教案

《分数的意义》教案

时间:2023-03-11 12:28:43 教案 我要投稿

《分数的意义》教案(集锦15篇)

  作为一名默默奉献的教育工作者,很有必要精心设计一份教案,教案是教学蓝图,可以有效提高教学效率。我们应该怎么写教案呢?下面是小编帮大家整理的《分数的意义》教案,仅供参考,大家一起来看看吧。

《分数的意义》教案(集锦15篇)

《分数的意义》教案1

  教材分析:

  《分数的意义》是在学生初步认识分数的基础上系统学习的,也是把分数的概念由感性上升到理性的开始。分数的意义是今后学习分数四则运算和分数应用题的重要前提,对发展学生的思维能力有着重要作用。学生已经知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份可以用分数来表示。本节课重点是让学生理解不仅一个物体一个计量单位可用自然数1 来表示,许多物体看作的一个整体也可用自然数1 来表示,进而总结概括出分数的意义。

  教学目标:

  知识与技能:初步建立单位的概念,理解分数的意义以及分数单位的意义。

  能力与方法:通过主动学习探究,理解并形成分数的概念,培养学生的科学探究和实践能力。

  情感态度价值观:借助为分数配图,发展学生对美的体验与欣赏;揭示分数的产生,丰富学生的数学文化;通过同学间的合作,养成学生倾听、质疑等良好学习习惯。

  教学重点和难点:

  教学重点:建立单位的概念,能从具体实例中理解分数的意义。

  教学难点:准确理解单位.

  教学方法:

  本课坚持以学生为主体,教师为主导的原则。采用启发诱导、探究等教学法。通过动手操作直观演示 让学生充分感知,整堂课层层推进、步步深入。课堂中教师力求教给学生探索知识的方法,在引导学生在获取知识的同时,让他们归纳总结。

  教学用具准备:

  多媒体课件,准备圆形纸,正方形纸、练习纸、小木棒等多种学具。

  教学过程:

  一、理解单位

  1、谈话交流引入

  教师板书,同学们老师在黑板上写的是几?今天我们就从这个小小的来开始展开学习这节课的内容。

  老师往这一站就可以用几来表示?除了可以表示一个人,还可以表示什么?(生答:一台电脑、一块黑板、一张桌子等等)

  这个问题太简单了,一年级的孩子都知道,但现在我们是五年级的同学了。除了可以表示一个人、一台电脑、一块黑板等等,还可以有其它的表示方法吗?(引导学生说出还可以表示一群人、一堆物品、一排桌子等等)

  演示:课件出示生活中的物体,深入理解一个物体和一些物体都可以用来表示,加深对整体单位的理解。

  比较:现在的和以前的还是一样的意思吗?(现在的不但可以表示一个个物体,还可以表示一堆物体、一群物体等等。)

  结论:通过我们刚才的谈话和观察我们发现一个物体或是一些物体都可以看做一个整体,都可以用来表示。在数学中我们通常把这个广义的叫做单位。

  2、深入理解单位

  课件出示: 三个西瓜你会用几来表示?如果我想用单位来表示应该怎么办?(用集合圈把它圈起来)。六个西瓜还能用一来表示吗?那应该用几来表示呢?为什么?12 个西瓜呢?为什么?(因为这里有四圈也就是4个)

  总结:原来我们发现有一个单位就可以用1来表示。有几个单位就可以用几来表示。

  导入新课:这些都是我们了解的整数,可要是不足单位那还能用整数来表示吗?那你会想到什么数?揭示课题:分数的意义

  二、理解分数的意义

  课件出示四分之一,看到这个分数你想到了什么?(让学生自由回答,回忆三年级学过的内容。)

  1、理解一个物体的四分之一

  同学们刚才说的很好,课前老师给同学们准备了一些学具圆片、正方形纸、和练习册等等,利用这些材料折一折、分一分、画一画,找出四分之一。

  可引导学生想想:你是把什么看做一个整体单位的?分成了几份?其中的几份就是四分之一?

  学生可能会有以下的想法:

  生:把一个圆片平均分成4份,取其中的一份就是这个圆片的四分之一。

  生:把一张正方形平均分成4份,其中一份就是这张正方形纸的四分之一。

  生:把一条线段平均分成4份,其中的一份就是这张圆片的四分之一。

  ……强调:你在分时应该怎样分才合理?你找到的四分之一是把什么看作单位?是谁的四分之一?。

  2、理解一个整体的四分之一

  课件出示下面一些物体:你能不能从下面这些物体中找到出四分之一呢? 我想让同学们先交流交流,在练习纸上分一分,画一画找出四分之一,小组交流后汇报。

  在学生找的同时,引导他们思考:你是把什么看作单位的?平均分成了几份?取其中的几份就是单位的'的四分之一?

  生:把这四个苹果平均分成4份,一份就是这4个苹果的四分之一。

  生:把八个正方体看做单位平均分成4份,1份就是这八个正方体的四分之一?

  生:把十二个五角星看作单位平均分成4份,1份就是这十二个五角星的四分之一。

  这个四分之一是把谁看做单位一呢?怎样才能把这四个苹果看做单位呢?课件展示四分之一的形成过程。

  操作:你们的学具袋中也有一些像老师这样许多物体组成的单位,拿出来画一画、分一分,从单位中找出四分之一,并和同学们交流交流。

  生:我把8个圆圈看做单位,平均分成4份,其中的1份就是这8个圆圈的四分之一。

  ……强调:你在分时是把谁看作单位。

  3、对比总结

  我们找到了这么多的四分之一,这些四分之一的单位相同吗?各是把谁看作单位?可为什么都用四分之一来表示呢?

  引导学生理解:虽然它们的单位不相同,但它们都是把单位平均分成四份,取了其中的1份。

  4、寻找分母是四的其他分数

  课件出示刚刚同学们的操作材料想:除了四分之一你还能找到其他分母是4的分数吗?说说你是怎么找到的?

  5、创造分数

  拿出学具中的12根小棒,利用这些小棒摆一摆、分一分,看看你能从小棒中发现哪些分数。思考:你把这些小棒分成了几份其中的几份就是这12根小棒的几分之几?

  生:我把这些小棒分成了6份,我找到了六分之一,六分之二等等。

  生:我把这些小棒分成了3份,我找到了三分之一,三分之二等等。

  ……教师顺势板书学生找到的分数。

  6、总结分数的意义

  在前面观察、操作、交流的基础上我们可以总结出分数的意义:把单位平均分成若干份,其中的一份或几份都可以用分数来表示。

  三、认识分数单位

  告诉学生:分数和整数一样也有它的分数单位。在分数中把单位平均分成若干份,表示其中一份的数就是分数单位。如:四分之一、六分之一、三分之一、十二分之一都是分数单位。并让学生说说都是哪些分数的分数单位。如六分之一是六分之五的分数单位等等。

  练习:老师报数学生说出这个分数的分数单位,并说说有几个这样的分数单位。

  四、深化练习

  1、读读下面有关分数的资料,说说每个分数的具体含义,并谈谈你的感受。

  (1)我国小学生的近视人数约占总数的五分之一。

  (2)小学生睡眠不足的人数大约占总人数的三分之二,小学生每天的睡眠时间应占一天(24小时)的八分之三。

  (3)死海的表层的海水中含盐量达到了十分之三。

  2、用分数表示下面各图的涂色部分(见课件)

  3、下面各图中用分数表示的阴影部分对吗?说说理由。(见课件)

  4、图形中找分数

  图中蓝色部分是由一个长方形和一个正方形重叠后得到的,根据图形填空。

  图形中的蓝色部分面积各占大正方形面积的( ),占大长方形面积的( )、占整个图形面积的( )。

  5、数学智慧

  这里有三盒巧克力,老师要求只能拿走每盒巧克力的1/5,可是小玲却从第一盒中拿走了1颗,从第二盒中拿走了2颗,从第三盒中拿走了3颗,这是为什么?

《分数的意义》教案2

  教学目标

  1,使学生知道分数是怎么产生的,理解分数的意义,明确分数与除法的关系,会比较分数的大小,认识真分数和假分数,知道带分数是一部分假分数的另一种形式,并能比较熟练地进行假分数与带分数,整数的互化。

  2,使学生理解和掌握分数的基本性质,能比较熟练地进行约分和通分。

  3,使学生理解求一个数是另一个数的几分之几用除法计算,并能解答求一个数是另一个数的几分之几的应用题。

  教学重点

  1,使学生理解分数的意义,明确分数与除法的关系,学会比较分数的大小。

  2,使学生理解真分数和假分数的含义,知道带分数是假分数的一部

  分,能熟练地进行假分数与带分数,整数的互化。

  3,使学生理解和掌握分数的基本性质,能较熟练地进行约分和通分。

  教学难点

  1,使学生理解分数的意义,理解分数和除法的'关系,能根据分数的意义和分数与除法的关系,正确解答求一个书是另一个数的几分之几的应用题。

  2,使学生认识真分数,假分数,学会真分数,假分数及带分数的互化;掌握分数的基本性质,能根据分数基本性质解决有关问题。

  课时安排:

  1,分数的意义……6课时

  2,真分数和假分数……4课时

  3,分数的基本性质……2课时

  4,约分和通分……4课时

  5,整理和复习……2课时

《分数的意义》教案3

  教学内容:人教版五年级下册第四单元第一课时《分数的产生和意义》。

  学情分析:在学习这部分内容之前学生在三年级上学期的学习中,已经借助操作、直观,初步认识了分数,知道了分数的各部分的名称,会读、写简单的分数,会比较分数大小还会简单的同分母分数加、减法。

  教学设想:本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。

  教学目标:

  1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。

  2、经历认识分数意义的过程,培养学生的抽象、概括能力。

  3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

  教学重点:明确分数和分数单位的意义,理解单位“1”的含义。

  教学难点:对单位“1”的理解。

  教具和学具:卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。

  教学过程:

  一、创设情景,温故引新。

  1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?

  二、教学分数的产生。

  2、能根据成语说出下面的分数吗?

  一分为二( ) 七上八下( ) 百里挑一( ) 十拿九稳( )

  1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

  2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

  3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。

  4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

  三、教学分数的意义。

  师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)

  出示一个1/4的正方形的阴影部分。

  师:阴影部分可以用什么分数表示?它表示什么意思?

  2、师:下列图中的阴影部分能用1/4表示吗?为什么?

  如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

  (强调一定要平均分)(板书:平均分)

  3、动手操作,探索新知。

  (1)操作。

  师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。

  学生动手操作,教师巡视。

  (2)交流

  师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

  小组交流。

  (3)认识单位“1”。

  师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

  生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。

  师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

  (课件显示:一个物体)

  把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

  把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

  师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)

  师:(投影出示):我们可以把这3只象看作一个整体吗?

  我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?

  我们还可以把哪些物体也看成一个整体呢?(学生举例。)

  师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,( 课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

  概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  (4)理解分子分母的意义。

  师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)

  (5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?

  ①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?

  生:1/2

  ②师:为什么可以用1/2来表示?

  ③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?

  如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?

  ④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

  ⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?

  师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的'支数不一样。

  四、教学分数单位。

  师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

  显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

  师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)

  加强练习,深化概念。

  练习:

  1、35 表示把( )平均分成( )份,表示这样的( )份,它的分母是( ),表示( );分子是( ),表示( )。

  2、67 的分数单位是( ),有( )个这样的分数单位。

  3、说出每个分数的意义。

  (1)五(1)班的三好生人数占全班的29 。

  (2)一节课的时间是23 小时。

  4、课本练习十一第9题。

  5、判断(对的打“√”,错的要“×”)。

  (1)一堆苹果分成4份,每份占这堆苹果的14 ( )

  (2)把5米长的绳子平均分成7段,每段占全长的57 ( )

  (3)14个19 是914 ( )

  (4)自然数1和单位“1”相同。( )

  五、小结。

  今天这节课我们学习了?你有哪些收获?

《分数的意义》教案4

  一、教学内容:

  人教版义务教育课程标准实验教科书小学数学五年级下册教材第61~62页,练习十一部分练习。

  二、教材分析:

  “分数的意义”一课是人教版新教材五年级下册的内容,是对小学生数概念的一次重要扩展。与旧教材相比,新教材在单位“1”这个概念的理解上进行了微调,将原先的“一个物体、一个计量单位,几个物体组成的一个整体都可以看作单位“1”这项内容调整为比较符合认知习惯的“一个物体、一些物体都可以看作一个整体,通常用单位‘1’表示”。

  三、教学目标:

  1、使学生在初步认识分数的基础上,理解分数的意义,掌握分子、分母和分数单位的含义。

  2、通过分数的学习,培养学生动手操作,观察、思考、抽象概括的能力。

  3、使学生体会到分数就在我们身边,运用分数可以解决生活中的实际问题,从而增强学生学习数学的兴趣。

  四、教学重点:理解分数的意义

  教学难点:认识单位“1”和概括分数的意义

  五、学情分析:

  学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数,知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数及同分母分数的`大小,会加减简单的同分母分数。通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,让学生经历整个概念的形成过程,帮助他们从中获得感悟,促使其主动参与建构。

  六、设计理念:

  本课的教学设计主要以构建主义基本理念为依托,注重学生的认知规律,关注学生的生活经验,让学生在做数学中体验分数的价值,激发学习的兴趣,培养良好的数感。 《数学课程标准》指出:“让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。”为了比较完整的建立起分数的概念,利用孩子们在三年级对分数的初步认识已有的知识为基础,提供平台让学生举例说明分数的含义,让学生在合作、探

  究中主动获取知识,找到把许多物体组成的一个整体平均分与把一个物体平均分之间的内在联系,抽象概括出分数的意义,并强调了单位“1”的概念,揭示了分数表示部分与整体的关系。教学过程中师生、生生之间的自我评价与相互评价,增强了学生的自信心和责任感,促进师生的共同发展。

《分数的意义》教案5

  教学目标

  1、使学生在已初步认识分数的基础上,进一步理解分数的意义。

  2、弄清分子、分母、分数单位的含义。

  3、掌握分数的读、写方法,培养学生的抽象、概括能力。

  教学重点

  理解和掌握分数的`意义。

  教学难点

  抽象概括出分数的意义。

  教学过程

  一、讲授新课。

  (一)分数的产生。

  1、请一位同学用米尺测量黑板的长,说一说,用“米”作单位,其结果能不能用整数表示?

  2、把一个苹果平均分给两个小朋友,每个小朋友分得的苹果数是不是整数?

  (板书课题:分数的意义)

  (二)分数的意义。

  1、以前我们已学过分数的初步认识,现在请大家仔细观察:下面把一个物体或一个计量单位平均分成了几份?想一想:其中的一份或几份怎样用分数来表示?

  (依次出现糕点图、正方形图、1米长的线段图)

  2、我们也可以把许多物体看作一个整体,如一堆苹果、一批玩具、一班学生等。

  出示图片“苹果图”

  教师提问:这幅图把什么看作一个整体?

  把它平均分成了几份?

  每份是几个苹果?

  每份苹果是这个整体的几分之几?

  (边讨论边板书)

  出示图片“熊猫图”

  教师提问:这幅图把什么看作一个整体?

  把它平均分成了几份?

  每份是几只熊猫玩具?每份是这个整体的几分之几?

  4只熊猫玩具是其中的几份?是这个整体的几分之几?

  (边讨论边板书)

  3、将下面的两幅图与上面的三幅图进行比较,它们有什么不同点与相同点?

  明确:一个物体、一个单位或是一些物体都可以看成整体1,都可以用自然数1来表示,通常我们把它叫做单位“1”,它们的相同点在于都是把各自的单位“1”平均分成若干份,取其中的一份或者几份。

  (板书:单位“1” 若干份 一份或者几份 分数)

  4、总结、归纳分数的意义。

  根据上面的例子,谁能说一说,什么样的数叫做分数?

《分数的意义》教案6

  教学目标:

  使学生了解"分数"产生的原因,理解分数的意义,弄清分子,分母,分数单位的含义.

  教学重点:

  使学生理解"分数"的意义,弄清分母,分子及分数单位的含义.

  教学难点:

  使学生理解"分数"的意义,弄清分数单位的含义.

  教学课型:

  新授课

  教具准备:

  课件

  教学过程:

  创设情景,温故引新

  1,提问:

  A,大家知道分数吗 谁能说一个分数

  B,你能举个实例说说这个分数的意义吗

  2,述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决.即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示.

  3,揭示课题:分数的意义

  二,联系实际,探究新知

  自主学习,整体感知分数的.知识.

  (1)相互交流:① 关于分数我已经知道了什么 请把已知道的讲给同学们听.

  (2)自学理解:① 关于分数,自学后我又知道了些什么

  ② 我还有什么不明白的地方呢

  ③ 关于分数我还想知道什么

  2,探究深化,进一步理解分数的意义.

  (1)用分数表示下面各图中的阴影部分.[课件1]

  (2)填空.[课件2]

  ① 把一条线段平均分成5份,1份是它的( )/( );4份是它的( )/( ).

  ② 把一块饼平均分成2份,每份是它的( )/( ).

  ③ 把一个正方形平均分成4份.1份是它的( )/( );3份是它的( )/( )

  (3)用一张长方形的纸,折出它的1/4,并涂上阴影.

  用一张正方形的纸,折出它的3/8,并涂上阴影.

  (4)抢答. [课件3]

  ① 把8枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ② 把10枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ③ 把这个文具盒你所有的铅笔平均分给2位同学,每位同学得到的铅笔数是( ).为什么是1/2 若平均分给5位;10位;50位同学呢

  ④ 如果这个文具盒里只有6枝铅笔.现在把它平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗谁来说说这里的1/2所表示的意义

  ⑤ 如果把8枝笔平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义如果是100;1000枝呢

  (5)说说下列分数所表示的意义.[课件4]

  5/7 3/8 3/( ) ( )/9 ( )/( )

  3,小结.

  我们可以把许多物体看作一个整体,比如:一堆苹果,一批玩具,一班学生,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我把它叫做单位 "1".

  板书: 一个物体

  单位"1" 一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数.

  三,加强练习,深化概念

  比赛:请两位同学站起来.

  提问:A,这两位同学是这组人数的几分之几

  B,这两位同学是两组人数的------- 这两位同学是全班人数的-------

  四,家作

  1,P88 .1,2

  2,P89 .3

  板书设计:

  分数的意义

  一个物体

  单位"1" 一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数

《分数的意义》教案7

  教学内容:九年义务教育六年制小学实验课本,第十册,分数意义。

  教学目标:

  进一步理解分数意义,通过两个分数比较大小,深化学生对分数单位的理解。

  培养学生判断推理的能力。

  培养学生用辩证的观点看待问题。

  教学重点、难点:

  重点:进一步理解分数单位。

  难点:(分数单位和分数单位的个数都不同的分数进行比较。)对分数单位的

  深化认识。

  教学过程:

  1.复检

  (1)前面我们对整数的小数有了一定的认识,我们研究整数和小数这部分知识,

  关键的一点是什么?(数位、计数单位、进率)整数从右边起的前三位及它们的计数单位分别是什么?

  (2)我们知道整数和小数都是十进制的数,谁能说说你是怎样理解“十进制”的?

  小结:今天我们就在这个基础上来研究分数。[板书:分数]

  2.新授

  第一层:理解分数意义,初步理解分数单位这个概念。

  出示 、

  (1)看到 你能想到什么?(以 为一份有这样的2份)[板书: ]

  (2)“ ”表示什么?[板书: ]这儿(指 后面)应该写什么?( 、 )

  (3)第二排的数都表示的是几份?(一份)

  (4)第二排的数与第一排的数之间有什么关系?

  (5)什么是分数单位呀?

  (6)分数单位与“1”之间有什么关系?

  小结:既然同学们对分数单位这么感兴趣,我们这节课就重点来研究一下分数单

  位。

  [评:紧扣重点,采用对比的方法,加深学生对“分数单位”的认识]

  第二层:分数单位相同,分数单位的个数进行比较

  出示

  (1)我们观察一下这两个分数有什么特点?(分母相同)不说分母相同,还可以怎样说?(分数单位相同)分数单位相同也就是什么相同?(每份相同)[学生回答时注意前提条件]

  (2)这两个分数的每份相同,也就是分数单位相同,我们看看这两个分数表示的大小相同吗?能不能比出大小?

  (3)我们除了对这两个分数进行比较,还可以怎么样?(加减)

  (4)进行加的结果是多少?( )12是怎么来的?什么没变?(分数单位)什么相加了?

  (5)减的结果是什么?( )谁减谁?“2”是怎么来的,同样是什么没变,跟加法的道理一样不一样?

  (6)在加减的过程中分母为什么没变?为什么分数单位相同可以直接相加减?

  出示

  问:这两个分数可以怎样?(比较、加减)

  [也可将这两个分数与1进行比较]

  小结:这两组数,分母都相同,也就是分数单位相同,在分数单位相同的情况下,比较两个分数的大小有什么规律?

  [评:1.分母相同是外在的表面现象,教师引导学生透过现象看到分母相同,就是单位“1”相同,分数单位相同(每份相同)这样,就在“同分母分数比较大小中抓住了实质。不仅使学生掌握了比较大小的方法,更进一步理解了分数的意义,又为学习分数的计算奠定了知识和思维的基础。

  2.让学生充分说理,每一个设问都给学生提供了运用概念解决实际问题的情境。如: 和 ,分母相同,说明单位“1”相同,分数单位相同。在分数单位相同的情况下,5个 比7个 小,所以 < 。这种严密的逻辑论述,体现出学生分析推理能力,对所学知识的认识又上升到了一个新的层次,培养学生逻辑思维能力,是培养创造思维的基础。]

  第三层:分数单位的个数相同,分数单位的大小进行比较

  出示

  (1)分母还相同吗?(不同)有没有相同的地方(单位“1”相同,取的份数也相同。)

  (2)谁大?( )5比7小,为什么 反而大呢?

  出示:

  问:观察这个分数有什么特点?请你判断一下这两个分数的大小。

  小结:当单位“1”相同的情况下,分的份越多,它的分数单位就越小,分的份

  越少,分数单位就越大。刚才我们研究了两组很有规律的分数,在这个基础上我们继续看。

  [评:在分数单位比较的过程中,深化的分数单位的理解,为后面的分析推理提供依据。]

  第四层:发散思维的训练,深化对分数单位的理解

  出示:

  问:我们观察一下这两个数,有什么特点?(分数单位与分数单位的个数都不同)有没有相同的?(“1”相同)“1”相同,分数单位不同,所取的份也不同。能不能进行比较呢?讨论一下。(可先将 与 进行比较,或 与 =1进行比较,再比较这两个分数的大小;或与“1”的一半进行比较)

  出示

  问:这组分数同样分子和分母都不相同,看能不能向刚才这种方法一样比较一下。(先将 与 进行比较)

  小结:我们刚才比较了两个分数的大小,而且当分母相同的情况下,还可以把两个分数直接相加减,无论是比较还是加减,我们研究的关键的一点都是什么?(分数单位)

  [评:发散思维的活动方式是分散的、辐射的、昊散式的发散思维的训练,目的使学生灵活运用知识,使思维更活跃,在培养学生创造思维中起重要作用,教师设计的三组题,为学生创设了各显其能,施展才华的条件,学生大胆地冲破思维的局限性,从不同角度,沿着不同的方向进行思考、想象、分析、推理,使问题得到解决。如:①因为 > 所以 >

  ②因为 > 所以 >

  ③学生大胆设想,都转化成分母相同再比较,等等。

  学生方法的`多样性,灵活性来源于对概念理解的深刻性,这种“一题多解”、“求异思维”的能力,是学生已具有创造性学习能力的体现。]

  第五层:通过假分数与带分数的互化,进一步认识分数单位,在这当中渗透分数单位与单位1之间的关系。

  出示

  (1)这个分数和我们前面研究的分数比较一下,有什么不同?(分子比分母大)分子比分母大,这样的分数叫假分数。(真假的假)那么我们前面研究的这些分数分子都比分母小,你们说,这些分数就应该叫什么呀?(真分数)

  (2)分子比分母大说明什么?(这个数比1大)

  (3) 我们就可以看作几部分?

  (4) 和1 的大小一样不一样?我们就可以用什么符号连接?

  小结:这两个分数所表示的意义一样吗?它们之间有什么联系?(讨论)

  [评:通过假分数与带分数的互化,进一步认识分数单位,渗透分数单位与单位“1”之间的关系。这里运用观察、比较、适时的讨论,学生对假分数和带分数的意义有了正确的认识。]

  3.质疑

  4.总结

  这节课我们研究了什么?分数单位在分数这部分知识中占有很重要的位置,这一知识我们研究得透,对于我们今后研究有关的知识会有很大的帮助。

  七.板书设计

  八.反思:

  本节课结构严谨,重点突出,始终给基本概念“分数单位”以中心地位,知识呈现过程清晰,过程设计符合儿童认知。

  以“比较分数大小”这一知识为载体,把“分数单位”这一核心概念挖掘来,在不断的深化和扩展中,学生既学了知识又为后叙知识做好铺垫,同时促进了学生思维质的发展。

  教师语言简练,设问有利于激发学生的思维,学生不仅学会了知识,增长了能力,在生生相互沟通中以科学的态度对待科学知识,在民主的氛围中学生身心和谐发展。

《分数的意义》教案8

  教学目的:

  1.使学生理解分数除法的意义与整数除法的意义相同。

  2.学会分数除以整数的计算方法。

  教具准备:教师准备10个半块月饼的教具。

  教学过程:

  一、复习

  1.举例说明整数除法的意义是什么?

  2.根据乘法算式13438=5092,写出相应的两个除法算式。

  3.举例说明分数乘以整数的.意义和一个数乘以分数乘法的意义各是什么?

  以上复习题可以指名回答。

  二、新课

  1.教学分数除法的意义。

  教师出示5个半块月饼的教具,提问:

  (1)每人吃半块月饼,5个人一共吃多少块月饼?怎样列式?得多少?

  (2)两块半月饼,平均分给5人,每人分得多少块月饼?

  教师出示两块半月饼,将它们平均分成5个半块月饼。要求学生按照教具的演示过程列式、计算。

  (3)两块半月饼分给每人半块,可以分给多少人?

  教师让学生到黑板前进行教具演示,再列式计算。

  教师让学生观察、比较上面3道题中算式的已知数和得数,再回答下列问题:

  (1)第一个算式已知什么?求什么?用什么方法计算?(已知两个因数: 和5,求出它们的积为 ;用乘法计算。)

  (2)第二个算式呢?(已知积是 和一个因数是5,求出另一个因数是 ,用除法计算。)

  (3)第三个算式跟上面哪一个算式是类似的?(跟第二个算式是类似的,也是已知积是 和一个因数是 ,求出另一个因数是5,用除法计算)

  教师:分数除法的意义是什么?它跟整数除法的意义一样不一样?(分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。)

  2.做教科书第30页做一做中的题目。

  教师让学生自己读题、做题,做完后要问学生是怎样应用乘法算式和分数除法的意义来填写除法算式的得数的?

  3.教学分数除以整数。

  教师出示例1:把 米铁丝平均分成2段,每段长多少米?教师:根据题意需要用什么运算来求出得数?并列出算式。(应该用分数除法来做,算式是 2。)

  教师:这个算式的含义是什么? 米是几个 米?应该怎样计算?试试看。(表示把 米平均分成2段。 米是6个 米,实际上是把6个 米平均分成2份,求每份是多少米?可以列出如下的算式(教师板书)。)

  教师:说一说分数除以整数可以怎样计算?(分数除以整数可以用分数的分子除以整数。)

  教师:把 米平均分成2段,求每段是多少,还可以怎样计算?能不能把它转化为已学过的算法来算?(把 米平均分成2段,求每段是多少米?可以看作是求 米的 是多少米?可以用乘法计算。)

  教师:把 米铁丝平均分成4段,每段长多少米?用两种方法计算。(让学生自己计算,指名两个学生板演。)

  做完后,让学生讨论,就这道题来说,哪种方法可行?哪种方法不可行?为什么?

《分数的意义》教案9

  教学内容:五年级下册P60~62

  教学目标:

  1.明确分数的意义、分数单位及单位“1”等概念。

  2.知道分数是怎么产生的,分数是什么,分数有什么作用,体会认识事物的一般思维方式。

  3.在学习中能运用观察、分析、比较、辨析等方法,会合乎逻辑,较准确地阐述自己的和观点。

  教学重点:分数的意义、分数单位及单位“1”等概念的建立

  教学难点:理解单位“1”

  教学过程:

  一、引入

  1.了解起点:关于分数,你已经知道了什么?在自学中,你又了解到哪些概念,又有什么困惑?

  2、明确学习目标。

  3.揭题:今天让我们继续来研究分数的产生与意义。

  (板书课题:分数的产生与意义)

  二、展开

  (一)分数的产生

  1、出示主题图1,介绍:古时候,人们在结绳计数时,遇到了困难,请看:你觉得剩下的长度用什么数表示比较合适呢?

  为什么?

  2、出示主题图2,说一说:每人分到()个月饼,

  ()包饼干。

  3、:在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

  4、介绍分数的演变过程:据记载分数在3000多年前,古埃及就出现了分数记号;在0多年前,我国用算筹表示分数;后好,印度用阿拉伯数字表示分数,在公元12世纪,阿拉伯人发明了分数线,这种方法一直沿用至今。

  (二)感受分数的意义,建立单位“1”的概念

  1、在每一幅图上表示出1/4(了解了分数的产生过程,你会用分数来表示吗?)

  *学生涂一涂并交流:你是怎么想的?

  *反馈:说说你的想法

  *质疑:观察:刚才在用1/4表示的过程中,有什么相同的地方和不同的地方?

  小组交流:说说相同点和不同点。(引出一个物体、多个物体)

  学生汇报、教师追问:为什么都是平均分成4份,取其中的1

  份,可相对应的是1、2、3呢?(总数的不同)

  2、感知概念:单位“1”、分数的意义

  移动()说明:一个圆,一条线段,我们把它叫做一个物体。(板书:一个物体)还有哪些是一个物体?

  移动()它们为一个整体。

  (板书:一个整体)

  (注意引导辨析:一个计量单位例:1米长的线段的1米,就是计量单位,哪些是一个整体?)

  3、揭示概念:一个物体、一个计量单位、多个物体都可以看作“一”个整体,一个整体可以用自然数1来表示,我们给它取个名字叫单位“1”。

  4、强化延伸。

  这几幅图中,单位“1”可以指什么?

  (哪些可以看作单位“1”)

  单位“1”指什么?

  单位“1”指什么?

  5、分数概念:

  (1)除了我们刚才表示过的以外,

  你知道用还可以表示什么?

  (2):能用1/4表示的有很多很多,只要是把单位“1”

  平均分成4份,表示这样1份的.数,都可以用1/4来表示。

  你们都已经能正确地表示1/4了,那么别的分数你们能表示吗?

  (3)其它分数课件演示

  ①谁能用分数表示出阴影部分的大小?

  你是怎样想的?

  这一部分呢?

  这一部分呢?为什么都用表示?

  (4)归纳意义:

  通过上面的学习,像这些把单位“1”平均分成若干份,表示

  这样的1份或几份的数,叫分数。(板书概念)

  6、巩固练习:

  (1)用分数表示空白部分,并说一说。

  里面有()个

  里面有()个

  里面有()个

  里面有()个

  观察:有什么发现?知道叫什么?追问:为什么是分数单位?

  :整数我们学过计数单位,6里面有几个一,60里面有几个十。个、十、百……是计数单位,分数也应有分数单位。

  7、分数单位:看看书上是怎样定义分数单位的。(读一读)

  三、练习

  1、5/6分数单位是(),5/7……5/100,51/100,

  2、在四幅中选一幅表示出5/6。

  (1)学生活动。

  (2)反馈。(逐一反馈,重点解决以下问题)

  ①第4幅,还可以用分数()表示,两个分数大小(一样),

  什么不一样?(意义、分数单位)

  ②第一幅,去掉“”,还可以用什么分数表示?

  想用表示,怎样表示让人一眼就可看出?

  (每个○平均分成2份)还可以用哪个分数表示?

  :可以用很多个分数表示,它们只是大小相等,意义、分数单位不一样。

  四、拓展:

  出示两朵笑脸,是××同学这学期所得笑脸总数的1/5,这学期他得了()朵笑脸,是××同学这学期所得笑脸总数的

  1/8,这学期她得了()朵笑脸。

  设疑:同样是2朵笑脸,为什么一会儿是1/5,一会儿是1/8,你是怎么想的?

  五、

  收获?这节课你的表现用一个分数表示?如果表现非常棒可得10分,那你能说说你根据自己的你能的几分?

《分数的意义》教案10

  【单元学情分析】

  本单元是在学生认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法,能初步运用分数表示一些事物以及解决一些简单的实际问题的基础上,进一步认识和理解分数。

  【单元教学目标】

  1、结合具体情景与直观操作,体验分数生产的实际背景,进一步理解分数,能正确用分数描述图形或简单的生活现象

  2、认识真分数、假分数,理解分数与除法的关系,能正确进行假分数与带分数、整数的互化。

  3、探索分数的基本性质,会进行分数的大小比较。

  4、能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分。

  5、体会分数与现实生活的联系,初步了解分数在实际生活中的应用,提高综合运用数学知识和方法解决具体问题的能力,能运用分数知识解决一些简单的实际问题。

  6、能积极参与操作活动,主动地观察、操作、分析和推理,体验数学问题的探索性和挑战性。

  【单元重难点】

  1、分数与除法的关系、分数的基本性质、公因数与公倍数、约分与通分、比较分数大小等知识;难点:体会在不同整体下,同一分数表示的具体数量不一样的道理及分数的基本性质。关键:联系实际情境、借助直观,弄清分数与除法的关系。

  2、学习分数的再认识、分数与除法的关系、真分数与假分数、分数的基本性质、公因数与公倍数、约分与通分、分数的大小比较等知识。

  3、学生善于形象思维,不善于抽象思维,对分数有一些现成的经验,对于分数的认识系统的认知。

  【课时安排】

  共22课时

  分数的再认识(一)

  【教学目标】

  1.在具体的情境中,进一步认识分数,发展学生数感,体会数学与生活的密切联系。

  2.结合具体的情境,进一步体会“整体”与“部分”的'关系。

  【重点难点】

  体会一个分数对应的“整体”不同,所表示的具体数量也不同。

  【教具准备】

  课件两盒铅笔

  【教学过程】

  一、谈话引入,教学新课。

  现场组织活动:请两位同学到台前,每人分别从一盒铅笔中拿出1/2,结果两位学生的结果不一样多,一位学生拿出的是4枝,另一位学生拿出的是3枝。

  师:这里有两盒铅笔,你能从每盒铅笔中分别拿出全部的1/2吗?其他同学注意观察,你发现了什么?

  师:你准备怎么拿呢?

  生1:我准备把全部的铅笔平均分成2份,拿出其中的一份就是1/2。

  生2:我准备把全部的铅笔除以2,也就是平均分成2份,其中一份就是1/2。

  学生活动,一位学生拿出3枝笔,另一个学生拿出4枝笔。

  师:你发现了什么现象,你有什么疑问,或者说你能提出问题吗?

  生:他们拿出的枝数不一样多,一个是3枝,一个是4枝,这是为什么呢?

  师:他们两人都是拿全部铅笔的1/2,拿出的铅笔枝数却不一样多,这是为什么呢?请想一想,然后小组交流一下。

  学生小组交流,再全班反馈。

  生:我们认识两盒铅笔的总枝数不一样多。

  生:有可能数错了。

  师:现在大家的意见都认为是总枝数不一样,也就是整体“1”不一样了吗?

  师:告诉大家总枝数是多少,1/2是多少枝。

  生1:全部是8枝,1/2是4枝。

  生2:全部的铅笔是6枝,1/2是3枝。

  师:真的是不一样多,一盒铅笔的1/2表示的都是把一盒铅笔平均分成2份,其中的一份就是1/2。但由于分数所对应的整体不同(也就是总枝数不一样多),所以1/2表示的具体的数量也就不一样。

  师:原来分数还有这样一个特点,你对它是不是又有了新的认识?

  二、练一练

  1.看数学书说一说,小林和小明一样多吗?笑笑和小红一样多吗?说说理由。

  2.画一画,说说画法对吗?为什么?还有别的画法吗?

  三、巩固练习:

  1.独立完成1、2、3,然后选几题说说思考过程。

  2.第4题让学生充分说说自己的想法,必要时可以举例说明。第5、6题独立完成,然后选几题说说思考过程。

  四、思考题。放学后独立完成,课后讲评。

  五、课堂作业

  板书设计:

  分数的认识

  8支铅笔装1盒1/2盒=4支

  6支铅笔装1盒1/2盒=3支

  教学反思:

  本节课注重结合实际展开教学。从这节课中可以看出,学生的生活经验,知识基础已成为教师教学的重要资源。本节课注重动手操作,自主探索,合作交流,让学生经历探究过程。在本课的教学中,注重为学生创设自主探索的空间,学生通过拿水性笔,画一画,分数小游戏,辩一辩等活动,体会到解决问题策略的多样性。

  由于分数所对应的整体不同(也就是总枝数不一样多)两人都是拿全部铅笔的1/2,拿出的铅笔枝数不一样多。平时教学中还要多举些例子,可以培养学生对整体“1”的认识,为较难的分数应用题做好铺垫。

《分数的意义》教案11

  教学内容:五年级下册《分数的意义》

  教学目标

  1、使学生知道分数的产生过程。

  2、使学生感受到数学知识同样是在人类的生产和生活实践中产生的。

  教学重点难点

  理解分数的意义。

  教具准备

  米尺,长方形、正方形的纸。

  教学过程

  一、引入

  1、复习分数的知识。

  (1)师:同学们,我们在三年级时已经初步认识了分数,还记得我们都学了分数的哪些知识吗?

  ( )

  ( )

  ( )

  (学生通过回忆说出已学过的分数知识。可能会回答分数各部分的组成,也可能讲到分数的意义。)

  (2)点击出示:

  师:这个分数如何读?

  师:你能说出这个分数各部分的名称吗?(根据学生回答分子、分母、分数线点击出现结果。)

  2、复习分数的表示方法。

  (1)师:回忆一下,我们还可以用什么来表示分数?

  (学生可能回答:用图、线段或正方形来表示分数。)

  (2)点击出示:用分数表示图中的涂色部分。

  师:通过刚才的复习,我发现大家对于分数已经有了很多的了解,但分数究竟是如何产生的呢?分数与我们的生活又有些怎样的联系呢?今天我们就继续来了解分数。

  [设计意图说明:学生在三年级时曾经学习过分数的知识,通过复习,回忆所学知识,为下面的学习做好铺垫。]

  二、新授

  探究一:通过故事和动手实践,认识分数的产生过程以及与生活实际的联系。

  1、点击出示书60页第一幅图片。

  师:大家听说过埃及金字塔吗?我们知道埃及金字塔是人类文明发展史上一个伟大的工程,在当时没有精密的测量工具的时候,人们只能用绳子等固定长度的物体作为测量的参照,可是当石头比绳子短的时候,又该如何测量如何记录呢?

  (学生可能回答:用分数表示。)

  师:对,古埃及人将一根绳子平均分成了若干份,再去测量。这样就能具体记录石头的长度,古埃及人就是用自己的聪明才智,把不足一段绳子长度的石头或超过一段绳子长度的石头用分数的表示方法记录,才能在没有精密仪器的情况下将金字塔建造得非常坚固,石块的接缝也是非常紧密,这也是人类发展史上的'一大奇迹。

  [设计意图说明:通过故事,激发学生的学习兴趣,同时又对分数的产生和运用有了一定的认识。]

  2、实践感知。师生合作测量黑板的长度。

  师:虽然我们现在已经用到了米尺、三角尺、直尺等常用的学习工具,但在具体测量物体的长度时,也不一定正好是整数的结果。下面就请一名同学上台 和老师一块来测量一下黑板的长度,看看能否用整米数表示。

  (师生合作测量黑板的长度。)

  师:大家看到,刚才我们用米尺量了几次后还剩下一段,不够一米,这时还能否用整米数表示?

  (学生可能回答:不能)

  师:在进行测量时,有时不能得到整数结果,这时常用分数来表示。(点击出示)

  [设计意图说明:通过故事抽象感知以后在让学生通过实践认知,进一步了解了分数产生的过程,也感知了分数与生活的紧密联系。]

  探究二:用分数计算。

  1、点击出示书60页第二幅图片。

  师:大家看图,小明和小丽在分东西,桌上有什么?

  (学生可能回答:一个西红柿、一块蛋糕、一包饼干)

  师:如果把西红柿平均分给两个人,可以怎样分?你可以用算式表示吗?

  (学生可能回答:1÷2,在三年级学习的基础上,有的学生能回答出 个。)

  师:1÷2的结果能用整数表示吗?(不能)

  师:我们知道1÷2就是将1平均分成两份,每一份是多少?( )

  师:那么将一个西红柿平均分成两份,每一份是多少呢?( 个)

  师:看看小明和小丽是如何分的?

  (点击出示: )

  [设计意图说明:这一环节需要引导学生将生活实际中的分东西用数学算式表示,同时以最简单和直观的方法将除法算式与分数联系起来,同时又引导学生进一步理解分数的意义。]

  2、小练习

  师:那么同样的,小明和小丽每个人平均分到几块蛋糕?几包饼干呢?你是怎样想的?

  (学生可能回答,并简单表述将一块蛋糕平均分成两份,每一份是 块。)

  [设计意图说明:在前面学习了分数的意义后,马上根据书本内容进行练习,使学生对于分数的意义更了解。]

  3、小结:

  在人们实际生产和生活中,人类在测量和计算的时候,往往不能得到整数的结果,这就需要用一种新的数来表示,这样就产生了新的数—分数。

  (点击媒体出示:在进行测量、分物或计算时,往往不能正好得到整数的结果,这是常用分数来表示。)

  4、资料介绍。

  师:最初,人们只认识一些简单的分数,如二分之一、三分之一等。而且也不是一开始就出现现在的表示方式。

  点击出现:

  师:从图中你了解到了哪些信息?

  (学生根据自己的观察回答,教师提醒,补充说明。)

  [设计意图说明:这一环节通过分数发展的几个阶段,让学生了解分数发展过程中不同的表示方法,让学生对分数的产生和发展有更深入的认识,进一步激发学习分数的兴趣。]

  三、练习

  1、说出下面图形所表示的分数。

  88

  8

  ( ) ( ) ( )

  [设计意图说明:这个练习环节是为了激发学生的学习兴趣,同时进一步巩固学生对于分数产生过程的认识。]

  2、填空。

  (1)将1个苹果平均分给2个小朋友,每人可以分到 个苹果。

  (2)将1个苹果平均分给3个小朋友,每人可以分到 个苹果。

  (3)4个小朋友分一块蛋糕,如果每人分到的蛋糕相同,每人分到 块蛋糕。

  (4)将1堆糖平均分给5个小朋友,每人分到这堆糖的 。

  师:这里可不可以说每人分到 粒糖?(引导学生辨析将1粒糖平均分成5份与将1堆糖平均分成5份的区别。)

  [设计意图说明:这个练习环节的设计旨在让学生进一步理解分数的意义,题目用三种不同的方法表述平均分的意义,让学生能更好的理解分数的意义及不同的表述方式,同时也为后面学习分数的单位打下基础。]

  四、小结

  通过今天的学习,我们知道了在很早以前我们人类为了解决实际生产和生活中不能用整数表示结果的问题,就已经开始用分数来表示了,经过几千年的发展,我们对于分数的应用也变得更熟练更广泛。希望通过学习,我们每一位同学也能更多的了解分数,更好的学习分数知识。

  五、作业

  将一张长方形或正方形纸平均折成若干份,然后将其中的几份涂上颜色,用分数表示。

《分数的意义》教案12

  课堂上需要解决的问题:(按本节课的顺序)

  (1)分数各部分的名称、读法、写法。 (2)“单位1”的理解。

  (3)分数的意义。 (4)分数的“单位”。

  重点:所授之识均为重点。难点:既知是难点,上课之前已想办法通过合理的教学手段予以克服,上课之时何来难点。

  教学过程:

  一、拉近学生距离:向学生问好(用激情洋溢的情绪调动学生的情绪,并引导学生观察、读懂教师的表情、动作,使学生被老师的行为所吸引。)

  二、有效引导,引出分数,解决“写法、读法、各部分名称、初步理解意义”这4个任务。

  1、大家会分东西吗,下面看老师分,大家要注意看,要弄清楚以下几个问题?

  A老师分的是什么“东西”?

  B我是怎么分的?

  C分成了几份?

  D红颜色的占其中的几份?

  连起来说一句话:老师把( )( )分成了( )份。红颜色的占其中的( )份

  (1)将一段1米长的线段平均分成了3份,红的占其中的2份。

  老师把(一条1米长的线段)(平均)分成了(3)分,红颜色的线段占其中的(2)份。

  (2)将一个长方形平均分成6份。红的占其中的5份。

  老师把(一个长方形)(平均)分成了(6)份,红的占其中的5份。

  (3)将8只羊平均分成4份,红色的羊占其中的(1)分。

  老师把(8只羊)(平均)分成了(4)份,红的占其中的(1)份。

  2、引导:

  (1) 大家注意,我们把下面这句话的意思用简单的形式来表示:

  6和9的最小公倍数是18。→=18

  数学中许多较为复杂的语言我们可以用一个简单的形式来表示,大家觉得爽不爽?

  (2)我们今天再来爽一爽

  A课件回到将一条线段平均分成3段的画面。

  “老师把(一条1米长的线段)(平均)分成了(3)分,红颜色的线段占其中的(2)份。”这句话实在太长了,我现在用一个简单的方法来表示,大家说好不好?引出分数“三分之二”( ),(在显示过程当中明确分数的写法。)教师明题,这个数叫分数,它读作“三分之二”下面的3叫做“分母”上面的“2”叫做“分子”(该部分全部由教师在黑板上板书。)教师提问:分母表示什么意思?分子表示什么意思?反过来问一下:在这里“三分之二”表示什么意思呢?→表示把1米长的线段平均分成3份,表示其中的两份。

  B课件回到将一个长方形平均分成6份,红的占其中5份的画面。

  将“老师把(一个长方形)(平均)分成了(6)份,红的占其中的5份。”用分数表示。(已经可以叫学生自己说、写了)之后让学生回答:分母表示什么意思?分子表示什么意思?反过来问:“六分之五”这个分数表示什么意思呢?→表示把一个长方形平均分成6份,表示其中的5份。

  C课件回到将8只羊平均分4份,红色的占其中的1份的画面。

  将“老师把(8只羊)(平均)分成了(4)份,红的占其中的(1)份。”这句话用分数表示。由学生来完成。反过来问→“四分之一表示什么意思呢?→表示把8只羊平均分成4份,表示其中的`1份。

  三、单位“1”的认识

  给出另一个新的分数“二分之一”问它表示什么意思呢?

  教师对学生的回答表示认可,但提出疑问:你难道知道一定是分这个东西吗?听听其他同学的意见。

  A可以分西瓜 B可以分菠箩 C可以分小鸭……

  总之,我们很多东西都可以分,但在分的时候,我们都把他们当成“一个整体”来看,是“一个整体”所以我们可以给他们取一个统一的名字:单位“1”,大家说好不好,不好,你取取看。1为什么加引号的问题解决。

  (通过课件,使学生明确单位“1”)

  四、深入理解分数意义,分数的单位的认识

  1、练习巩固:课件演示

  (1) 上面是一个空心的圆,下面是一个分数:四分之三

  让学生说说:要你做什么?把这个圆平均分成4份,用颜色表示(取)其中的三份。(或:把单位“1”平均分成4份,表示其中的3份。)

  回答清楚以后由学生自己完成。

  (2) 出示一条线段:下面是一个分数:十分之七

  让学生说说:要你做什么?(让学生用两种方式来回答。)再由学生完成。(除了用颜色涂以外,教师教另一种表示方法,为教学例1做准备。

  (3)出示例1,让学生弄请清和(2)的区别,明确是将0~1之间的线段分一下。然后完成例1。

  完成其余2~3题。

  2、分数单位的认识

  1)分母是3的最小分数想一想是几?分母6的最小分数是几?分母是8的最小分数是几?

  通过观察,使学生认识到这些分数的分子都是“1”,取一个共同的名字叫“分数单位”

  2)练习

  三分之一()是哪些分数的分数单位?说一说各含有几个分数单位。

  六分之一( )是哪些分数的分数单位?说一说各含有几个分数单位。

  八分之一( )是哪些分数的分数单位?说一说各含有几个分数单位。

  练一练第5题。

  练一练第6题。

  五、巩固练习:完成书上其余练习。教师巡视批阅。

  六、课堂总结:

  以一个分数为例,说一说(1)分数各部分的名称、读法、写法。

  (2)分数的意义。

  (3)“单位1”的理解。

  (4)分数的“单位”。

  六、拓展题

  有一位老伯将17头牛留给他的三个儿子,他给大儿子二分之一,给二儿子三分之一,给小儿子九分之一,你会帮他们分吗?怎么分?他们各得几头?

  七、作业布置:

  《作业本》

《分数的意义》教案13

  教具准备

  投影。

  教学过程

  (一)导入

  分数的意义和性质这个单元的知识我们已经学习完了,今天这节课我们共同来复习一下这个单元的知识。

  (二)教学实施

  1 . 引导学生归纳、梳理知识点。

  提问:回忆这个单元我们主要学习了哪几部分知识?每部分又有哪些主要概念?这些概念之间有什么联系?你能试着归纳出来吗?

  学生自己试着归纳,然后请学生汇报发言,集体补充。

  老师随着学生的汇报,进行板书。

  分数的意义

  分数的意义

  分数与除法的关系:a÷b= (b≠0)

  真分数

  真分数和假分数

  假分数 带分数

  约分 最大公因数

  分数的基本性质的

  通分 最大公倍数

  ① 同分母分数

  分数大小的比较 ② 同分子分数

  ③ 分子、分母都不同的分数

  分数化成小数

  分数和小数的互化

  小数化成分数

  2 .应用知识练习。

  ( 1 )完成教材第101 页的第1 题。

  先独立完成填空,集体订正。

  然后讨论:分数意义是什么?分数单位是什么?分数和除法有什么关系?

  ( 2 )完成教材第101 页的第2 题。

  让学生先将这7 个分数分类,再说一说分类的依据,每一类分别是什么分数,它们之间有什么关系。

  ( 3 )完成教材第101 页的第3 题。

  学生先独立完成,然后说说比较分数的大小有几种情况,怎样分别比较分数的大小。

  ( 4 )完成教材第101 页的第4 题。

  先让学生说一说分数化成小数和小数化成分数的方法,再完成题目给出的分数与小数的`互化练习。

  提问:互化时要注意什么?

  (四)思维训练

  1 . 分数 是真分数,而且可以化成有限小数,x 最大是几?

  2 .一个分数,分子和分母的和是43 ,如果分母加上17 ,这个分数就可以化简成言,这个分数是( ) o

  3 .一个最简分数,把它的分子扩大2 倍,而分母缩小到原来的 后,正好等于 ,这个分数原来是( )。

  (五)课堂

  通过本节课的学习,我们对分数的意义、真分数和假分数、分数的基本性质、约分、通分、分数和小数的互化等概念更加清楚。同时,进一步明确了这些概念之间的内在联系,并能灵活应用这些概念解决问题。

  教学目标

  1 .通过复习,帮助学生梳理本单元的知识要点及知识间的联系。

  2 .培养学生归纳、知识的能力,掌握和复习知识的方法。

  3 .培养学生自觉复习的习惯。

  重点难点

  归纳、本单元的知识点。

《分数的意义》教案14

  【教学内容】

  人教版《义务教育课程标准实验教科书数学》五年级(下册)第60—62页的例1及“做一做,练习十一1—3小题

  【教学目标】

  (1)在初步认识分数的基础上,使学生经历分数意义的抽象、概括过程,初步理解单位“1”和分数单位的含义,在操作活动中建构分数的意义。

  (2)培养初步的观察能力、抽象概括能力及与同伴合作学习的能力。

  (3)使学生初步了解分数在日常生活中的应用,增强自主探索、合作交流的意识,展示领袖学生在课堂上的风采,树立学生学习信心。

  【教学重点】

  抽象出单位“1”的概念,概括分数的意义并认识分数单位

  【教学难点】

  能比较透彻的理解分数的意义

  【教学准备】

  课件、例1的图片

  【教学流程】

  一、激活旧知,创境引题

  (1)、口算:

  0.75÷15=0.4×0.8=4×0.25=0.36+1.54=1.24 -0.46

  1.01×99=420÷35=25×12=135÷0.5=1 ÷ 2 =

  (2)、引导回忆,

  出示“真假让你辨”。(认为正确的打“√”,错误的打“×”,用手势表示。)

  ① (—)的分母是3,分子是2,中间一条横线叫分数线。(  )

  ② 妈妈把一块饼分成4份,其中的3份可以用( — )表示。(  )

  交流讨论第②题并引出“平均分”。

  小结:只有“平均分”了,才能用分数来表示。“平均分”是产生分数的前提条件。进而出示“平均分的饼图”并让学生试着用完整的语言来说一说平均分的过程。

  (3)引题导入:同学们对分数已经有了一些认识。今天这节课,我们想在这个基础上进一步来认识分数。(板书:分数的意义)

  (评析:《小学数学新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学“分数的意义” 这一概念时,我注意从学生的学情出发,用领袖学生的记忆唤起大多数学生已有的知识经验,帮助全体学生找到新知与旧知的链接点,让全体学生主动地投入学习。)二、先学后教 感悟提炼 建构新知

  1、初步感知与理解

  (1)(出示例1)根据每副图的意思,试着用分数表示图中的涂色部分。(学生打开课本到第60页)先填一填,并想一想每个分数各表示什么?

  交流汇报:你认为这些图中分别是把什么平均分的?平均分成了几份?用分数表示的是其中的几份?

  师结合学生的回答指出:

  ①一个饼可以称为一个物体(板书:一个物体)

  长方形是一种图形,也可以称为一个物体。像这样,我们可以把一个物体平均分一分得到了分数。

  ② 1米长的线段可以称为是一个计量单位。(板书:一个计量单位)我们也可以把一个计量单位平均分一分得到了分数。

  ③ 引导思考:最后一幅图还是一个物体吗?(不是)这里是把6个圆看作一个整体,也可以说是由许多物体组成的一个整体。(板书:由许多物体组成的一个整体)平均分一分也得到了分数。

  (2)揭示单位“1”:

  ①通过刚才的分一分、说一说,我们发现在表示分数时,被平均分的对象是非常广泛的。它可以是一个物体、一个计量单位或由许多物体组成的一个整体。

  为了简明地表示这个被平均分的对象,我们就用自然数1来表示。这儿的1可以表示一个物体、一个计量单位,也可以表示由许多物体组成的一个整体。通常又把它叫做单位“1”。(板书:单位“1”)

  ②让学生举例说一说。这个单位“1”还可以表示些什么?

  ③扩展对单位“1”的认识:

  其实这个单位“1”的范围是非常广泛的,除了刚才大家讲到的很多例子以外,还有许许多多。大到地球、宇宙,小到纳米、微米都可以看作单位“1”。

  ④试着说一说刚才例1中的这些图分别是把什么看作单位“1” ?是把单位“1”平均分成了几份、表示这样的几份呢?

  2.引导提炼与概括:

  (1) 刚才得到的这些分数,我们都是把单位“1”平均分成3份、4份、5份等等,想一想:还能把单位“1”平均分成9份、10份、100份,甚至更多吗?

  揭示:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  (2)关注重点:

  你觉得这句话中最容易疏忽的是什么地方?(师圈出“平均分”)

  (3)沟通联系:

  想一想: “把单位1平均分成若干份”这个“平均分成”的份数相当于分数中的什么?

  “表示这样的一份或几份”这个取了“其中的几份”又相当于分数中的哪一部分呢?

  3、认识分数单位

  揭示:其实分数也像整数、小数一样有自己的分数单位。我们把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。想一想:分数单位就是指什么?(教师可以结合前面教学中的分数加以举例。)

  (评析:建构主义教学论认为“学生的知识建构不是教师传授与输出的结果,而是通过亲历、通过与学习环境间的交互作用来实现的。”教学中,结合对分数意义的理解,我注意做好学生角色的有效转换,带着学生走进“分数”,特别是学生对于“单位1”的理解是一个难点,于是,我又大胆放手让领袖学生提出问题、分析问题、辨析问题,真正体现了学生是学习的主体,从而帮助全体学生实现思维的.“加速”。)

  三、展示反馈,丰富感知

  1、尝试说一说(课本第61--62页“做一做”)

  说说每个分数的分数单位,以及各有多少个这样的分数单位。

  2、动手试一试

  完成教材第63页的“练一练”:

  用分数表示下面各图中的涂色部分,先填一填,然后再想一想:每个分数的分数单位是多少?各有几个这样的分数单位?

  学生操作并交流(略)。

  (评析:在学生初步理解了分数单位的基础上,我特别注意让学生运用多种感官参与丰富的学习活动,填一填、想一想、说一说,学生在这样的学习活动中不断地体验与感受,不仅帮助学生分散了难点,同时又发展了学生的数感,也在这一过程中更加展示了领袖学生的风采。)

  四、巩固拓展,发散思维

  1.先读出下面的分数,并说一说每个分数的分数单位。(a不等于0)

  设疑提问:一个分数的分数单位是多少,是由什么决定的?

  2、尝试完成练习十一的第4题:“在每个图里涂色表示 。”

  学生独立完成后试着让学生讨论与交流:三幅图都表示( ),为什么每次涂色桃子的个数却不相同呢?

  小结:由于每次单位“1”桃子的具体数量不同,所以每次需要涂色的桃子的个数也就不同。所以,我们在涂色时要看清楚把谁看作单位“1”,单位“1”的具体数量有多少。

  3、联系生活解决

  读一读信息中的分数,并想一想每个分数表示的意义。

  (1)五年级甲班的三好学生占全班人数的( —)

  (2)地球表面大约有(—)被海洋覆盖。

  (3)一个婴儿每日至少有(—)的时间是在睡眠中度过的。

  (4)中国是一个地少人多的国家,人均土地面积仅占世界人均土地面积的(—)却养活了世界人口的(—)。

  4、拓展提高

  有12支铅笔,平均分给2个同学。每支铅笔是铅笔总数的,每人分得的铅笔是铅笔总数的。

  讨论:说一说为什么是“(—)”和“(—)”?

  小结:这两个分数都是以“12支铅笔”为单位“1”,但由于平均分的份数不同,所以表示相应的 1份的数量也就不同。

  五、总结全课

  今天我们认识了“分数的意义”,还认识了分数单位。你有一些什么收获呢?(学生畅谈收获)

  (评析:通过提供丰富的、有层次的一系列数学活动,使学生经历运用数学知识解决实际问题的过程,既加深了对分数意义的认识,又积累了丰富的数学活动经验,提高了学生的数学思考能力,同时又发展了学生合理的创造意识。)

  【反思】

  在本节课的教学中,主要尝试以下几点:

  一、课堂教学结构能适应并引导学生的学习

  课堂教学结构,很多时候都是老师进行精心地设计,帮助学生找准知识的生长点与链接点,促进学生顺利地实行知识的迁移。可是,当这些学生长大以后,在面对一个新的问题时,谁去帮他做这件事呢?还是需要他自己去主动调动已有的认知,找到新知与旧知的链接点。与其让他们长大以后再去做这件事,还不如现在就让他们去做?于是,在课堂上,教师尽量不帮学生作预先的设计,也没有创设多少的情境,而是改变以前的学习方式,充分发挥领袖学生的引导作用,让学生在具体的问题情境中唤起已有的知识经验,促进学生主动地回忆、交流、阅读与思考,并在这一过程中让他们一点一点地感悟学习方法。因为我一直认为在引导学生解决问题的过程中有意识地渗透一些有效的学习方法,对他们终身是有收益的。

  二、数学学习活动培养并发展学生的创造力

  怎样的学习才是有效的?边教学边思考边探索,我深深地相信:只有让孩子在体验中学习、在创造中学习,学生才会真正地理解知识,同时自身的创造力也才能得到真正的培养。在教学中,针对小学生以形象思维为主的特点,没有把书本上现成的分数的意义告诉学生,而是在学生产生了强烈的探索欲望之后,及时设计了一系列的操作活动,调动学生的多种感官来参与概念学习,想办法让学生在各种想像、交流、画图与操作中去体验并自觉得出分数的意义。这样,新知就在学生们不断地思考与动手中,慢慢地、不知不觉地内化到学生的认知结构中,同时,学生的学习具有了鲜明的个性与创造性。课堂上的每一个环节,都力求做到了多给学生一个机会,让学生自己去体验;多给学生一个环境,让学生自己去感受;多给学生一个困难,让学生自己去解决;多给学生一些自由,让学生自己去创造;多给学生一个舞台,让学生自己去演讲。

  三、动手实践、自主探索、合作交流是学生学习数学的重要方式

  学生在三年级的时候就对分数有了初步的认识,分数的意义对于小学生来说是一个比较抽象的概念,怎样让学生理解单位“1”的含义?引导学生一步一步地从具体的实例中逐步抽象归纳出分数的意义是本节课所要解决的2个重点问题。因此,在本节课的设计上我淡化形式,注重实质,注意数学与生活的联系,一切以学生的发展为根本,以提升学生的数学思维为核心,充分发挥领袖学生的引导作用,引导学生在动手实践、自主探究与合作交流中体会、领悟单位“1”的含义、进而逐步理解分数的意义。

  人类生活与教学之间的联系应当在数学课程中得到充分体现。为此在课前复习的过程中,我设计了学生生活中常见的几种。抛出一些问题。让学生回答,以此来产生疑问进入课堂。所以就产生了分数。使学生体验到分数是因为生活的需要而产生的,数学来源于生活。

  动手实践、自主探索、合作交流是学生学习数学的重要方式,数学活动应当是一个生动活泼的、主动和富有个性的过程。教学中,我让学生通过动手实践、自主探索、合作交流,在这个过程中去体会“在表示分数时,有什么相同的地方?有什么不同的地方?”从而抽象概括出分数的意义。在这个过程中培养学生动手能力,增强自主探索与合作交流的意识,使学生乐学、会学、创造性的学习,培养学生创新的能力。

  学生是学习的主人,教师是数学学习的组织者、引导者和合作者。因此,在课堂上,我把一些问题引导出来,而后让学生以小组为单位进行组织学习。并且,在课上,充分发挥领袖学生的引导作用,自己走下去去帮助需要帮助的,及时为他们解决难题。

  总体上讲,这堂课还算成功,但是,在教学后也出现了一些问题,少数学生可能对于这一抽象的现象不能很好接受,因此,个别学生可能还摸不着头脑。如何在以后接手班级时更好的教学好《分数的意义》,还希望同行们能给我一些更好的见意。

《分数的意义》教案15

  教学内容:分数的意义、分子、分母、分数单位

  教学要求:

  1、使学生理解掌握分数、分子、分母的意义和分数单位,进一步学会读写分数。

  2、通过分数意义的教学,培养学生分析、综合、抽象、概括能力。

  教学重点:单位1和分数单位

  教学准备:电脑软件、实物投影仪、正方形纸、围棋子若干

  教学过程:

  一、复习引进

  1、出示分数,它们是什么数?

  同学们在三年级时已初步认识了分数,那么分数是怎么产生的呢?

  (1)把一个苹果平均分给两个同学,每人得多少?

  (2)请两组同学量一量课桌的宽是多少厘米?

  (3)请一位同学量一量数学书的长是多少厘米?

  (得到的结果都不是整数)

  在实际生产和生活中,人们在测量和计算时,往往不能得到整数的结果,这时就需要用一种新的数─分数来表示,这样就产生了分数。

  什么是分数?分数的意义是什么呢?这就是我们这节课要学习的内容。

  出示课题:分数的意义

  二、理解概念:

  1、理解单位1的概念

  (1)出示一块蛋糕:它可以用1来表示。

  (2)出示一个正方形:它可以用1来表示吗?为什么?

  (3)出示一条线段:它可以用1表示吗?为什么?

  小结:一块蛋糕,一个正方形,一条线段都是一个物体,都可以用1表示。

  (4)出示四个苹果:这是几个苹果?可以用1表示吗?为什么?

  用圆圈把四个苹果圈起:现在可以用1来表示这些苹果吗?为什么?

  (5)把这6只熊猫看作一个整体,用1来表示行吗?为什么?

  (6)我们全班同学可以用1表示吗?为什么?一组同学呢?

  (7)你能举出一些把许多物体看作一个整体,用1来表示的例子吗?

  小结:1不仅表示一个物体,一个图形,一个计量单位,也可以表示由许多物体组成的一个整体。这个1很特殊,我们给它加上引号,把它称为单位1。

  说说你是怎么理解单位1的?能举出例子吗?

  2、理解分数意义:

  (1)把这块蛋糕平均分成2份,每份是它的几分之几?

  (2)把正方形纸平均折成4份,并用阴影部分表示出它的三份,用分数表示是多少?

  (3)

  这条线段怎么表示它的呢?这一段是几分之几?有几个这样的?

  (4)把这些苹果平均分成4份,每份是几只苹果?每份是整体的几分之几?把什么看成单位1?

  (5)把4个苹果看成一个整体,还可以平均分成多少份?每份是这个整体的几分之几?

  (6)把6只熊猫来平均分,有几种分法?同桌讨论一下,并告诉大家,你分的每一份占整体的几分之几?每份是几只熊猫?

  (7)每人拿出围棋子8颗,把它平均分,你想怎么分?

  请大家观察,刚才这些分数都是怎么得到的?能自己概括出分数的意义吗?

  小结:把单位1平均分成若干份,表示这样的一份或者几份的数,叫做分数。

  练习:练习十八13

  3、理解分子、分母的意义:

  说说这个分数表示什么意义?请你回忆一下分数各部分的名称。

  3分子

  分数线

  5分母

  分母5表示什么意义?看到分母你就知道什么?分子3呢?

  小结:在分数里表示把1平均分成多少份的数叫分母,表示取了多少份的数叫分子。

  4、理解分数单位的意义:

  自然数有单位,每个自然数都是由若干个1组成的,因此自然数的单位是几?分数也是由若干个分数单位组成的`,所以分数也有分数单位,比如:是由3个组成,就是它的分数单位,的分数单位是,想一想,的分数单位是几?为什么?的分数单位呢?

  你能概括一下分数单位的意义吗?

  小结:在分数里,把单位1平均分成若干份,表示其中的一份的数,叫做分数单位。

  练习:

  读出下面的分数,并说出每个分数的分数单位。

  5、学习用直线上的点表示分数:

  分数可以用直线上的点来表示。

  直线上相应的这一点应该用几分之几来表示?

  这一点用来表示,为什么?这一点用来表示,为什么?同样都是把单位1平均分,为什么两个分数的分数单位不相同?

  三、看书质疑:

  今天学习的是课本p84p86的内容,请把p86的做一做练习一下,看看有什么不理解的地方,提出来,我们大家一起讨论、解决。

  四、综合练习:

  (一)判断:

  1、把单位1分成若干份,表示这样的一份或几份的数,叫做分数。

  2、把单位1平均分成若干份,表示这样的一份或几份的数,叫做分数。

  (二)口答:

  1、把一条2米长的绳子平均分成5份,把什么看作单位1?每份占全长的几分之几?

  2、把12支铅笔平均分成4份,把什么看作一个整体?3份占这个整体的几分之几?

  (三)说出下面各题把什么看作1?各题中的分数各表示什么意义?

  1、男生人数占全班人数的

  2、一袋大米,吃了它的

  3、一本书30页,小华已看了总数的

  (四)填空:

  5个是()是()个

  是3个()()个是是()个()

  (五)说出下列各分数的意义、分数单位、各有几个这样的分数单位?

  (六)下图中阴影部分各占全图的几分之几?(备用)

  五、作业:

【《分数的意义》教案】相关文章:

分数的意义教案03-03

分数的意义教案01-02

《分数的意义》教案02-11

分数的意义教案模板10-14

《分数的意义》教案模板10-12

分数的意义的教案示例03-05

分数的意义的教学教案02-27

分数的意义教案优秀02-27

人教版分数的意义教案12-16

数学教案:《分数的意义》09-07