分之几
学生独立解答,指名回答,集体订正。
分数与除法教案4
时间:20xx年11月26日
地点:大会议室
主备人:赵
参加人员:六年级全体数学教师
教研内容:稍复杂的分数除法应用题
教学目标:
1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。
教学重点:
弄清单位“1”的量,会分析题中的数量关系。
教学难点:分析题中的数量关系。
重难点突破:
稍复杂的分数除法应用题是分数应用题的最后一块内容,也是学生最难理解的一类。对于分数乘法应用题的数量关系相对来说,学生理解起来较轻松。而分数除法应用题是乘法应用题的逆思考,学生对于这种逆向思维感到一定的困难。针对这一情况,帮助学生如何选择解题策略显得尤其重要。可以不直接让同学们解决问题,而是先让学生回忆一下我们可以利用那些方法帮助解答应用题。这时学生就归纳如下:画线段图、把应用题编成文字题、找出数量关系式、找准标准量和比较量、列方程解答应用题。这些就是解题策略。不同程度的同学都可以找到适合自己的方法,从而解答题目。对于程度较好的同学,可以选择前3种方法,对于程度较差的同学可以选择第4种方法,而对于习惯于顺向思维的同学来说,选择列方程解答应用题应该是最合适的方法。
模式方法:情境导入——合作探究——解决问题——巩固练习
作业设计:练习通过认真分析,找出每道题的数量关系式
组内教师讨论要点:
1。尊重学生的认知经验引入教学
新课程背景下的数学教学“强调从学生已有的生活经验出发”,教师要做的事,对学生已有的知识储备要有足够的了解和重视,给学生应有的.思维的空间。在本课学习之前,学生已掌握分数基本应用题的分析方法和解答方法,稍复杂的分数应用题的分析方法与前面相似,学生已具备分析能力,因此本课教学中学生尝试解决,交流思路,在互动中明确思路,掌握方法,体会成功,保持自主学习的积极性。
2.精心设计练习巩固新知
精心设计练习,使学生学以致用,体会到学数学有用。课堂气氛就会活跃,学生生命动力才能在数学课堂上得以充分的发挥。
活动总结:
全体教师针对研究主题进行研讨,各抒己见,畅所欲言,结合自己以往的教学经验,探讨重点难点的突破方法,找到了这列应用题的解答方法,对课堂教学的顺利进行做好准备。
分数与除法教案5
教学目标:
使学生掌握用方程解答已知一个数的几分之几是多少求这个数的题目。
教学重点:
分析题里所含的数量关系,把哪个数看作单位1。
教学难点:
怎样列出方程。
教学过程:
一、复习
列式计算,并口述把哪个数看作单位1。
(1)的是多少? ( )看作单位1。
(2)14的是多少? ( )看作单位1。
(3)1的是多少? ( )看作单位1。
二、新授
1、板书课题:列方程解文字题
2、出示例4:一个数的是,这个数是多少 ?
(1) 分析数量关系
提问
①这道文字题与刚才复习时的文字题有什么联系和区别?(使学生明白它们的数量关系一样,只是已知未知不同)
②硬该把哪个数看作单位1?为什么?
③单位1所表示的数知道吗?
④怎样求单位1所表示的“这个数”?(引导学生用设未知数X的方法来解决)。
使学生明确:根据一个数乘以分数的意义。
由已知:一个数的.是,得:一个数×=?
(2) 列方程解文字题。
第一步,设未知数为X。教师板书
解:设这个数是X。
第二步,根据题意列出方程。教师板书
X×=
第三步,解这个方程。教师板书:(略)
第四步,检验:(略)
第五步:作答
3、小结
(1)怎样设求知数?
要求单位“1”的量,设单位“1”的量为X。
(2) 样根据题意列方程?
找出题中数量之间的等量关系。
三、巩固练习
1、教科书第35页“做一做”。
2、一个数的1倍等于2,求这个数。
四、课堂练习
练习九第12、16—19题。
五、作业
练习九第13—15题。
六、课外思考
练习九思考题。让学生发现规律:第(1)题,后一个数是前一个分数的。第(2)题,把带分数化成假分数。后一个分数的分母是前一个分数分母的2倍;而分子是前一个分数分子的3倍。
分数与除法教案6
教学目标
1、结合具体情境,使学生掌握分数混合运算的顺序,能正确进行计算
2、能运用所学知识解决简单的实际问题,提高综合解题能力。
学情分析
本班共有72名学生,男女生人数协调,基础知识比较扎实,应用题的解决较差,少数学生数学成绩很差。
重点难点
1、掌握分数混合运算的顺序,正确计算分数混合运算。
2、解决有关的实际问题。
教学过程
4、1复习导入
4、1、1教学活动
活动1【导入】复习导入
不计算,说说下面各题的'运算顺序。
3700÷9 0、3×9÷6
50×【(900—90)÷9】
活动2【讲授】合作探究
1、出示例3
一天吃三次,每次吃半片,12片药可以吃几天?
2、理解题意
(1、)分析题意,列出算式。
(2、)提问:求小红可以吃几天,应先求什么?再求什么?
(3、)小组合作讨论并填写预习卡。方法一:每次吃半片,吃3次:
12片可以吃几天?
方法二:12片可以吃:12÷ =12×2=24(次)
24次可以吃:24÷3=8(天)
(4)互相交流,请两位同学板演并说一说解题思路。
(5)列出这两种方法的综合算式。
(6))提问:综合算式里分别含有几级运算?应先算什么,再算什么?
7)小结:分数混合运算和整数混合运算相同,在同级运算中,如果
没有括号,按从左往右的顺序计算。如果有两级运算,先算乘除,再算
加减。有括号的先算小括号,再算中括号。
活动3【练习】巩固练习
1、完成教材第33页“做一做”。
提问:梯形的面积公式是什么?
2、完成教材第35页第10题。
活动4【作业】课堂小结
这节课你有什么收获?
分数与除法教案7
教学目标
使学生进一步掌握分数除法的计算方法,提高分数四则计算的能力。
教学重难点
进一步掌握分数除法的计算方法。
教学准备
教学过程设计
教学内容
师生活动
教学过程
一、揭示课题
二、计算练习
三、综合练习
四、课堂。
五、作业
1、复习法则。
问:分数除法要怎样计算?
2、计算:
5/7÷1014÷4/512/13÷8/9
三人板演。
3、练习八17
上下练习,说说是怎样想的。
问:分数加减法要怎样算?分数乘法怎样算?分数除法呢?
4、练习八18
学生口答,选择说怎样算的?
1、练习八19第一行
四人板演;计算时说明要注意的约分等问题。
2、练习八20
说说已知什么数量,要求什么数量。
练习计算。
口答算式与结果,让学生说说各按怎样的数量关系列式。
3、练习八21
问:解答这道题的数量关系是什么?
学生解答。口答算式。
为什么3/4×2/5来计算?
3、口答。
根据下面的条件,先说出哪个是单位“1”的量,再说出数量关系式。
(1)桃树占果树总棵数的2/5。
(2)三好学生占全班人数的3/20。
(3)修好了一条路的'3/7。
(4)一堆煤的1/4已经运走。
(5)这批布的2/3是花布。
单位“1”的量×几分之几=几分之几的对应数量
练习八19第二、三
课后感受
本节课上下来,分数计算学生们掌握得都不错。在分数乘法应用题如21题的第三小题还存在一些问题,在这些题型方面下功夫。
分数与除法教案8
学习目标:
1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。
2 .掌握一个数除以分数的`计算方法,并能正确进行计算。
学习重点:理解一个数除以分数的意义和基本算理。
学习难点:运用分数除法的计算方法解决实际问题。
学习内容:
一、分一分
有4张同样的圆形纸片。
(1)每2张一份,可以分成多少份?
画一画:
列示:
(2)每1张一份,可以分成多少份?
画一画:
列示:
(3)每1/2张一份,可以分成多少份?
画一画:
列示:
(4)每1/3张一份,可以分成多少份?
画一画:
列示:
(5)每1/4张一份,可以分成多少份?
画一画:
列示:
二、画一画
1.有1根2米长的绳子。
(1)截成每段长1/3米,可以截成几段?
画一画:
列示:
(2)截成每段长2/3米,可以截成几段?
画一画:
列示:
2.3/4里面有几个1/8?
画一画:
列示:
三、填一填,想一想
在〇里填上“>”“<”或“=”。
4÷1/2〇4×2 4÷1/3〇4×3 4÷1/4〇4×4
2÷1/3〇2×3 2÷2/3〇2×3/2 3/4÷1/8〇 ×8
你发现了什么?( )
四、试一试
8÷6/7 5/12÷3
你能把“除以一个整数(零除外),等于乘这个整数的倒数。”和“除以一个分数,等于乘这个分数的倒数。”这两句画合并成一句话吗?
( )
分数与除法教案9
教学目标:
使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,能够正确地进行计算。
教学重点:
掌握分数除法的计算法则。
教学过程:
一、复习
说出下列分数的倒数。
二、新课
1、教学例3
提问:按照题意应该怎样列式?(生说师板书)
想一想:分数除以分数应该怎样计算?(学生回答计算步骤,教师板书)÷=×==3
教师:分数除以分数的计算方法跟整数除以分数有什么联系?
让学生总结:(整数除以分数,被除数不变,把除法转化成乘法,也就是转化成乘原分数的`倒数。分数除以分数,也是被除数不变,把除以分数转化成乘除数的倒数。)也就是:(教师板书)一个数除以分数,等于这个数乘以除数的倒数。
学生看书P29读法则。
教学分数除法的统一法则。
做完后让学生进行对比,三道题的计算过程有什么相同点?(第一题是乘整数的倒数,第2、3题是乘分数的倒数。)
教师提问:整数能否看成分数?(可以看成分母是1的分数)
教师:前面学过的分数除以整数和一个数除以分数的计算法则,能否统一成一个法则呢?(可以,这就是:甲数除以乙数(0除外),等于甲数乘乙数的倒数。教师板书)
学生看书P30并读统一的法则。
三、巩固练习
1、做P30例4前面的做一做题目。学生独立完成,然后集体订正,订正时让学生说一说法则。
2、做练习八第5题第1行的小题。第6题的前两栏的题目。
3、做第7题。注意引导学生列式,(这是求一个数是另一个数的几倍或几分之几的文字题。用除法计算。)
4、做练习八的第8题。
学生做后教师让学生说一说想法。
5、做练习八第9题。
做题前提问:1米等于多少厘米?1千米等于多少米?1 吨等于多少千克?1小时等于多少分?然后让学生独立做题,做完后集体订正。做练习八第10题。教师让学生独立审题,然后提问:这题求什么?分析以后,让学生独立完成,集体订正。
四、小结
教师先问学生今天学习了什么?然后指出:分数除法法则是除法普遍适用的法则。
五、作业
练习八第5题第2行的小题,第6题的第3、4栏小题。
分数与除法教案10
教学目标:
1、使学生掌握分数乘加、乘减除加、除减混合运算的顺序,能正确地进行计算。
2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。
3、运用分数乘除法的相关定律解决实际问题。
教学重点:熟练掌握运算定律,灵活、准确地进行简便计算,运用分数乘除法解决实际问题。
教学难点:运用分数乘除法的相关定律解决实际问题。
温故案
一、知识要点:分数乘除法、倒数、比。
1、分数乘法的意义:(1)分数乘整数,就是求几个相同 的 的 运算。
(2)一个数(整数或分数)乘分数,就是求 的 是多少。
2、分数除法的意义:分数除法的意义与整数除法的意义 ,就是已知两个因数的 和其中一个 ,求另一个 的运算。
3、分数乘法的计算(分数和整数相乘、分数乘分数)。
因为整数都可以看成分母是1的分数,所以分数乘法的计算方法是用 相乘的积作 ,用
相乘的积作 ,能约分的要先 ,然后再计算。
4、分数除法的计算(分数除以整数、一个数除以分数)。
在分数除法中,除以一个不等于0的数,等于乘以这个数的 。
5、运用乘法运算定律进行分数的简便运算:分数乘法中进行分数的简便运算时经常要用到的运算定律有 。
6、分数四则混合运算:(1)乘除混合运算的,遇到除以一个数,就转化成 这个数的
然后采用一次约分的方法计算。(2)四则混合运算的,按先 后 的运算顺序进行计算,有括号的',先算 ,再算 。
7、倒数的意义和求倒数的方法: 互为倒数;求一个数(0除外)的倒数,只要把这个数的分子和分母 。注意:1的倒数是 ,0有倒数吗?
8、比的意义和基本性质:两个数 又叫做两个数的比。在两个数的比中,比号前面的数叫做比的 ,比号后面的数叫做比的 ,两者相除多得的商叫做 。比的前项和后项同时 或 相同的数, 不变,这叫做比的基本性质。
9、比和分数、除法的关系。
比前项比号后项比值
除法
分数
巩固案
二、跟踪练习
(一)填空题:
1、40分=( )小时 3/5千米=( )米 23×( )=1 1.5和( )互为倒数。
2、 ( )∶8=1.2∶( )=0.75=( )÷6=( )折=( )成
3、把一根4米长的绳子平均分成5段,每段长( )米,每段占全长的( )。
4、把盐和水按1∶19的比例配成盐水,盐占盐水的( )(填分数)
5、一根钢材长6米,若用去1/2米,还剩( )米;若用去它的1/2,还剩( )米。
6、甲数是乙数的1.6倍,那么甲数和乙数的比是( )∶( )。
7、从甲地到乙地,客车要行4小时,货车要行5小时,客车和货车的速度比是( )∶( )。
8、一个数的2/3是24,这个数的5/6是( )。
(二)判断题:
1、1米的1/2 和3米的1/2 一样长。( )
2、两个分数相除,商一定大于被除数。( )
3、如果a÷b=4 ,b就是a的4倍.( )
4、把10克糖放入100克水中,糖占糖水的10%。( )
5、王芳看一本200页的童话书,第一天看了全书的1/5,第二天应从40页看起。( )
(三)计算:
2×3/4= 3/8×6= 3/10×2/3= 7/25×15/14= 6/13÷4= 5/7÷5/2=
30-1.6÷4/15= 3/5×1/2+3/5÷1/2= 1/5÷6/25-7/2×2/8= (0.75-3/16) ÷(2/9+1/3)=
(四)列式计算:
1、8的2/7与5/7的8倍的和是多少? 2、18的5/27减去3/7是多少?
3、2/3与5/12的和的6/7是多少? 4、42的6/7与21的1/3的和是多少?
(五)简单应用:
1、有一个长方形的花坛,长是3/4米,宽是长的2/3,这个花坛的宽是多少米?面积是多少?
2、李叔叔录入论文,3小时录了这篇论文的1/3,照这样的速度工作8小时,可以录入这篇论文的几分之几?
3、一共有240千克水果糖,每袋装1/4千克,才装完了3/4,他们已经装完了多少袋?
知新案
1、某鞋店进来皮鞋600双。第一周卖出总数的 15 ,第二周卖出总数的 38 。
⑴两周一共卖出总数的几分之几?⑵两周一共卖出多少双?⑶还剩多少双?
2、六年级同学给灾区的小朋友捐款。六一班捐了500元,六二班捐的是六一班的45 ,六三班捐的是六二班的 98 。六三班捐款多少元?
3、一件西服原价180元,现在的价格比原来降低了15 ,现在的价格是多少元?
4、希望小学三年级有学生216人,四年级的人数比三年级多 29 ,四年级有学生多少人?
分数与除法教案11
教学内容:
五年级下册教科书第65—66页。
教学目标:
1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。
2.在探究过程中,培养学生观察、比较、归纳等探究的能力。
3.体会知识来源于实际生活的需要,激发学习数学的积极性。
教学重点:
经历探究过程,理解和掌握分数与除法的关系。
教学难点:
通过操作,让学生理解一个分数可以表示的两种意义。
教材分析:
《分数与除法》是人教版小学数学五年级下册第四单元《分数》第二课时的教学内容。是在对分数意义有初步认知基础上的深入理解。在这节数学课中,不仅要让学生掌握分数与除法之间直观的位置关系,还要从分数意义中理解分数与除法的联系。所以在本课的的设计中,以分数意义的辨析贯穿始终。因为分数的意义,本身就是除法的界定,这才是分数与除法最根本的联系。
本节教学内容重视引导学生在观察比较中发现分数与除法的关系,探究整数除法得不到整数商的情况时,可以用分数表示;在表示整数除法的商时,用除数作分母,用被除数做分子。教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。
教具学具:
课件,模型。
教学设计
一、导入
师:孩子们,上课之前先考验下大家,(出示课件)这个谜底是什么?
生:月饼。
师:你们的课外知识真丰富,你们喜欢吃月饼吗?
生:喜欢。
师:老师也喜欢。在月饼中也含有许多数学知识,我们一起来看看吧(出示课件),把6块月饼平均分给3个小朋友,每人分得多少块?怎样列式计算?
生:2块,6÷3=2(块)。(板书)
师:说得真棒,要是声音再大些就更好了,我们再来看下一个问题,把1块月饼平均分给2个小朋友,每人分几块?怎样列式计算?
生:0.5块,1÷2=0.5(块)。(板书)
师:表达得特别清楚,让大家一听就懂。老师就继续考验大家,如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计算?
师:你为你们组又增添了一份光彩。看来大家已经能够解决分月饼的问题了,不用学具直接说出5除于7等于多少?
生:七分之五。
师:非常正确。我们再来看这些算式,整数除法得不到整数商的时侯,可以用什么数表示商?
生:可以用分数表示。
师:在表示整数除法的'商时,用谁作分母?用谁做分子?
生:用被除数作分子,除数作分母。
师:那么分数与除法有什么样的关系呢?谁能用语言概括下?
生:被除数除以除数等于除数分之被除数。
师:你表达得这么清晰流畅,了不起!
师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)。用字母表示是?
生:a÷b= a/b(b≠0)(板书)
师:这个关系式里每个数的范围要注意什么?
生:因为在除法里除数不能是零,所以分数的分母也不能是零。即b≠0。
师:想一想分数与除法有哪些联系和区别?
教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。
师:今后我们再看分数时,会有两种意义。(把“1”平均分成4份,表示这样3份的数,也可以是把“3”平均分成4份,表示这样1份的数。)
二、巩固练习
师:你们知道阿凡提吗?你有他聪明吗?敢不敢挑战他?我们来闯关,大家有信心吗?
1.1.用分数表示下面各式的商。
(1)3÷2 =()
(2)2÷9 =()
(3)7÷8 =()
(4)5÷12 =()
(5)31÷5 =()
(6)m÷n =()n≠0
2.把5千克糖平均分成7份,每份是( )千克;把1千克糖平均分成7份,5份是( )千克;也就是说5千克糖的( )和1千克糖
的( )是相等的
三、课堂小结
说说你的收获是什么?重点说说分数与除法的关系。
结束语:今天我们通过自己的努力,发现并学会了这么多知识,老师真为你们骄傲!其实生活中有更多的知识等着我们去发现、探索,快做个有新人吧,你会成长得更快!
四、作业布置
练习十二第1,3题。
板书设计
分数与除法
被除数÷除数=被除数/除数
a÷b= a/b(b≠0)
教学反思
这节课在引入课题之前,先利用谜语激发学生兴趣,引进分数,复习旧知。在探索新知时,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。
分数与除法教案12
教材分析
1.教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,从而得到两个关系式:1÷2=1/2,7÷3=7/3。再引导学生比较两组关系式,发现分数与除法的关系。分数中分母的相当于除法中的除数,因为0不能作除数,所以分母也不能是0。
2.学习本节课也便于我们在今后的学习中更好的学习分数的基本性质等。
学情分析
1.通过课前与学生交流获得学生掌握旧知的'情况。
2.学习本课前,学生已经理解了分数的意义和除法的意义,具有一定的操作画图能力和小组合作能了,知道了出书不能为0。
3.假分数与带分数的互化在以后的应用中较少,因此要求不必过高,难度不要过大,只要学生会做就可以了。
教学目标
1、让学生理解和掌握除法和分数的关系,能用分数表示两个自然数相除的商;
2、能应用这种关系把整数表示的低级单位的单名数改写成用分数表示的高级单位的单名数,
3、培养学生的观察、比较和分析、推理等思维能力。教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生动手操作的能力和抽象,概括,归纳的能力。
教学重点和难点
教学重点:分数的数感培养,以及与除法的联系。
教学难点:抽象思维的培养。
分数与除法教案13
教学目标
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学:难点:分数除法应用题的特点及解题思路和解题方法。
教学重难点
教学重点:弄清单位“1”的量,会分析题中的数量关系。
教学:难点:分数除法应用题的特点及解题思路和解题方法。
教学过程
一、复习
出示复习题:
1、下面各题中应该把哪个量看作单位“1”?
2、用方程解下列各题。
3、根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5,六年级学生小明的体重为35千克,他体内的水分有多少千克?
让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。
选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。
小明的体重×4/5=体内水分的重量。
4、指名口头列式计算。课件出示。
二、新授
1、教学例1
根据测定,成人体内的水分约占体重的2/3,而儿童
体内的水分约占体重的4/5,小明体内有28千克水分,
他的体重是爸爸体重的7/15,小明的体重是多少千克?
爸爸的体重是多少千克?
例1的第一个问题:小明的体重是多少千克?
(1)读题、理解题意,并画出线段图来表示题意:
(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重×4/5=体内水分的重量
(3)这道题与复习题相比有什么相同点和不同点?
(相同点是它们的数量关系是一样的;不同点是水分28千克,水分占体重的4/5。体重?千克水分28千克已知条件和问题变了)
(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)
(5)启发学生应用算术解来解答应用题。
先在小组内独立解答。
课件演示计算的算式。
(根据数量关系式:小明的体重×4/5=体内水分的重量,
反过来,体内水分的重量÷4/5=小明的体重)。
2、解决第二个问题:小明的体重是爸爸的.7/15,爸爸的体重是多少千克?
(1)启发学生找到分率句,确定单位“1”。
(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。
(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(课件出示线段图)
爸爸:
小明:
根据数量关系式:爸爸的体重×7/15=小明的体重
小明的体重÷7/15=爸爸的体重
①解方程:解:设爸爸的体重是χ千克。
7/15χ=35
χ=35÷7/15
χ=75
②算术解:35÷7/15=75(千克)
课件演示计算的算式。
3、用方程解应用题应注意哪些问题
首先要弄清题里有哪些数量,它们之间有什么样的关系,然后找出题中数量间
的等量关系,再确定设哪个量为χ,并列出方程.
4、巩固练习:P38“做一做”课件出示:
学校有科普读物320本,占全部图书的2/5,科普读物相当于故事书的4/3,图书馆共有多少本书?图书馆有多少本故事书?(学生先独立审题完成,然后全班再一起分析题意、评讲)
三、巩固应用
1、小明看一本课外读物,周末看了35页,正好是这本书的5/7,这本课外读物一共有多少页?
(先分析数量关系式,然后确定单位“1”,最后再进行解答。)
2、一杯约250ml的鲜牛奶大约含有3/10g的钙质,占一个成年人一天所需钙质的3/8。一个成年人一天大约需要多少钙质?
(注意引导学生发现250ml的鲜牛奶是多余条件)
3、人造地球卫星的速度是8千米/秒,相当于宇宙飞船的40/57,宇宙飞船的速度是多少?
(引导学生先分析数量关系式,然后确定单位“1”,再根据数量关系式进行计算)
4、小军家爸爸每月工资是1500元,妈妈每月工资是1000元,家里每月开支大约要占爸爸妈妈两人工资的3/5,小军家每月开支大约是多少元?
独立完成后订正。
四、课堂总结
这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。
分数与除法教案14
一、复习
1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)
如果已知265×362=95930,你能说出答案吗?为什么?
(引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)
二、教学分数除法的意义
1、2/7 ×( )=1,括号内填几分之几?为什么?
2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?
(引导说出分数除法的意义)
3、完成p25做一做
三、分数除以整数的计算法则
1、这节课我们学习分数除法
2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?
3、事实上,有一些分数除法同学们是会计算的。下面口算几题:
3/8÷3/8 0÷4/9 1÷2/5 3/4÷1
你是根据什么知识口算这几道题的?
4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。
出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)
怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )
根据学生的回答板书:
3/4÷3 = 3÷34 = 1/4
你能归纳这种分数除以整数的计算方法吗?
5、用这种方法口算:
3/4÷3 4/9÷4 10/9÷5 6/7÷2
6、质疑
你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?
7、小组讨论,自主学习分数除以整数
用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:
(1)分数除以整数,用分子除以整数的商作分子,分母不变。
(2) 1除以一个分数,结果是该分数的'倒数。
(3)一个分数除以1,结果是原分数。
你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。
8、小组汇报
(1)1/5 ÷3=3/15 ÷3=1/15
(2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=
(3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15
(4) ……
你能归纳自己小组讨论的分数除以整数的计算方法吗?
(1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。
(2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。
(3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。
(4)……
9、观察第三种方法:
1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15
这个计算过程还可以更简洁些,你能看出来吗?
化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15
观察 1/5÷3== 1/5×1/3 ,你能说一说吗?
(引导学生说出分数除以整数,等于分数乘整数的倒数)
10、计算方法的优化
刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?
学生计算后提问:你喜欢那种方法?为什么?
总结分数除以整数的计算法则:
分数除以整数(零除外),等于分数乘整数的倒数。
11、对其他的方法,你又有什么要说的吗?
(引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)
四、课堂练习
1、计算下列各题
2/3÷3 2/11÷2 3/8÷6 5/4÷2
2、练习七第1题
3、讨论题
1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?
分数与除法教案15
教学目标:
使学生理解分数除法的意义,理解并掌握分数除以整数的计算法则,能正确地进行计算,并在教学中渗透转化的教学思考方法,培养学生的归纳概括能力。
重点难点:
分数除以整数的计算法则
教学准备:
实物投影仪
教学过程:
一、复习。
1.根据算式32×25=800写出两道除法算式。
2.说出下面各数的倒数。
0.25 、3、 5、 1、
3.填空。
(1)30÷5表示把30平均分成( )份,
求其中( )份是多少。
(2)求18的 是多少,可以用算式18×( ),
也可以用算式18÷( ),所以18÷3=18×( )。
二、新授。
1、师先从学生的生活经验入手,问:同学们都参过哪些兴趣小组呢?
大屏幕出示信息窗的情景图,问:大家可以提出哪些除法问题呢?
板书:给小猴子做一件背心需要多少米花布呢?
怎样列算式呢?
师:小组讨论一下,怎样计算呢?
哪位同学上来交流一下你组的计算过程呢?
教师归纳总结:
(1) 可以根据题意画出线段图。
(2) 利用平均分的'思想,把 米平均分成3段,实际上就是把9个 米平均分成3份,每份是3个 米,
(3)根据分数乘法的意义,把 米平均分成3份,求每份是多少,也就是求 的 是多少。
1、师小结:分数除以整数,如果分数的分子能被整数整除时,可以直接去除。如果分子不能被整数整除的,就乘分子的倒数。
2、教学绿点部分。
现在大家可以自己解决第二个问题了,(大屏幕出示:做一条裤子需要花布多少米?)
学生独立操作解答。
此题让学生明白,在解答分数除以整数的情况下,乘分子的倒数可以适用于任何情况,让学生体会将分数除法转化成分数乘法更具有普遍性。
师:小组讨论交流,观察、比较、分析“ ”和“ ”在计算方法上的异同点。
最后归纳出分数除以整数的计算方法:分数除以整数(0除外),等于分数乘这个整数的倒数。
问:上述结语中为什么要添上“0除外”?
三、巩固练习。
1.课本第61页的第1、2题。
2.下面的计算有错吗?错的请改正。
3.填空。
四、作业。
1.自主练习第4、8、9题。
2.判断对错
【分数与除法教案】相关文章:
分数除法教案02-07
《分数除法》教案02-23
分数除法教案范文04-26
分数除法教案(精选14篇)02-17
分数除法教案15篇02-14
有关分数除法教案模板合集五篇04-06
关于分数除法教案汇总十篇04-03
分数除法教案范文集合9篇04-07
分数除法教案范文汇总9篇04-09