关于平行四边形教案锦集九篇
作为一位优秀的人民教师,往往需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。来参考自己需要的教案吧!以下是小编整理的平行四边形教案9篇,欢迎阅读,希望大家能够喜欢。
平行四边形教案 篇1
教学内容:教材第16-15页例2及“想想做做”1—5题。
教学目标:
1.使学生通过观察、比较、操作等实践活动,感知平行四边形的特点,初步认识平行四边形,能指出平行四边形和围出平行四边形。
2.使学生经历从直观、操作中抽象出平行四边形的过程,形成平行四边形的直观表象,并能操作再现平行四边形的形状,积累通过多种感官学习平面图形的经验,发展初步的空间观念。
3.使学生逐步形成参与数学活动的意识,培养独立思考、主动交流的学习习惯。
教学重点:
平行四边形的直观认识
教学难点:
平行四边形的直观表象
教具或学具准备:
三角尺、钉子板、小棒、长方形木框(教具)
教学过程:
一、直观认识
1.观察图形:三角形、四边形、五边形、六边形
你准备怎样把这些图形分类?
说明:有四条边的图形是四边形,四边形有各种各样的形状,今天我们认识一种特殊的四边形(出示例2)
2.学习例2
1.这是生活里常见的情境。你能在这些情境中找出四边形并用手沿四条边指一指吗?小朋友在课本例2的图上用笔描出这样的'四边形。
交流:生活里一定看到过这样的四边形,你还在哪里看到过?
2.操作
请同学们拿出两个完全一样的三角尺。你能拼出这样的四边形吗?
交流:把你的拼法介绍给大家。
说明:小朋友都拼出了生活里见到的这样的四边形,像这样的四边形是平行四边形(板书课题)
3.抽象出图形
引导:像这样的图形是平行四边形,你能在钉子板上围一个平行四边形吗?
学生操作,老师引导,让学生交流围法,老师适当引导(对边的方向、长短完全一样)。
二、练习巩固:
1.想想做做第1题
学生独立完成。交流:哪些是平行四边形?第一个为什么不是,说说你的理由。
2.想想做做第3题
学生画图,老师巡视指导。
交流所画的平行四边形,指出这些图形虽然大小不同,位置形状不一
样,但都是平行四边形。
3.想想做做第4题
同桌合作,动手操作,老师指导。
交流操作方法,想想平行四边形对边的要求。
4.想想做做第5题
演示,让学生注意观察,你有什么发现。
说明:一个长方形,不管怎样拉,虽然形状、大小会发生变化,但都是平行四边形。
三、回顾总结:
今天我们学习了什么?请你说说认识平行四边形的过程。
你有什么收获和体会。
四、布置作业
《补充习题》第 页。
平行四边形教案 篇2
【知识目标】
1、掌握平行四边形有关概念;
2、在动手操作实践的过程中,探索并掌握平行四边形的性质。
【能力目标】
1、通过探索与证明平行四边形的性质,发展演绎推理的能力;
2、在证明平行四边形的性质的过程中,体会将平行四边形问题为三角形问题的转化思想.
【情感态度与价值观】
在进行探索的活动过程中发展合作交流的意识.
【数学核心素养目标】
1、通过操作活动,在发现平行四边形的性质的过程中培养直观想象的数学素养;
2、通过对性质的证明,进一步提升逻辑推理的数学核心素养.
教材
分析
重点
掌握平行四边形的概念与性质
难点
对平行四边形性质的探究与证明
教学方法
引导类比、鼓励操作、启发推理
学法指导
探索发现、猜想证明、迁移应用
教学过程
一、引入新课
PPT呈现:类比是伟大的引路人,转化是智慧的思想家.
几何学习,是一场充满挑战与惊喜的'旅行,老师很荣幸今天能和在座的同学们继续我的平面几何之旅.
回顾我们学过的平面图形:
直线、射线、线段角三角形?
同学们推测一下,接着我们会研究那种平面图形?四边形
我们就从生活中常见的一类特殊的四边形——平行四边形研究起.
你能举出一些生活中常见的平行四边形实例吗?
地砖、推拉门、活动衣架、窗格……
二、实践探究
1、平行四边形的相关概念
平行四边形的定义:两组对边分别平行的四边形,叫做平行四边形.
D
C
A
B
如图:
学生活动:邀请学生指导老师画两组分别平行的线段,并上黑板协助老师画图,从而得到平行四边形.
平行四边形的符号表示:ABCD,读作“平行四边形ABCD”
(注意表示时,四个顶点A、B、C、D的书写顺序只能按顺时针方向或逆时针方向)
边、对边、邻边;角、对角、邻角
对角线:平行四边形不相邻的两个顶点连成的线段叫做它的对角线.
ABCD的对角线有两条:AC、BD
2、平行四边形是中心对称图形
活动:利用平行四边形纸片探索平行四边形的性质
活动方式:同桌或四人小组合作、讨论交流.
教具:画好平行四边形的彩纸、透明纸各一张、图钉一枚.
平行四边形是中心对称图形,两条对角线的交点是它的对称中心.
3、平行四边形的性质
性质1:平行四边形的对边相等.
已知:如图,四边形ABCD是平行四边形.
因为四边形ABCD是平行四边形
所以∠A=∠C,∠B=∠D
求证:AB=CD,BC=DA.
证明:连接AC
因为四边形ABCD是平行四边形
所以AB∥CD,BC∥DA(平行四边形的定义)
所以∠1=∠2,∠3=∠4
在△ABC与△CDA中:
所以(ASA)
所以AB=CD,BC=DA
几何语言:
因为四边形ABCD是平行四边形
所以AB=CD,BC=DA
性质2:平行四边形的对角相等.
几何语言:
因为四边形ABCD是平行四边形
所以∠A=∠C,∠B=∠D
三、应用迁移
【例题探究,夯实基础】
例:已知:如图,在□ABCD中,E,F是对角线AC上的两点,并且AE=CF。
求证:
证明:因为四边形ABCD是平行四边形
所以AB=CD(平行四边形的对边相等)
AB∥CD(平行四边形的定义)
所以∠BAE=∠DCF
在12鈭咥BE/与12鈭咰DF/中:
因为
所以(SAS)
所以BE=DF
【例题变式,灵活思维】
变式1:已知:如图,在ABCD中,E,F是对角线AC上的两点,并且AE∥DF。
求证:
变式2:已知:如图,在ABCD中,E,F是对角线AC上的两点,并且BE平分∠ABC,DF平分∠ADC.
求证:
变式1图变式2图
【接龙练习,巩固迁移】
1、如图,四边形ABCD是平行四边形,
若∠A=130°,则∠B=______,∠C=______,∠D=______;
若AB=4,AD=5,则BC=__________,CD=________。
第1题图第2题图
2、如图,在平面直角坐标系中,□ABCD的三个顶点为A(0,0)、B(4,0)、D(1,2),则顶点C的坐标是_____________。
3、小强用30米的铁丝围成一个平行四边形的场地(不计接口长度),其中一条边长是10米,则与这条边相邻的边的长度是________米.
4、如图,在□ABCD中,若BE平分∠ABC,则ED=.
5、如图,在□ABCD中,AM平分∠BAD,BM平分∠ABC,∠AMB____。
第4题图第5题图
【游戏设计,拓展提升】
四位同学玩传球游戏,三位同学已经站好位置,要求以这四位同学所占位置为顶点,组成平行四边形,请问第四位同学应该站在哪里?
解:如图,第四位同学可以站在P、Q、M这三个位置.
四、本课总结
知识:平行四边形的概念与性质
探究方法与思想:类比探究,转化思想
五、作业布置
必做题:课本P1372、3、4题.
选做题:将【游戏设计,拓展提升】部分的问题整理在好题本“分类讨论”这一问题中.
设计意图
提醒并渗透“类比的方法、转化的思想”.
提醒学生本节课是几何探究课程.
本节课是《平行四边形》这一章的章起始课,促使学生对平面图形的学习进行系统性的认识.
小学已经感知上认识了平行四边形,由学生主动举生活中平行四边形的实例,感受数学源于生活而服务于生活,同时逐渐调动学生主动思考,为接下来的探究热身.
突出学生课堂主体的地位,加深对平行四边形定义的认识.
突出重点:
1、学生通过观察、动手操作,经历平行四边形性质的探索和发现过程,发展合作交流的意识,提升探究能力;
2、在动手操作额过程中,发现并验证了平行四边形是中心对称图形;
3、使学生发现平行四边形中有关元素之间的相等关系,获得平行四边形有关性质的猜想.
突破难点:
1、学生探索猜想性质是合情推理,而规范证明则是演绎推理,通过规范的几何证明,提升学生的推理论证能力.
2、转化思想:将四边形问题转化为三角形问题来研究.
1、引导学生探索并展示多种证明方法.
2、激励学生分析、解决问题的热情,进一步提升推理论证的能力.
本例是对所学的平行四边形性质定理的简单应用。教学时让学生先独立思考,再组织学生进行交流。鼓励学生充分表达他们寻求证明思路的过程。
这两个问题是对例题条件进行变化,结论不变,以促进学生对平行四边形性质的熟练掌握与灵活运用.
1、这组练习的设计,层层递进,由浅入深,可有效地开发各层次学生的潜能及上进心,实现分类推进的教学思想.
2、第4题引导学生发现平行四边形一条角平分线可以构造出等腰三角形;
3、第5题引导学生发现平行四边形两个邻角的角平分线可以构造出直角三角形三角形.
(此问题根据实际授课情况,可删减)
1、游戏情境,激发学生兴趣;
2、此问题有三种情况,体现分类讨论的思想,促进学生思考问题的全面性;
1、作业一部分是必做题,体现新课标下落实“学有价值的数学”,达到“人人都能获得必需数学”,另一部分是选做题,让“不同的人在数学上得到不同的发展”.
2、选做部分为了促进学生养成分类梳理数学问题的习惯.
平行四边形教案 篇3
一、内容和内容解析内容:
本课是人教版新课标实验教科书八上第十九章的第一课时,其主要内容是平行四边形的概念及平行四边形的边、角的相关性质.
内容解析:
四边形是几何中的基本图形,也是“空间与图形”领域研究的主要对象之一.平行四边形是特殊的四边形,较一般四边形而言,它与我们的关系更为密切,这不仅表现在日常生活中有众多的平行四边形图案,更重要的是,它的性质在日常生活及生产实践等各个领域中均有广泛的应用.此外,平行四边形的相关知识在建筑学、物理学、测绘学中也有较为重要的应用.
平行四边形是一个四边形,但与一般四边形相比,它的对边分别平行.由这一本质特征,教材给出了定义:两组对边分别平行的四边形叫做平行四边形.这一定义既给出了平行四边形的一种判断方法:两组对边分别平行的四边形是平行四边形.也给出了平行四边形的一条性质:平行四边形的对边平行.这为判定一个四边形是平行四边形提供了重要的理论依据,也为证明两直线平行提供了新的方法.
平行四边形从属于四边形,所以一般四边形所具有的性质它都具有,如:内角和是360°、外角和为360°、四边形的不稳定性等.同时,它还具有自己特有的性质:对边平行且相等、对角相等、邻角互补等.这些性质为学生证明或解决线段相等、角相等等问题提供了全新的思路,拓展了学生的视野.另外,平行四边形的这些性质还是所有特殊平行四边形的基本性质.本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础.
在教材的编写上,本课还注意了使学生经历充分地观察、猜想、验证、推理、交流、应用等数学活动后获得结论,这对于培养学生的观察能力、推理能力、图形处理能力、探索及解决问题的能力等方面,都起着较为重要的作用.
教学重点:平行四边形的性质的探究与应用
二、目标和目标解析
目标:理解并掌握平行四边形的概念和性质,能运用平行四边形的概念及性质解决相关问题.
目标解析:
1、经历从现实情景中抽象出平行四边形的过程,发展学生的形象思维与抽象思维.2、经历观察、实验、猜想、验证、推理、应用等数学活动,培养学生的观察能力、概括能力和演绎推理能力,渗透转化思想.
3、通过性质的应用,培养学生独立思考的习惯,发展合作交流与应用意识,感悟数学与实际生活的密切联系.4、通过一系列探究活动的开展,使学生从中体验数学活动的探索性和创造性,感受探究成功的乐趣,从而激发学习兴趣.
三、教学问题诊断分析
平行四边形的定义,学生在小学已经学过,但受当时学生文化基础与认知水平的限制,他们对平行四边形的认识还比较肤浅,对概念本质属性的理解与把握还不够深刻与透彻.作为本节课的核心概念,教学中切忌把平行四边形概念当学生已学知识,简单复习巩固后,一带而过.而应精心设计教学活动,使学生在原有知识的基础上,加深理解、全方位把握.尤其对于定义的双重性,应引导学生细致剖析,使他们理解、让他们会用.另外,考虑到学生以前对一般四边形与特殊四边形的认识是割裂开来的,他们对两者从属关系的认识较为淡漠,学习定义之前,教师应先让学生明晰一般四边形与特殊四边形的联系与区别,这样既可突出概念本质,也可为性质的学习作好铺垫.
对于性质,从教材的呈现方式看,编者力图以问题为线索,通过观察──猜想──验证──推理证明等一系列数学活动,以自主探索、小组合作探究的方式让学生主动获得.如何真实的反应教材本意,突出性质的探索过程?如何彻底将学生的被动接受转为主动发现?这是执教者必须深思的问题.八年级的学生,已具备了一定的观察、分析、动手操作、语言表达及逻辑推理能力,若直接让学生观察图形──提出猜想──简单度量──推理论证──给出结论,这样难免有穿新鞋走老路之嫌,同时,也很难提高学生的学习积极性.尤其是对于性质的证明,在仅有平行四边形的前提下,如何解决线段相等、角相等这一推证难点也将因教学方式的生硬而变得更加难以逾越,教学效果可想而知.
要切实解决这个问题,教师应通过充分的活动让学生真正“动”起来.我思考了这样的处理:将整个性质的探究分两步走,第一步先引导学生通过观察大胆“猜一猜”,再“画一画”,进一步感受图形特征,接着“量一量”,初步验证猜想.第二步激发学生“剪一剪”,引导他们以小组合作的方式进一步探究.将所画的平行四边形沿其中一条对角线剪开,学生将不难发现所得到的两三角形全等,而全等三角形的对应边相等、对应角相等,这样很自然地进一步验证了猜想,与此同时,通过引导,学生还将发现,连接一条对角线,平行四边形的问题便转化成了全等三角形的问题.这样,一石二鸟,既让学生品尝了探究成功之乐,也为性质的推理论证扫清了障碍,轻松突破难点.若学生基础较好,还可考虑直接提供学具袋(里面提供可采用度量、平移、旋转、折叠、拼图等方法的相应学具),然后完全放手让学生去自主探索.鼓励学生探究方式、结果、表示方式及学习方式的多样化.相信在老师的精心组织、合作与参与下,学生将会从多个方面完善对平行四边形性质的认识.
教学难点:平行四边形性质的探究与证明。
四、教学支持条件分析
⑴借助一般四边形、平行四边形、梯形等模型,明晰一般四边形与特殊四边形的区别与联系,深化对概念本质的认识,也可为性质的探究服务.⑵借助多媒体课件,使实例背景更形象、更逼真,以此激发学生的学习兴趣.借助Flash动画,从激励学生探究入手,改进问题的呈现方式,使教学更富有趣味性、生动性和互动性,从而激发学生的主动参与热情,为更好的实现教学目标服务.
五、教学过程设计
(一)情景激趣:
1、出示一般四边形模型,随后出示平行四边形模型,感受“特殊四边形”与“一般四边形”的区别与联系.设计意图:谈话式开场,清新自然.让学生明晰平行四边形与一般四边形从属关系的同时,轻松切入主题.
2、你能举出生活中平行四边形的实例吗?
3、媒体展示:原野鸟瞰、中银大厦外景、篱笆、电动门、艺术装饰物等图片,引导学生从图片中找出平行四边形.──生活中的平行四边形随处可见,它装点着我们的'生活,服务着我们的生活.由此导出课题.
设计意图:先由学生举实例,再选取生活中平行四边形的一组精美图片由媒体集中展示,让学生感悟数学与生活紧密联系的同时,也让他们更真切地感受到学近平行四边形的必要.另外,通过对图形的捕捉与提炼,培养学生的形象思维与抽象思维能力.
(二)探究在线:
1.定义探究:
①结合平行四边形的模型提问:平行四边形的“平行”体现在哪里?
②师生共议,归纳定义.
定义:有两组对边分别平行的四边形叫做平行四边形.
结合媒体动画演示,学平行四边形的表示法、读法及对边、对角、邻边、邻角等概念.
设计意图:突出概念本质,深化对定义的理解.将对边、对角等概念由媒体形象生动的展示,可使枯燥的概念更加灵动,让学生自觉地进入到对定义的深入探究中来.
③出示梯形模型,巩固定义(两组对边分别平行).
④图形及符号语言:
设计意图:多角度的表述,使学生能全面、透彻的理解定义.同时,规范了推理格式、提升了概括能力.
2.性质探究:
①平行四边形除了两组对边分别平行外,还有没有其它性质呢?
探究:(媒体播放,分步出示)
猜一猜:边之间???角之间???
画一画:在格点纸上画一个平行四边形.量一量:度量一下,与你的猜想一致吗?
剪一剪:将所画的平行四边形沿其中一条对角线剪开,现在,你有新的办法进一步验证猜想吗?
②结论:边:对边平行、对边相等;角:对角相等、邻角互补
设计意图:以学生原有知识为出发点,引导学生通过观察、猜想、动手实践、合作交流等方式主动获取知识,获得解决问题的方法.同时,在学生亲历知识的发生、发展与形成过程中使学生获得富有成效的学习体验,发展探究与合作意识,培养逻辑思维能力.另外,通过“剪一剪”,学生进一步验证猜想的同时还找到了将四边形问题转化为三角形问题的有效途径,为性质的证明扫清了障碍.这样既渗透了转化思想,又巧妙的突破了难点.
③你能证明“平行四边形的对边相等,平行四边形的对角相等”吗?
师生共议,写出已知、求证及证明过程.已知:如图,四边形ABCD为平行四边形.
求证:AB=CD,AD=BC;∠A=∠C,∠B=∠D.
分析:连结对角线将平行四边形的问题通过转化为全等三角形的问题进行解决.
设计意图:注重直观操作与逻辑推理的有机结合,把几何论证作为探究活动的自然延续和必然发展.同时,通过证明,验证了猜想的正确性,让学生感受到数学结论的确定性和证明的必要性.
④总结:性质1:平行四边形的对边相等.
符号语言: ∵四边形ABCD为平行四边形
∴AB=CD,AD=BC.
性质2:平行四边形的对角相等.
符号语言: ∵四边形ABCD为平行四边形
∴∠A=∠C,∠B=∠D.
师生共议:以上性质为证明(解决)线段相等,角相等,提供了新的理论依据.
设计意图:对平行四边形性质的归纳,是学生对平行四边形特征的更深入认识,也是知识的一次升华,突出了教学重点.
(三)厉兵秣马:
小试身手:(媒体播放)如图,在□ABCD中,根据已知你能得到哪些结论?为什么?
设计意图:尝试对性质的应用,实现从知识到能力的顺利过渡.同时,开放式的问题,利于学生多角度的思考并解决问题.
例题探究:如图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中AB边长为8m,其他三条边的长各是多少?(媒体播放)
随机应变:
(1)在□ABCD中,已知AC=12,ΔABC的周长=30,则□ABCD的周长=
(2)若∠DCE=38°,则□ABCD的四个内角的度数分别为:
(3)若最大的两个角之和为220°,则平行四边形的四个角的度数分别为:
设计意图:通过对例题的学习,加深对平行四边形性质的理解,培养学生的应用意识.通过一题多变,使学生能多角度、多层次、灵活的运用所学知识解决问题,培养学生思维的深刻性与灵活性.
智启百宝箱:
辨一辨:谁的测量肯定有误?
贝贝、晶晶、妮妮、号号四位同学正在测量
ABCD.
贝贝测量的结果:AB=CD=5,BC=AD=8;
晶晶测量的结果:∠A=∠C=40°,∠B=∠D=130°;
妮妮测量的结果:AB//CD,BC//AD;
号号测量的结果:∠A﹕∠B﹕∠C﹕∠D=2﹕6﹕2﹕7.想一想:如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形,线段AD和BC的长度有什么关系?
证一证:如图,在□ABCD中,E、F分别为边AB、CD上的点,连接DE、BF.
(1)如果E、F分别为AB、CD边上的中点,求证:∠ADE=∠CBF
(2)如果DE//BF,上述结论还成立吗?
设计意图:练习是学生心智技能和动作技能形成的基本途径,精心设计的练习将会使这一功用得到更充分的体现.以上这组练习层层递进、由浅入深,有效地促进学生对本节课所学习的概念与性质进行更加深刻的理解与掌握.另外,以游戏为载体,使问题的呈现方式更加生动活泼与富有挑战性,促使学生能更加主动的投入到知识的巩固与能力的提升中来.
(四)整理反思:
师生共议:通过这节课的学习,你对平行四边形有哪些新的认识?
我的收获(媒体播放):
①平行四边形的定义、性质.
②方法:证明平行、线段相等、角相等的新方法.
③转化思想:
设计意图:这是一次知识与情感的交流,浓缩知识要点、突出内容本质、渗透思想方法.培养学生自我反馈、自主评价的意识,促进学生可持续地、和谐地发展.
(五)快乐套餐:
必做:P90T
1、2.P91 T
6、7
选做:
文物保护部门需复原一如图形状的等腰三角形木格子,里面每一同方向木条相互平行且将腰分成相等的六段,已知等腰三角形的腰是30cm,底边长50cm,你能算出拼这个木格子所需木条的总长度吗?(接头不计) (聪明的同学们,你们能想出几种方法呢?)
(1)如果里面的每一同方向木条都不均匀排列,但互相平行,你还能算出所需木条的总长度吗?(接头不计)
(2)如果这个木格子底边上有n个不规则排列的点,你还能算出所需木条的总长度吗?(接头不计)
设计意图:“套餐”分两类,必做题面向全体、巩固所学,力图让“人人都获得必需的数学”.选做题力图“让不同的人在数学上得到不同的发展”,本题既可直接运用今天所学的定义与性质求解;亦可通过构造与此模型全等的图形,将两个全等的图形拼合成一个平行四边形,进而简捷求解;还可以借助“过等腰三角形底边上任一点向两腰作平行线,所得的平行四边形两邻边之和等于一腰长.”这一模型轻松求解等等.这是本课内容的一次拓展与升华.
平行四边形教案 篇4
第五册平行四边形、三角形面积公式
教学过程
师:小朋友们,今天刘老师带来一个信封,谁来猜猜里面藏着什么?
生1:卡片。
生2:奖品。
……
师:同学们的想象力真丰富!我请小朋友上来把它揪出来,但你每拿出一件物品得向小朋友们介绍,你打算用它干什么?
(学生逐个上台从信封中拿出物品)
生1:我拿出的是剪刀,打算用它剪东西。(师:板书:剪)
生2:我拿出的是一格格的东西,打算用它来量。
师: 我们给它一个名字,透明方格纸,用它量什么呢?
生2:我想用它量书本。
师: 书本的 ……(停顿)
生2:书面有几格?
师: 书的表面有几格其实就是它的面积,我们用1平方厘米的方格纸数它的面积 。(板书:数)
生3:我拿出的是平行四边形(学具),我想知道它的许多秘密。
师: 平形四边形的秘密,这词用得真好!你的写作水平一定高。待会我们来研究它
这节课我们就用刚才这些学具来研究平行四边形的`面积。
教学反思
这是一个展示学具的片段。它们都是为学生研究平形四边形、三角形的 面积公式服务的。分别有:剪刀一把、塑料透明方格一张、平行四边形、三角形模型各二张。何必如此耗费时间呢?直接出示学具,学生不也能知道呢?
不!俗话说:磨刀不误砍柴功。我认为直接出示学具,不能引起学生对学具的重视,对其作用更是模棱两可,将为小组合作学习埋下“隐患”。学生面对一堆学具,面对要完成的任务手足无措,不知该从哪下手。这样岂不是更浪费时间,或者学具将失去它的作用,平形四边形、三角形的面积公式无法推导。
……
教学过程
师:我们已研究出平行四边形的面积公式,成为了发现者。这可是一项了不起的创举。让我们再接再厉,发现更多的数学奥秘。如果我只给你一把剪刀、一张平行四边形的学具,你还能发现其他图形的面积公式吗?
(学生动手操作,不久就纷纷举手)
生1:老师,我把对角一剪就变成了两个三角形。
生2:老师,我剪出的三角形两个一样的。
师: 你们真厉害!对角一剪就变成了两个完全一样的三角形,你能从平行四边形的
面积公式推导出三角形的面积公式吗?
(学生小组讨论)
生3:就是除以2。
师: 你能完整的说一说什么除以2吗?
生3:平行四边形的面积除以2。用字母表示:S=ab2。
生4:我能把它剪成两个梯形教后反思
教材编排中平形四边形、三角形的面积公式推导各安排了二个课时,三角形的面积公式又重新推导一次。而在本堂课上在平行四边形后学生仅用了5分钟就推导并掌握了三角形的面积公式。花最少的时间掌握一节课的内容,何乐而不为呢?
现在使用的教材存在着许多的弊端,教师如果只是根据教材按部就班有时就出现事倍功半的现象,而且难以达到预定的效果。而如果教师能运用教材进行灵活的运用,或是根据学生的特点重新组织教材,创设更有效的更能引起学生注意的课题导入设计、问题设计,让学对本节课产生极高的兴趣,让学生自己去发现问题,去解决问题,使教师的教和学生的学达到理想的境界,正如肖川教授所说的“使我们的教学达到完美的教育。”
平行四边形教案 篇5
教材分析
本节课既是七年级平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础。本节课是在学生掌握了平移等知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用。
学情分析
八年级学生有一定的自学、探索能力,求知欲强。并且,学生 在小学里已经初步学习过平行四边形,对平行四边形有直观的感知和认识。在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的`活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。借助于远教资源的优势,能使脑、手充分动起来,学生间相互探讨,积极性也被充分调动起来。在此基础上学习平行四边形的性质,可以比较自然地得出平行四边形的性质。
教学目标
㈠、知识与技能:
1、理解并掌握平行四边形的定义;
2、掌握平行四边形的性质定理;
3、理解两条平行线的距离的概念;
4、培养学生综合运用知识的能力;
㈡、过程与方法:经历探索平行四边形的有关概念和性质的过程, 发展学生的探究意识和合情推理的能力。
㈢、情感态度与价值观:培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际应用价值。
教学重点和难点
重点:平行四边形的定义,平行四边形对角、对边相等的性质以及性质的应用。
难点:运用平行四边形的性质进行有关的论证和计算。
平行四边形教案 篇6
教学目标:
(1)通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积,培养学生初步的逻辑思维能力和空间观念。
(2)能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。
教学重点:通过操作演示,使学生理解平行四边形面积计算公式的.推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积。
教学难点:能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。
教学准备:教具、投影。
教学过程:
一、复习准备:
1.平行四边形、三角形、梯形的概念。
2.平行四边形、三角形的性质。
3.各图形的对称情况。
4.图形的大小用面积来表示。 (引人新课)
二、新授
1.投影,并观察,填书本P1的空格
2.操作:用割补法把平行四边形拼成长方形。
3.量一量长方形的长和宽与平行四边形的底和高有怎样的关系?
4.得出:
长方形的面积= 长 × 宽
平行四边形的面积=( )×( )
5.怎样计算下面图形的面积?
平行四边形教案 篇7
一、所在班级情况,学生特点分析
本校是一所比较偏僻的山村小学,本班有39名学生,全都是农民的子女。虽然现在农民的生活越来越好,但家长都希望自己的子女学到更多知识,将来有更大的发展,特别重视对学生的教育。因此,学生由于在社会、家庭、学校、教师的重视下,学习兴趣浓厚,能够认真学习,会主动学习,积极与他人合作,共同探索知识的形成过程。
二、 教学内容分析
平行四边形面积的教学是在学生已经认识了平行四边形的特征以及长方形和正方形面积计算方法的基础上进行学习的,它同时又是进一步学习三角形面积、梯形面积的基础。学好这部分内容,对于培养学生的空间观念,发展学生的思维能力,以及解决生活中的实际问题的能力,都有重要的作用。
三、 教学目标
1、 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
3、通过教学活动,激发学生学习兴趣,培养互助合作、交流、评价的意识,感受数学与生活的密切联系。
四、 教学难点分析
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推导出平行四边形面积计算公式。
教材提示通过剪一个平行四边形纸片来研究如何求平行四边形的面积,而且提供了两种提示性的方法:一种是数格子的方法,数出这个平行四边形的面积;一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积。使学生在数、剪、拼的学习活动中,通过探索、合作、交流与指导,寻找解决问题的方法。
五、 教学课时
一课时。
六、 教学过程
(一)复习
1、做一做,说一说。
师:我们已经学习了平行四边形的一些知识,认识了平行四边形的底和高课前,老师要求自己动手,做两个平行四边形,现在拿出一个平行四边形,找出它的,划出它的高,量一量,并表示出来。
学生做 — 教师巡视 — 同桌互相评价 — 个别台前讲说。
2、复习长方形面积计算公式
我们学过长方形面积的计算公式,谁能说出长方形面积的计算
公式?
生:长方形面积=长×宽
师:那么平行四边形的面积该怎么计算?这一节,我们就一起来研讨它。
(板书课题)
(二)推导平行四边形的面积公式
1、数方格法:
师:这儿有两个图形,请同学们比较它们的大小。
出示课件(图1):
要比较这两个图形的大小,就是比较它们的面积。我们先用数方格的方法数出它们各自的面积。
教学活动:
(1)数出平行四边形和长方形的`面积各是多少?
(2)平行四边形的底和高各是多少?
(3)长方形的长和宽各是多少?
(4)通过数方格,你发现了什么?
(平行四边形的底与长方形的长相等,平行四边形的高与长方形的宽相等。)
上面我们用数方格的方法得出平行四边形的面积,在实际的生活中,要求
的平行四边形的面积很大时,比如,一块平行四边形的果园,用数方格的方法就难以解决了。因此,我们能不能把一个平行四边形转化为我们已经学过的某一种图形,从而得出平行四边形面积的计算方法呢?
2、割补法:
(1)学生用学具演示。
师:同学们拿出另一个平行四边形,想一想,做一做,怎样才能把它转化成为一个长方形?
教学活动:
学生用学具做,同桌进行互相交流转化过程,边演示边述说,教师巡视指导。
(2)教师用教具演示。
同学们完成的真好,现在我们共同来演示怎样将一个平行四边形转化成一个长方形的呢?
出示课件(图2)。
教学活动:
在演示过程中,应尊重学生的观点,教师进行适当引导,坚持以学生为主体,生生互动,师生互动的原则,激发学生的学习积极性。
3、推导、归纳平行四边形的面积计算公式:
把一个平行四边形转化成一个长方形,什么变了,什么没变?
(形状变了,面积没有变。)
也就是说拼成后长方形的面积和原平行四边形的面积相等。
拼成后的长方形的长与平行四边形的底有什么关系?(相等)
长方形的宽和原平行四边形的高有什么关系?(相等)
在问答过程中,出示课件(图3)。
师:拼成后的长方形的长与原平行四边形的底相等,长方形的宽与原平行四边形的高相等,它门的面积也相等。我们知道长方形的面积是长乘宽,谁能说出平行四边形的面积怎样求?(平行四边形的面积等于底乘高。)
板书:平行四边形的面积=底×高
请看课件(图4):
如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,平行四边形面积的字母公式该怎样表示呢?
学生口述,教师板书:
S=a×h
师:一般含有字母的式子里,乘号可以用“·”表示,读作a乘h,板书:
S=a·h
也可以把乘号省略不写,板书:
S=ah
学习活动:
将上面公式请同桌同学互相说说。
(通过同学相互述说,既弄清了平行四边形的面积、底、高之间的关系,又培养了学生的口头表达能力。)
要计算平行四边形的面积,必须知道几个条件,是什么?
(两个条件,底和高。)
七、课堂练习
1、运用公式,尝试学习。
师:请同学们打开课本24页,看“试一试”题目:
出示课件(图5)。
(在学生独立完成之后,与同学们说说各自的想法、做法,征求同学们的意见。)
2、巩固练习,拓展学习。
(1)选择正确的答案。
出示课件(图6)。
师:在上面A、 B、 C三个平行四边形中哪一个的面积是: 2×3=6(平方厘米),并说出理由。
(A:错误,因为3和2是两条邻边,不是对应的底和高;
(B:错误,因为底3和高2不对应,也就是说高2不是底边3上的高;
(C:正确。
(通过练习,使学生进一步明确,要求平行四边形的面积,不仅要知道底和高两个条件,而且底和高必须对应。)
3、操作观察,探究学习。
出示课件(图7)。
如上图,分别计算图中每个平行四边形的面积,你发现了什么?(单位:㎝)
(引导学生通过计算、观察、比较等,发现平行四边形底和高相等时面积也一
定相等。)
讨论:
当两个平行四边形的面积相等时,它们的底与高是否也相等?
(平行四边形的面积相等,底与高却不一定相等。)
八、作业安排
课本24页“练一练”,第3题、4题。
九、附录(教学课件)
十、教学反思
平行四边形的面积是北师大版五年级数学上册第二单元的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积。再通过对数据的观察,提出大胆的猜想。通过操作验证的方法推导出平行四边形面积的计算方法。再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式。因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。
课堂是充满未知的,尽管课前我精心设计了教学中的每个环节,但课堂上所呈现出的效果,还是不尽人意的。
平行四边形教案 篇8
教学目标:
1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;
2.索并掌握平行四边形的性质,并能简单应用;
3.在探索活动过程中发展学生的探究意识。
教学重点:平行四边形性质的探索。
教学难点:平行四边形性质的理解。
教学准备:多媒体课件
教学过程
第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)
1.小组活动一
内容:
问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。
(1)你拼出了怎样的四边形?与同桌交流一下;
(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。
2.小组活动二
内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?
第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)
小组活动3:
用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?
(1)让学生动手操作、复制、旋转、观察、分析;
(2)学生交流、议论;
(3)教师利用多媒体展示实践的过程。
第三环节推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)
实践探索内容
(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。
(2)可以通过推理来证明这个结论,如图连结AC。
∵四边形ABCD是平行四边形
∴AD//BC,AB//CD
∴∠1=∠2,∠3=∠4
∴△ABC和△CDA中
∠2=∠1
AC=CA
∠3=∠4
∴△ABC≌△CDA(ASA)
∴AB=DC,AD=CB,∠D=∠B
又∵∠1=∠2
∠3=∠4
∴∠1+∠3=∠2+∠4
即∠BAD=∠DCB
第四环节应用巩固深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的'应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)
1.活动内容:
(1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?
A(学生思考、议论)
B总结归纳:可以确定其它三个内角的度数。
由平行四边形对边分边平行得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。
(2)练一练(P99随堂练习)
练1如图:四边形ABCD是平行四边形。
(1)求∠ADC、∠BCD度数
(2)边AB、BC的度数、长度。
练2四边形ABCD是平行四边形
(1)它的四条边中哪些线段可以通过平移相到得到?
(2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。
归纳:平行四边形的性质:平行四边形的对角线互相平分。
第五环节评价反思概括总结(8分钟,学生踊跃谈感受和收获)
活动内容
师生相互交流、反思、总结。
(1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。
(2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?
(3)本节学习到了什么?(知识上、方法上)
考一考:
1.ABCD中,∠B=60°,则∠A=,∠C=,∠D=。
2.ABCD中,∠A比∠B大20°,则∠C=。
3.ABCD中,AB=3,BC=5,则AD=CD=。
4.ABCD中,周长为40cm,△ABC周长为25,则对角线AC=()cm。
布置作业
课本习题4.1
A组(学优生)1、2
B组(中等生)1、2
C组(后三分之一生)1、2
平行四边形教案 篇9
教学内容:
人教版义务教育课程标准实验教科书数学五年级上册第五单元《平行四边形的面积》
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
把平行四边转化成长方形,找到长方形与平行四边形的`关系,从而顺利推倒出平行四边形面积计算公式。
教具准备:
课件、平行四边形纸片、剪刀、直尺、三角板等。
学具准备:
2块平行四边形彩色纸片、三角板、直尺、剪刀
教学过程:
师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)
一、情境创设,揭示课题
1、创设故事情境
同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,它们认为自已的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?
2、复习旧知,揭示课题
(1)复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长宽)
(2)师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。
(板书课题:平行四边形的面积)
二、自主探究,操作交流
1、大胆猜想
师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?
【平行四边形教案】相关文章:
平行四边形教案优秀01-22
认识平行四边形教案03-05
《平行四边形的面积》教案01-02
平行四边形的认识教案07-30
《平行四边形的认识》教案03-15
平行四边形面积教案03-09
平行四边形的面积教案07-24
平行四边形教案四篇05-24
平行四边形和梯形教案12-14
精选平行四边形教案4篇05-21