六年级数学下册比例教案
作为一位杰出的老师,通常会被要求编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。写教案需要注意哪些格式呢?以下是小编帮大家整理的六年级数学下册比例教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
六年级数学下册比例教案1
教学目标
1.使学生理解按比例分配问题的意义。
2.使学生掌握按比例分配应用题的结构及解答方法。
3.掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。
教学重点和难点
1.理解按比例分配问题的意义。
2.掌握怎样根据比算出总份数及各部分量占总数量的几分之几的解题方法。
教学过程设计
(一)复习准备
1.复习比的有关知识,为学习新知识做准备。
已知六年级1班男生人数和女生人数的比是3∶4。
男生人数与全班人数的比是( )∶( )。
女生人数与全班人数的比是( )∶( )。
2.创设情境,提出课题。
(1)妈妈有10块糖,平均分给哥哥和弟弟。每人可以得到几块糖?(每人可分到5块糖。)
提问:妈妈是怎样分的?(平均分)
(2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少?(弟弟和哥哥糖数的比是3∶2。)
提问:这样分还是平均分吗?
日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗?好,今天我们继续研究有关分配的问题。
(二)学习新课
1.讲解例2。
例2 一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2。两种作物各播种多少公顷?
(1)这道题是一道分配问题的应用题,想一想:分谁?按照什么分?求的是什么?
(2)分析思考:看到播种大豆和玉米面积的比是3∶2这句话你想到了哪些倍数关系?小组讨论。
④玉米的面积与播种总面积的比是2∶5,玉米面积是播种面积的
各小组选代表汇报,教师提前把学生要汇报的内容制成活动投影片,逐步出现。
(3)解答例2。
①试试看,用你学过的知识来解答例2,并在学习小组内说说你是怎样想的?
②说说你是怎样做的?
方法a:3+2=5
播种大豆的面积 10053=60(公顷)
播种玉米的.面积 10052=40(公顷)
方法b:总面积平均分成的份数为
3+2=5
③比较一下这几种方法中哪种方法更好一些?为什么?(第二种方法好,好想好算。)
说说这种方法的思路?(播种大豆和玉米面积的比是3∶2,就是说,在100公顷的地里,大豆地占3份,玉米地占2份,一共是5份,也就
(4)这道题做得对不对?如何进行检验?请你检验一下同组同学做得对不对?(可以把求得的大豆和玉米的总面积相加,看是不是等于播种的总面积。或者可以把求得的大豆和玉米写成比的形式,看化简后是不是等于3∶2。)
2.练习:第62页中的做一做(1)。
六一班和六二班订《少年科学》的人数比是3∶4,两个班共订了49份。两个班各订了多少份?
(1)弄懂题意。
(2)提问:这道题分配的是什么?按照什么进行分配?(这道题分配的是49份报纸,按照3∶4的比例分给六一班和六二班。)
(3)独立完成。组员之间互相检验。
3.学习例3。
例3 学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(1)小组讨论:这道题分配的是什么?按照什么来分配?(分配的是280棵树,按照一班、二班、三班的人数的比来分配。)
(2)提问:根据一班、二班、三班人数怎样算出各班栽的棵数占总棵数的几分之几?
(3)请你在练习本上独立完成。
①三个班的总人数:
47+45+48=140(人)
②一班应栽的棵数:
③二班应栽的棵数:
④三班应栽的棵数:
答:一班、二班、三班分别栽树94棵、90棵、96棵。
(4)同组同学互相检验。
4.练习:第62页中的做一做(2)。
一种什锦糖是由奶糖、水果糖和酥糖按照3∶5∶2混合成的。要配制这样的水果糖500千克,需要奶糖、水果糖和酥糖各多少千克?
(1)在练习本上独立完成。
(2)同组同学互相检验。
(三)课堂总结
今天这节课我们学习了什么知识?(板书课题:按比例分配应用题)想想看这种应用题有什么特点?(已知总数量和部分量的比,求部分量是多少。)解答这种应用题怎样想?(把一个总数量按照一定的比来进行分配,就要先求出总份数,再看各部分量占总数量的几分之几,接着就可以求出各部分量。)
回到准备题,问:平均分按几比几分配的?是不是按比例分配的应用题?指出平均分应用题是按比例分配的应用题的一种特殊情况。
(四)巩固反馈
1.填空练习:
①把35千克苹果平均分成7份,每份( )千克,2份( )千克,5份是( )千克。
2.专业户王大伯共养鸡和鸭2100只。鸡和鸭只数的比是4∶3。王大伯各养了多少只鸡和鸭?
3.第62页的做一做(3)。
一个三角形三条边的长度比是3∶5∶4,这个三角形的周长是36厘米。三条边的长度分别是多少厘米?
与练习题2有什么区别?
如果求它的最短边、最长边怎么求?
4.判断练习:(正确举,错误举)
一个长方形的周长是20分米,长与宽的比是3∶2,这个长方形的长和宽各是多少分米?
(五)布置作业
第63页第1,2,3,4题。
课堂教学设计说明
本节课的复习分为两部分:首先是复习比的有关知识,为学习新知识做准备,接着通过与学生生活实际密切联系的题目为学习新知识创设情境,从而提出课题。学习新课部分中,例2、例3的教学有扶有放,例2侧重于引导、讲解;例3则是先让学生分小组讨论,之后独立完成,最后说说怎么想的,从而掌握解题关键。巩固反馈部分由易到难,逐步提高。第4题是学生很容易错的一道题,所以采用了判断的方法,指出易错的地方,引起学生注意。
本节课采用小组协作学习的教学方法,课堂气氛活跃,调动了学生学习的积极性和主动性。
六年级数学下册比例教案2
第四课时
教学目标:
1、使学生学会解比例的方法
2、进一步理解和掌握比例的基本性质。
3、进一步体会数学知识之间的联系,感受学习数学的乐趣。
重点难点:
学会解比例,掌握解比例的书写格式
教学过程:
一、导人新课
教师:前面我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识。
二、教学新课
1、出示例5
(1)审题,帮助学生理解题意。提问:怎样理解把照片按比例放大这句话?(放大前后的相关线段的长度是可以组成比例的)
(2)如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?引导学生写出含有未知数的比例式。 告诉学生:像上面这样求比例中的未知项,叫做解比例。
(3)讨论:怎样解比例?根据是什么?
(4)思考:根据比例的.基本性质可以把比例变成什么形式? 教师板书:6x=13.54。 这变成了什么?(方程。)
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写解:,所以解比例也应写解:。(在6x前加上解:)
(5)让学生把解比例的过程完整地写出来。指名板书。
2、总结解比例的过程。 提问
刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?
(先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。) 从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)
3、做试一试,学生独立完成,再说说解题思路。
三、巩固练习
1、做练一练
2、做练习七第6、7题。
先说说按比例缩小或放大的含义。再列出相应的比例式并求解。
3、做练习七第8、9题
学生独立审题并解题。讲评时重点指导学生解决第(2)问。
4、完成思考题
四、全课小结。
五、课堂作业 补充习题34页
六年级数学下册比例教案3
教学目标:
1.使学生进一步理解比例的意义,懂得比例各部分名称。
2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。
3.能运用比例的基本性质判断两个比能否组成比例。
教学重点:
比例的基本质性。
教学难点:
发现并概括出比例的基本质性。
教具准备:
多媒体课件
教学过程:
一、旧知铺垫
1.什么叫做比例?
2.应用比例的意义,判断下面的比能否组成比例。
0.5:0.25和0.2:0.4
0.5 :0.2和5:2
1/2:1/3 和6 : 4
0.2:0.8和1:4
二、探索新知
1.比例各部分名称。
(1)教师说明组成比例的四个数的名称。
板书
组成比例的四个数,叫做比例的项。两端的两项叫做比例的`外项,中间的两项叫做比例的内项。
例如:2.4:1.6 = 60:40
内项:1.6 6o
外项:2.4 40
(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。
如:2.4 :1.6 = 60:40
外 内 内 外
项 项 项 项
2.比例的基本性质。
你能发现比例的外项和内项有什么关系吗?
(1) 学生独立探索其中的规律。
(2) 与同学交流你的发现。
(3) 汇报你的发现,全班交流。(师作适当的补充)
在比例里,两个内项的积等于两个外项的积。
板书
两个外项的积是2.440=96
两个内项的积是1.660=96
外项的积等于内项的积。
(4) 举例说明,检验发现。
0.6 :0.5=1.2: 1
两个外项的积是 0.61 =0.6
两个内项的积是0.51.2=0.6
外项的积等于内项的积。
如果把比例改成分数形式呢?
如:2.4/1.6 = 60/40
3.440=1.660
等号两边的分子和分母分别交叉相乘,所得的积相等。
(5) 学生归纳。
在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。
4.填一填。
(1)1/2:1/5 =1/4:1/10
( )( )=( )( )
(2)0.8:1.2=4:6
( )( )=( )( )
(3)45=210
4:( )=( ):( )
5.做一做。
完成课本中的做一做。
6.课堂小结
(1) 说一说比例的基本性质。
(2) 你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;1.比值是否相等;2.内项之积是否等于内项之积。)
三、巩固练习
完成课文练习六第4~6题。
补充习题
一题多变化,动脑解决它
(1)在比例里,两个内项的积是18,
其中一个外项是2,另一个外项是()。
(2)如果5a=3b,那么, = ,
(3)a︰8=9︰b,那么,ab=( )
教学反思:
比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。
六年级数学下册比例教案4
教学内容:
1、本节课在教材中的地位:本节教材是在比和比例的基础上进行教学,着重使学生理解正比例的意义。正比例与反比例是比较重要的两种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它们解决一些含正、反比例关系的实际问题。同时通过这部分内容的教学,可以进一步渗透函数思想,为学生今后的学习打下基础。
2、学生已有的知识经验基础:比和比例的有关知识,常见的数量关系(常见的数量关系是学生理解正、反比例意义的重要基础)而新教材没有都将常见的数量关系形成关系式,也增加了这节课的教学难度。让学生有画折线统计图的经验,所以基本能自己动手画出正比例关系的图像。
教材分析:
对比新旧教材,我们不难发现新教材在保留原来表格的基础上取而代之的是两种量的变化有什么规律?”这一个更开放、更具挑战性的问题。这一问题更能提供让学生有足够研究的空间与思维想象的空间,以及创造性的培养。旧教材中的3个小问题实际上就是正比例概念的三层含义(两个量必须相关联;一种量随着另一种量的变化而变化;相关联的两个量的比值一定)。旧教材这样编排的目的是让学生带着这3个问题观察表格,发现表格中的两个量的变化规律。虽然这样的编排能让学生明确观察方向,少走弯路,及时的发现变化规律,但是这样的数学学习体现不了学生学习的自主性,学生只是按照教师的指令在行动。而新教材的编排目的是让学生自己去发现规律,体现了以学生为主体的教学理念,如何更好的组织、引导学生在没有3个小问题的帮助下也能发现其中的.变化规律呢?新教材的这一变化对我们一线教师提出了更高的要求。因此深入研读教材,理解教材编写意图,准确把握教学目标,是有效完成这节课的前提。教材精简了例题,教材不再对研究的过程作详细的引导和说明,只是提供观察研究的素材与数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程。
设计理念:
教材的改动是为了让学生自己去发现寻找出表中的规律,而不是像原来那样按照事先设计好的问题去回答。但是如果一开始马上放手让学生去寻找规律,学生会感到盲目,不知从何入手,那势必会造成合作学习的低效。新课程标准在修改稿中指出:数学活动是师生共同参与、交往互动的过程。有效的数学教学活动是教师教与学生学的统一,学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,带着问题动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。基于以上对教材内容的分析,因此,在教学中,我主要体现以下几个方面
1、努力为学生创设充足的观察,分析、思考,探索、交流与合作的时间和空间,使学生真正理解和掌握成正比的量的特征、初步渗透函数思想,得到必要的数学思维训练,获得广泛的数学活动经验。充分体现学生是数学学习的主体,教师是数学学习的组织者与引导者。
2、努力实现扶与放的和谐统一,共同构建有效课堂。学生能自己解决的决不包办代替:学生可能完成的,充分相信学生,发挥自主探索与合作交流的优点,让学生有一个充分体验成功展示自我的舞台;学生有困难的,给予适当引导,拒绝无效探究,提高课堂效率。
教学目标:
基于对教材的理解和分析,我将该节课的教学目标定位为
1、帮助学生理解正比例的意义。用字母 表示变量之间的关系,加深对正比例的认识。
2、通过观察、比较、判断、归纳等方法,培养学生用事物相互联系和发展变化的观点来分析问题,使学生能够根据正比例的意义判断两种量是不是成正比例。
3、学生在自主探索,合作交流中获得积极的数学情感体验,得到必要的数学思维训练。
重点难点:
理解正比例的意义。
重难点处理
学生能在具体的情景中理解和体会成正比例的量的规律,但要他们用很专业的数学语言来描述,还是比较困难的,对于六年级的学生来说,语言的表达能力,组织能力,归纳能力有限,考虑问题也有局限性。不管是哪个层次的学生都或多或少存在着,当他们将各自的想法整合起来,基本能得出较为完整的结论。比如,什么叫两种相关联的量,学生也很难得出,也没有探究的价值,所以由教师直接讲授,而对于他们之间的规律,则由学生自己来随意表述,当他们将各自的想法整合起来,通过共同归纳、概括,合作交流,得出较为完整的结论时,能让学生深深体会到自己的价值和合作学习的高效。
教学过程:
说教学策略和方法,引入新课。
首先提供情景素材,接下来教师引导,培养学生自己发现问题的能力,学生自主探究成正比例的量这个环节分为了四层:观察—讨论―—再观察—再讨论,一环扣一环教学,分小组合作交流让学生充分参与,学生在反复观察、思考,讨论、交流的过程自己建立概念,深刻的体验使学生感受到获得新知的乐趣。
本环节将书中的表格分两层呈现,首先出示表格,让学生观察,研究变量,感受是一种量变化,另一种量也随着变化,这量种量是两种相关联的量。接着引导学生研究定量,出示表格1、表格2,让学生计算正方形的周长、面积,让学生体会周长和边长的比值相等、面积与边长的比值不相等。感受变量、常量,此时可能部分同学还是模糊的,所以进一步让学生自己讨论:周长和边长这两种变化的量具有什么特征?面积和边长两种变化的量又具有什么特征?学生讨论汇报后,可引导学生归纳:正方形的周长、面积都随着边长的变化而变化,它们是两种相关联的量;边长增加、周长(面积)也增加,周长(面积)降低、边长减少,但周长和边长的比值总是一定的,而面积与边长的比值不是相等。所以,周长与边长能成正比例,面积与边长不成正比例, “周长、边长”之间的这种关系,从而自主归纳出成正比例的量的特征,在此基础上让学生自学:这里的周长和边长是成正比例的量,周长和边长成正比例关系。仅有例题的首次感知还不能形成正比例的概念,增加一个与例题不同的情景素材,为学生进一步积累感性认识。如果说例1是在老师的引导下完成,补充做一做就应该放手,让学生独立经历正比例关系的判断过程,再次感知正比例关系。学生能够列举出生活中成正比例的量的例子是学生是否真正掌握成正比例的量的特征的一个重要依据,学生能说出更好(估计优生部分可以,但不能说出这时也不必追问,教师接着引导学生用字母式y/x=k(一定),加深对正比例的认识。
最后,通过练习让学生来巩固今天的新知,由于很多的练习都渗透到了新授的教学过程中,因此,练习的设置较少,重点是让学生在正反例的对比中,加深学生对概念的理解。
六年级数学下册比例教案5
1、比例的意义和基本性质
第一课时
内容:P32~34 比例的意义和基本性质
目的:1、使学生理解比例的意义和基本性质,能正确判断两个比是否能组成比例。
2、通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。
3、使学生初步感知事物间是相互联系、变化发展的。
教学重点;比例的意义和基本性质
教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。
教学过程:
一、回顾旧知,复习铺垫
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来,并注明比的各部分的名称。
2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让学生求出它们的比值。
12:16 : 4.5:2.7 10:6
学生求出各比的比值后,再提问:哪两个比的比值相等?
(4.5:2.7的比值和10:6的比值相等。)
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)
二、引导探究,学习新知
1、教学比例的意义。
(1)出示P32例1。
每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的比。
5: 2.4:1.6 60:40 15:10
每面国旗长和宽的比值有什么关系?(都相等)
5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40
象这样表示两个比相等的式子叫做比例。
比例也可以写成: = =
(2)我们也学过不同的两个量也可以组成一个比,如:
一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时) 2 5
路程(千米) 80 200
指名学生读题。
教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。 这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问 边填写表格。)
“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答,板书:
第一次所行驶的路程和时间的比是80:2
第二次所行驶的路程和时间的比是200:5
让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40,200:5=40。让学生观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)
教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。
指着比例式4.5:2.7=10:6提问: “谁能说说什么叫做比例?”引导学生观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让学生齐读一遍。
“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”
根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上举例边说边板书。)
(3)比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(4)巩固练习。
①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。)
6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6
学生判断后,指名说出判断的根据。
②做P33“做一做”。
让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。
③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。
④P36练习六的第1~2题。
对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。
第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。
2、教学比例的基本性质
(1)教学比例各部分的名称。
教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书P34,看看什么叫比例的项、外项、内项。
指名让学生指出板书中的比例的外项、内项。
(2)教学比例的基本性质。
教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:
两个外项的积是80×5=400
两个内项的积是 2×200=400
“你发现了什么?”(两个外项的积等于两个内项的'积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。
通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?
最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。
“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成: =
“这个比例的外项是哪两个数呢?内项呢?”
“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
3.巩固练习。
前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。 学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。
(1)应用比例的基本性质判断3:4和6:8能不能组成比例。
(2)P34“做一做”。
三、巩固深化,拓展思维
1、说说比和比例有什么区别?
2、填空
5:2=80:( ) 2:7=( ):5 1.2:2.5=( ):4
3、先应用比例的意义,再应用比例的基本性质,判断下面那组中的两个比可以组成比例。
(1) 6:9和 9:12 (2)1.4:2 和 7:10 (3) 0.5:0 .2和 :
4、下面的四个数可以组成比例吗?把组成的比例写出来。
2 、3 、4和6
四、全课小结,提高认识
通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
五、课堂练习,辅助消化
P36~37第3~6题。
六、课外补充,拓展延伸
1、判断。
(1)如果3×a=5×b,那么5:a=3:b。
(2) : 和 : 中,能与 : 组成比例的是 : 。
(3)在一个比例中,两个外项分别是7和8,那么两个内项的和一定是15。
2、用 、8、 、12四个数分别作为比例的项,你能组成几个比例?
3、请你用20以内的四个合数组成一个两个比的比值都是 的比例。
第二课时 解比例
教学内容:P35~37 解比例
教学目的:1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。
3、培养学生的知识迁移的能力,增强学生的合作意识。
教学重点:使学生掌握解比例的方法,学会解比例。
教学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。
教学过程:
一、回顾旧知,复习铺垫
1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
2、判断下面每组中的两个比是否能组成比例?为什么?
6:3和8:4 : 和 :
3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)
二、引导探索,学习新知
1、什么叫解比例?
我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。
2、教学例2。
(1)把未知项设为X。解:设这座模型的高是X米。
(2)根据比例的意义列出比例:X:320=1:10
(3)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。
根据比例的基本性质可以把它变成什么形式?3x=8×15。
这变成了什么?(方程。)
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。
(4)学生说,教师板书解比例的过程。
教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。
3、教学例3。
出示例3:解比例 =
提问:“这个比例与例 2有什么不同?”(这个比例是分数形式。)
这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?
学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6
让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。
4、总结解比例的过程。
刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)
变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)
从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)
5、P35“做一做”。学生独立解答,订正时,让学生说说是怎么做的。
三、巩固深化,拓展思维
P37第7题。
四、全课小结,提高认识
什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?
五、课堂练习,辅助消化
P37~38第8~11题。
六、课外补充,拓展延伸
1、P38第12、13题。
2、4:8=12:24,如果将第二项减少1,要使比例成立,则第四项减少多少?
3、把两个比值都是 的比组成比例,已知比例的两个内项都是15,请分别求出这个比例的两个外项,并写出比例。
4、一个比例的四个项都是大于0的整数,它的两个比的比值都是 ,且第一项比第二项少3,第三项是第一项的3倍。请写出这个比例。
2、正比例和反比例的意义
第一课时 成正比例的量
教学内容:P39~41 成正比例的量
教学要求:1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
教学重点:成正比例的量的特征及其判断方法。
教学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.
教学过程:
一、四顾旧知,复习铺 垫
1、已知路程和时间,求速度
2、已知总价和数量,求单价
3、已知工作总量和工作时间,求工作效率
二、引导探索,学习新知
1、教学例1:
出示:一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米……
(1)出示下表,填表
一列火车行驶的时间和路程
时间
路程
填表,思考:在填表中你发现了什么?
时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量)
根据计算,你发现了什么?
相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。
用式子表示他们的关系是:路程/时间=速度(一定)(板书)
(2)教师小结:
同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)
2、教学例2:
(1)花布的米数和总价表
数量 1 2 3 4 5 6 7 ……
总价 8.2 16.4 24.6 32.8 41.0 49.2 57.4 ……
(2)观察图表,发现什么规律?
用式子表示它们的关系:总价/米数=单价(一定)
3、抽象概括正比例的意义。
(1)比较例1、例2,思考并讨论:这两个例题有什么共同点?
(2)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
(3)看书P39,进一步理解正比例的意义。
(4)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?
x/y=k(一定)
(5)根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件?
4、看书P40例2。
(1)题中有几种量?哪两种量是相关联的量?
(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?
(3)它们的数量关系式是什么?
(4)从图中你发现了什么?
(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?
三、课堂小结:
什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?
四、课堂练习:
1、P41做一做
2、P43~44练习七第1~5题。
第二课时 成反比例的量
教学内容:P42 成反比例的量
教学目的:1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式.
教学难点:利用反比例的意义,正确判断两个量是否成反比例.
教学过程:
一、复习铺垫
1、下面两种量是不是成正比例?为什么?
购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.
2、成正比例的量有什么特征?
二、探究新知
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征——成反比例的量。
2、教学P42例3。
(1)引导学生观察上表内数据,然后回答下面问题:
A、表中有哪两种量?这两种量相关联吗?为什么?
B、水的高度是否随着底面积的变化而变化?怎样变化的?
C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?
D、这个积表示什么?写出表示它们之间的数量关系式
(2)从中你发现了什么?这与复习题相比有什么不同?
A、学生讨论交流。
B、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)
三、巩固练习
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
四、全课小节
这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
五、课堂练习
P45~46练习七第6~11题。
第三课时 正比例和反比例的比较
教学内容:正比例和反比例的比较
教学目标:1、进一步理解正比例和反比例的意义,弄清它们的联系和区别。掌握它们的变化规律。
2、使学生能正确判断正、反比例。
3、发展学生分析、比较、抽象、概括能力,激发学生的学习兴趣。
教学难点:正反比例的联系和区别 。
教学重点:能判断正、反比例。
教学过程:
一、复习:
判断:下面每组中的两个量成什么关系?
1、单价一定,数量和总价。
2、路程一定,速度和时间。
3、正方形的边长和它的面积。
4、时间一定,工效和工作总量。
二、新知:
1、出示课题:
2、教学补充例题
出示表1
路程(千米) 5 10 25 50 100
时间(时) 1 2 5 10 20
表2
速度(千米/时) 100 50 20 10 5
时间(时) 1 2 5 10 20
分组讨论、交流:说一说怎样想的,同时填空。引导学生讨论回答。
总结路程、速度、时间三个量中每两个量之间的比例关系。
速度×时间=路程 路程÷时间=速度 路程÷速度=时间
判断:
(1)速度一定,路程和时间成什么比例?
(2)路程一定,速度和时间成什么比例?
(3)时间一定,路程和速度成什么比例?
3、比较正比例、反比例的关系
正反比例的相同点:都有两种相关联的量,一种量随着另一种量变化。
不同点:正比例使变化相同,一种量扩大或缩小,另一种量也扩大或缩小。相对应的每两个数的比值(商)一定,反比例是变化相反,一种量扩大(或缩小),另一种量反而缩小(扩大)相对应的每两个量的积一定。
三、巩固练习
1、做一做
判断单价、数量和总价中的一种量一定,另外两种量成什么关系。为什么?
单价一定,数量和总价—
总价一定,数量和单价—
数量一定,总价和单价—
2.判断下面一些相关联的量成什么比例?为什么?
(1)除数一定, 和 成 比例。
被除数—定, 和 成 比例。
(2)前项一定, 和 成 比例。
(3)后项一定, 和 成 比例。
(4)长方形的长、宽和面积三总量,如果长是一定的,宽和面积成正例关系。这三种量再什么条件下还能组成比例关系,是哪种比例关系。
六年级数学下册比例教案6
教学内容
根据教科书自选内容。
教学目标
1.通过练习,使学生进一步理解并掌握反比例的意义,会正确判断两种相关联的量是否成反比例,并能解决简单的实际问题。
2.进一步培养学生分析问题、解决问题的能力。
3.结合实例,培养学生仔细分析、主动探索的良好的学习习惯。
教学重点
正确理解反比例的意义,并能作出正确的判断。
教学难点
能根据反比例的意义,解决相关的实际问题。
教学过程
一、学习准备,揭示课题
1.谈话引入
上节课我们学了什么?今天,我们进行练习(板书:反比例练习)。通过练习,达到以下两个目标:①进一步理解反比例的意义,并能正确判断两个相关联的量是否成反比例;②能根据反比例的意义,解决实际问题。
2.你知道哪些有关反比例的知识
板书:意义、字母表示:xy=k(一定)
二、基本练习
1.观察下面三个表
(1)表1中的两种量是怎样变化的?哪种量是一定的?每天烧煤量和烧的天数成什么比例?为什么?
(2)表2中的两种量是怎样变化的`?哪种量是一定的?用去的煤和剩下煤的吨数成比例吗?为什么?
(3)表3中的两种量是怎样变化的?哪种量是一定的?平行四边形的底和平行四边形的高成什么比例?为什么?
2.判断
判断下面各题中的两种量是否成比例。如果成比例,成什么比例?
(1)平行四边形的面积一定,它的底和高。
(2)一筐桃平均分给猴子,猴子的只数和每只猴子分的个数。
(3)报纸的单价一定,订阅的份数与总价。
(4)小刚跳高的高度和他的身高。
(5)C=4a
三、解决问题
1.巩固练习
一辆汽车从甲地开往乙地,每时行70 km,5时到达。如果要4时到达,每时需要行驶多少千米?
(1)学生读题,理解题意。
(2)会列式解答吗?试试看。还可以怎么解?(引导学生用反比例知识解答)
2.用比例知识解答
(1)同学们做广播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?
(2)用同样的砖铺地,铺18 m2要用618块砖。如果铺24 m2,要用多少块砖?
学生独立分析、解答,教师巡视,并加以指点。
根据这两道题组织学生讨论正比例关系和反比例关系的相同点和不同点。
讨论后全班交流,教师引导学生归纳并板书。
相同点:都有两种相关联的量,一种量变化,另一种量也随着变化。
不同点:正比例是相对应的两个数的比值(商)一定。反比例是相对应的两个数的积一定。
四、变式提高练习
按规律填数。
(1)(1,36),(2,18),(3,12),(4,),(5,)
(2)15,210,315,4(),()25
(3)81,27,(),3,1,()
五、全课小结
同学们,今天我们学习了什么?你有什么收获?还有哪些疑问?
六、拓展练习
根据自己的生活经验,各构建一道生活中用正比例和反比例解决的问题,再解决,并与同学交流你构建问题的思考方法和解决问题的方法。
六年级数学下册比例教案7
教学目标:
1、使学生经历猜测-验证的过程中,自主发现按比例放大后面积的变化规律
2、应用面积的变化规律解决一些实际问题。
3、使学生进一步体会比例的应用价值,提高学习数学的兴趣。
重点难点:
探究平面图形按比例放大或者缩小后面积的变化规律。
教学过程:
一、 课堂提问
1.正方形面积的计算公式是什么?
2.长方形面积的计算公式是什么?
3.三角形面积的计算公式是什么?
4.圆面积的计算公式是什么?
二、 情景导入,合作探究
1. 出示教科书第48页上面的两个长方形
说明:大长方形是小长方形按比例放大后得到的.。
(1) 请同学们分别量出两个长方形的长和宽,写出对应的边长之比
大长方形与小长方形的比是( ):( ),宽的比是( ):( )
(2) 一个长方形的长和宽按比例放大后,它的面积发生变化吗?会发生怎样的变化呢?这节课我们一起来探究面积的变化 ,板书课题。
(3) 请同学们先估计一下,大长方形与小长方形的面积比是( ):( ),再通过计算,验证自己估计的对不对?
(4) 全班交流,使学生初步感知长方形按比例放大后面积的变化规律
2. 出示教科书48页下面的一组图形
说明:下面的图形是上面相对应的图形放大后得到的。
(1) 请同学们测量相关的数据进行计算,再填写下表,再填写教科书第49页上面的表格
(2) 组织讨论:通过上面的计算和比较,你发现了什么?
(3) 小组交流
(4) 总结:把一个平面图形按N:1的比例放大后,放大后与放大前的面积比是2N:1
3.启发学生进一步思考:如果把一个平面图形按指定的比例缩小,缩小前后图形面积的变化规律又是什么?
小组讨论,全班交流
三、分组练习
让学生选择第49页图中一幢建筑或一处设施,测量并计算它的实际占地面积
四、当堂检测
1. 在比例尺是1:800的平面图上,有一块长方形的草地,长是3.5cm,宽是2cm,它的实际占地面积是多少?
2. 一块长方形运动场,长150米,宽80米。在一幅比例尺是
1:250的平面图上,这块长方形运动场的面积是多大?
3. 在一幅比例尺是1:20xx的世界图上,量得一个圆形花坛的直径是2厘米,它的实际面积是多大?
五、 总结回顾
通过今天的学习,你又有了哪些新的收获和体会?
六年级数学下册比例教案8
教学目标:
一、知识与技能
1、使学生理解比例的意义和基本性质,会解比例
2、使学生理解正、反比例的意义,能够正确判断成正、反比例的量,会运用比例知识解决有关的实际问题。
3、使学生能够运用比例知识,求出平面图的比例尺以及根据比例尺求图上距离和实际距离。
4、能理解图形放大与缩小的原理,并能把简单的图形进行放大与缩小。
二、过程与方法
1、经历探索两个量的变化情况的过程,理解并掌握正比例和反比例的意义。
2、能从比例知识的角度提出问题,理解问题,并能运用比例知识解决问题,发展学生的应用意识,发展学生的实践能力。
3、学会与人合作,并能与他人交流思维的过程和结果
三、情感、态度与价值观
1、使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
2、体验数学活动充满着探索与创造
3、形成实事求是的态度以及进行质疑和独立思考的习惯
教学重点:比例的意义和正、反比例的意义
教学难点:正确判断正、反比例
教学关键:理解正、反比例意义,认真分析两个量的变化情况 教学时数:18课时
课时安排:
1、 比例的意义和基本性质……………………….3课时
2、 正比例和反比例的意义……………………….5课时
3、 比例的应用…………………………………….5课时
4、 整理和复习…………………………………….4课时
5、 单元测试……………………………………….1课时
《比例的意义》教学反思
比例的知识在工农业生产和日常生活中有着广泛的应用。例如绘制地图需要比例知识,在生产和生活还经常用到两种量之间成正比例关系或反比例关系。比
例的知识还是进一步学习中学数学物理,化学等知识的基础。另外,通过对比例知识的学习还可以加深学生对数量关系的认识,使学生初步了解一种量是怎样随着另一种量的变化而变化。获得初步的函数观念,并利用这些知识解决一些简单的实际问题。因此学好比例这部分内容是很重要的。
教材是提供给学生学习内容的一个文本,教师要根据学生和自己的`情况,对教材进行灵活的处理。教者对本节教材进行了再思考、再开发和再创造,真正实现了变“教教材”为“用教材”。这节课中,将例题和习题有机的穿插和调整,以学生已有的知识经验为基础,让学生在算一算、想一想、说一说中理解了比例的意义,知道了比例从生活中来,进而认识到了数学在生活中有着广泛的应用,激发了学生学好数学的信心和积极情感。此外,教者还大胆地组织学生开展探究比例的基本性质的活动,没有根据教材上所提供的现成问题“分别算一算比例的两个外项和两个内项的积,你发现了什么?”机械地执行,给学生暗示思维方向,设置思维通道,缩小探索的空间,使学生失去一次极好的锻炼思维的机会,而是大胆放手,用“四个数组成等式”这一开放练习产生新鲜有用的教学资源,再通过教师适当、精心的引导,帮助学生有效地进行探究,体验了探究的成功,增强了学生的数学素养。
通过本次的教学展示,总体感觉自己整节课的教学流程清晰,教师对本节课的两个重点突破较好,学生都理解了比例的意义,能正确地读写比例,并且能根据比例的意义正确地写出比例。也理解并掌握比例的意义和基本性质,学会了应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。练习设计新颖,能体现学生思维的递进性,练习有层次。为帮助学生理解、掌握本课的教学任务起到了很好的巩固作用。
但本节课也存在着一些不足之处:
(1)整节课一味担心自己的教学任务不能完成,对学生放手不够,有牵着学生走的嫌疑。
(2)教师讲解太过仔细,以至拓展练习无法完成。在今后的教学中将加大“放手”力度,多注意培养学生创新思维;语言力争言简意赅,把更过的时间还给学生探究问题,和独立解决问题。
六年级数学下册比例教案9
教学目标
1.使学生理解并掌握比例的意义和基本性质.
2.认识比例的各部分的名称.
教学重点
比例的意义和基本性质.
教学难点
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.
教学过程
一、复习准备.
(一)教师提问复习.
1.什么叫做比?
2.什么叫做比值?
(二)求下面各比的比值.
12∶16 4.5∶2.7 10∶6
教师提问:上面哪些比的比值相等?
(三)教师小结
4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以
用等号连接.
教师板书:4.5∶2.7=10∶6
二、新授教学.
(一)比例的意义(课件演示:比例的意义)
例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:
时间(时)
2
5
路程(千米)
80
200
1.教师提问:从上表中可以看到,这辆汽车,
第一次所行驶的路程和时间的比是几比几?
第二次所行驶的路程和时间的比是几比几?
这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)
2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式
80∶2=200∶5或 .
3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)
教师提问:什么叫做比例?组成比例的关键是什么?
板书:表示两个比相等的式子叫做比例.
关键:两个比相等
4.练习
下面哪组中的两个比可以组成比例?把组成的比例写出来.
(1)6∶10和9∶15 (2)20∶5和1∶4
(3) 和 (4)0.6∶0.2和
5.填空
(1)如果两个比的比值相等,那么这两个比就( )比例.
(2)一个比例,等号左边的比和等号右边的比一定是( )的.
(二)比例的基本性质(课件演示:比例的基本性质)
1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的`内项.(板书)
2.练习:指出下面比例的外项和内项.
4.5∶2.7=10∶6 6∶10=9∶15
3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?
以80∶2=200∶5为例,指名来说明.
外项积是:80×5=400
内项积是:2×200=400
80×5=2×200
4.学生自己任选两三个比例,计算出它的外项积和内项积.
5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质
板书课题:加上“和基本性质”,使课题完整.
6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?
教师板书:
7.练习
应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.
6∶3和8∶5 0.2∶2.5和4∶50
三、课堂小结.
这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.
四、巩固练习.
(一)说一说比和比例有什么区别.
(二)填空.
在6∶5=30∶25这个比例中,外项是( )和( ),内项是( )和( ).
根据比例的基本性质可以写成( )×( )=( )×( ).
(三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.
1.6∶9和9∶12 2.1.4∶2和7∶10
3.0.5∶0.2和 4. 和7.5∶1
(四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)
2、3、4和6
五、课后作业.
根据3×4=2×6写出比例.
六、板书设计.
省略
六年级数学下册比例教案10
设计说明
1.注重培养学生学习的自主性。
引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。
2.培养学生的解题能力。
本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的解题能力、合作能力及归纳能力得到提高。
课前准备
多媒体课件
教学过程
⊙创设情境,提出问题
1.介绍“物物交换”的背景知识。
人类使用货币的历史产生于最早出现物质交换的时代。在原始社会,人们使用“物物交换”的方式交换自己所需要的物资,如用一只羊换一把斧头。我们今天所学的数学知识就从“物物交换”开始。
2.呈现问题。
同学们算一算,14个玩具汽车可以换多少本小人书?
设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。
⊙尝试解决,体会联系
1.想一想。
师:同学们算一算,14个玩具汽车可以换多少本小人书?把你的想法记录在本上。
2.说一说。
教师引导学生交流各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的数量之间存在的关系。
预设
方法一 14÷4=3.5,3.5×10=35(本)。
方法二 10÷2=5,14÷2=7,5×7=35(本)。
方法三 4个玩具汽车=10本小人书,14÷4=3……2,2个玩具汽车=5本小人书,10×3+5=35(本)。
方法四 4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,12个玩具汽车=30本小人书,2个玩具汽车=5本小人书,12+2=14(个),30+5=35(本)。
⊙自主学习,探究新知
1.提出新的要求。
师:假设14个玩具汽车可以换x本小人书,你能尝试用比例的知识解决问题吗?
2.学生尝试列式。
预设
方法一 4∶10=14∶x。
方法二 10∶4=x∶14。
方法三 14∶4=x∶10。
方法四 4∶14=10∶x。
3.交流汇报写出比例的主要依据。
4.学生独立解比例。
5.汇报结果。
预设
生1:根据在比例里,两个内项的.积等于两个外项的积,可以把这个比例转化成4x=10×14。
生2:我是这样计算的:
4∶10=14∶x
解:4x=140
x=35
6.出示课堂活动卡,组织学生先和同伴交流,再独立解决。
(师巡视,适时指导)
7.验算:把求出的结果代入比例验算一下,看等式是否成立。
(学生自主验算)
8.教师小结。
解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。
设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。
六年级数学下册比例教案11
教学要求:
1、使学生认识解比例的意义,学会应用比例的基本性质解比例。
2、使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。
教学重点:认识解比例的意义。
教学难点:应用比例的基本性质解比例。
教学过程:
一、复习引新
1.做第32页复习题。
出示复习题。让学生先思考可以怎样想。[可以用求已知比比值的方法来确定里的数;也可以用比的基本性质,把已知的一个比的前项、后项同时扩大。]让学生根据思考的方法在括号里填上数。指名口答结果,老师板书括号里的数。
2.根据比例的基本性质把下面的'比例改写成积相等的式子。(口答)
4:3=2:1.5=x:4=1:2
提问;根据积相等的式子,你能求出最后一题里的x吗?
3.引入新课。
在上面两题里,第1题是求比例里的未知项。(板书:求比例里的未知项)从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例里的未知项,就叫做解比例。(板书课题)现在,我们就应用比例的基本性质来解比例。
二、教学新课
1、教学例2。
出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。
2、教学例3。
出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。
3、教学“试一试”。
提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。
4、小结方法。
提问:你认为根据比例的基本性质要怎样解比例?
三、巩固练习
1、做“练一练”。
指名四人板演。其余学生分两组,每组两道题,做在练习本上。
2、做练习六第8题。
让学生做在课本上,指名口答。
3、做练习六第l0题。
学生分两组,每组一题,做在练习奉上。要求写出检验过程。指名口答x的值和检验过程,老师板书检验过程。并说明检验时把x代入原来的比例,看两边比的比值是否相等。
4、做练习六第11题。
学生口答、老师板书,看能写出多少个比例。
四、讲解思考题
提问:根据题意,两个外项正好互为倒数,你想到什么?(积是1)两个外项的积已知是1,你能求另一个内项吗?
五、课堂小结
这堂课学习的什么内容?应用比例的基本性质怎样解比例,
六、布置作业
课堂作业:练习六第6题第(1)~(4)题,第7题。
家庭作业:练习六第6题第(5)、(6)题,第9题和思考题。
教学目标:
1、使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,
2、使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。
3、培养学生的判断分析推理能力。
六年级数学下册比例教案12
教学内容:
比例
第一课时
教学目标:
1、使学生在具体情境中初步理解图形的放大和缩小,学会利用方格纸把一个简单图形按指定的比放大或缩小。
2、使学生在观察、比较、思考和交流等活动中,感受图形放大、缩小在生活中的应用。
3、初步体会图形的相似,进一步发展空间观念。
重点难点:
1、理解图形的放大和缩小,能利用方格纸把一个简单图形按指定的比放大或缩小
2、学生在观察、比较、思考和交流等活动中,感受图形放大、缩小,初步体会图形的相似,进一步发展空间观念。
教学过程:
一、导入。
呈现例1图片在黑板上。
提问:把放大前后的两幅画相比,你能发现什么?
根据学生回答的情况,谈话导入:像刚才把一幅长方形画放大后,长方形的长和宽与原来相比,其中变化有什么规律?这就是我们今天要学习的内容。
板书课题:图形的放大和缩小
二、教学例1。
1、认识图形的放大
出示例1中两幅图片长和宽的数据。
提问:两幅图的长有什么关系?宽呢?
组织学生先讨论,启发学生用不同的方法比较出两幅图的长和宽的关系:第二幅图的长是第一幅的2倍,宽也是第一幅的2倍;第一幅图和第二幅图长的比是2:1,宽的比也是2:1,等等。
指出:把图形的每条边放大到原来的2倍,就是把图形按2:1的比放大。
提问:刚才我们在电脑上操作时,把原来的一幅长方形按怎样的比放大了?
2、认识图形的缩小。
谈话:我们可以把一个图形按一定的比放大,也可以把一个图形按一定的比缩小。 提问:如果要把第一幅图按1:2的比缩小,缩小后的长与宽各应是原来的几分之几?
各是多少厘米?
先在小组里说一说,再组织全班交流。
三、教学例21、出示例2,让学生读题
(1)提问:按3:1放大是什么意思?放大后的长、宽各是原来的几倍?各应画几格?
(2)学生画图,再展示、交流。
(3)让学生尝试在方格纸上画出缩小后的长方形,再展示各自画的图形,并交流思考的方法。
重点指导学生说说缩小后的长方形的长和宽应是原来的几分之几,各应画多少格。
2、讨论:把放大和缩小后的图形与原来的图形相比,你有什么发现?
让学生明确:放大和缩小后的图形与原来的`图形相比,大小变了,但形状没变。(放大和缩小后的图形长与宽的比与原来图形的长和宽的比是完全一样的。)
3、教学试一试
先独立画出按2:1的比放大后的三角形,再让学生说一说自己是怎么画的?
提问:量一量,斜边的长也是原来的2倍吗?你发现什么?
小结:把三角形按2:1的比放大后,各条边的长都是原来的2倍。
四、巩固练习
1、做练一练
让学生按要求在方格纸上画出缩小后的图形,再让学生说一说是怎样画的,缩小后有关边的长度是原来的几分之几,各应画几格?
2、做练习六第1、2题。
第1题要引导学生具体分析相关图形边的长度,并完成填空,再组织交流。
五、全课小结。
什么是图形的放大和缩小。要遵循什么原则?放大和缩小后的图形与原来的图形有什么关系?
六、课堂作业 补充习题28-29页
六年级数学下册比例教案13
教学内容:教科书第45页的例5,“试一试”,“练一练”,练习十的第5~8题。
教学目标:
1、使学生学会解比例的方法,会应用比例的基本性质解比例,进一步理解和掌握比例的基
本性质。
2、让学生在经历探究的过程中,体验学习数学的快乐。
教学重点:
学会解比例。
教学难点:
掌握解比例的书写格式。
教学准备:多媒体
教学过程:
一、导入
1、小练笔:
在()里填上合适的数。5:4=():124:()=():6
2、教师:前面我们学习了一些比例的知识,谁能说一说怎样填空的?
3、比例的基本性质是什么?这节课我们还要继续学习有关比例的知识。
二、新授
出示例5,前面我们学习过图形的放大与缩小,李明把照片按比例放大,放大后长是13.5厘米,你能求他的宽吗?
(1)读题审题,理解题意
老师帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?引导学生理解放大前后的`相关线段的长度是可以组成比例
(2)引导分析,写出比例
如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?引导学生写出含有未知数的比例式。
师介绍:“像上面这样求比例中的未知项,叫做解比例。
(3)找到依据,变形解答
讨论:怎样解比例?根据是什么?
思考:“根据比例的基本性质可以把比例变成什么形式?”
教师板书:6x=13.5×4。“这变成了什么?”(方程。)
说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。
(4)、板书过程,思路
师生把解比例的过程完整地写出来。指名板书。
师问:第一步计算的依据是什么?师生解比例的过程。
提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?”(先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)
(5)、练习提高,再说思路
做“试一试”,学生独立完成,再说说解题思路。
三、巩固练习
1、做“练一练”
2、做练习十第6、7、8题。
学生交流
四、
1、通过本课的学习,你有哪些收获?
2、把你掌握的解比例的方法在小组里介绍一下,交流。
五、作业
完成《练习与测试》相关作业
板书设计
比例的基本性质
六年级数学下册比例教案14
通过本课的教学,我认为在教学中要注意以下几点:
一、生活经验与数学知识要自然融合
开始,从生活中引入学生熟悉的中国地图,让学生通过画教室的平面图,研究图上距离和实际距离的关系,进而理解和掌握比例尺的意义。但后一个的教学过程比前面的顺畅自然,因为后者更注重学生已有生活经验、已有数学知识和新学知识的融合。达到了旧知到新知的自然过渡,同时也促进了学生的主动发展。
实际距离缩小后画在图上是学生已有的生活经验,如何上升到比例尺这一新知识中来呢?首先,请同学们提问来表示图上距离和实际距离的关系,学生自然启用已有的数学知识“缩小了一定的倍数”,通过让同学计算出图上距离和实际距离的比,点明这个比就是今天要学的比例尺。这样设计的目的是让学生用已有的`数学知识“缩小几倍、比的意义”为纽带,把原有的生活经验“缩小后画在图上”和新知识“比例尺的意义”进行了融会贯通,做到了三者之间的自然融合。
新课标指出:数学教学中,应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。我想,这一过程也就是生活经验和新旧数学知识的融合过程,融合促进了学生的主动建构,提高了学生的应用和学习能力,实现了学生的生命发展。
二、教师的点拨与讲解要适时适度
新课标提倡把课堂还给学生,让学生成为课堂的主人,而教师只是教学活动的组织者、引导者和参与者。教师如何充当好这一角色呢?我认为,教师既然是引导者,教学中的讲解和点拨是必需的;教师既然是组织者、参与者,讲解和点拨又应是适时适度的。
在教学比例尺的意义时,由简单的画图到具体分析计算图上距离和实际距离关系的思维过程,同学们对生活问题数学化后,比例尺意义的揭示已是“万事具备,只欠东风”了,此时,教师的讲解成为必然。学生的学习因为教师适时的讲解有了自然过渡,实现了学生认知的和谐发展。
当然,教师的讲解和点拨还应是适度的。课堂上教师只是配角,是为学生的主动学习服务的,因此,教师的提问与讲解应具有启发性。
三、丰富了学生内心的情感世界
新的课程理念要求每一位教师树立“以人为本”的思想,在课堂教学中发挥情感教育的作用,以学生饱满的热情和积极的参与,而赢得课堂教学的高效益。本节课以学习小组为单位,教师给学生充分的时间,让他们探索、尝试、讨论、交流,教师仅仅是他们当中平等的一员。在师生互动、生生互动的过程中,学生体验到了探索的挫折与挑战、合作的效益与快乐、成功的喜悦与陶醉、事后的回顾与反思……这样的心理历程,使学生不但加深了对所学知识的认识,体验了探索的过程与方法,更增强了学生学好数学的自信心,这是培养学生终身学习的愿望与能力的有效手段。
四、对学生的理解要肯定和评价
以人为本是新课标的基本理念,在这一理念指引下,数学课堂教学中应重视数学学习的个性化发展,教师要尊重学生的学习,既要尊重学生对数学的不同理解,又要尊重学生的数学思维成果。
对于求比例尺,我让学生用例题中的方法去解答,对于学生的解法只是一句话带过,没有让学生对自己的解法加以阐述,也没有对学生的解法进行合理的评价。这无疑是违背新课程标准的。要遵循学生学习数学的心理规律,就要尊重学生的理解,让学生在不断的体验和感悟中总结和调整自己的学习,在掌握知识、提高能力的同时,学会学习。
不足的地方:这方面的活动比较少,学生感到生疏。今后,在教学过程中,对有关这方面的活动要加强探究,让学生得到锻炼。
六年级数学下册比例教案15
【教学目标】
1、使学生进一步理解比例的意义和性质,明确比和比例的联系与区别。
2、使学生能正确地、熟练地解比例。
3、使学生进一步理解、掌握正、反比例的意义,能正确进行判断。
【教学重点】用比例知识解决实际问题。
【教学难点】根据实际情况运用比例的知识解决问题。
【教学准备】多媒体课件
【自学内容】见预习作业
【教学预设】
一、自学反馈
1、关于比例的知识,通过你自己的整理和复习,谁愿意来说说,2、哪些是你学得很精彩的?哪些知识你还有遗憾?
二、比和比例的.意义
1、什么是比?
2、什么是比例?比例的基本性质是什么?
3、比和比例有什么联系和区别?指名口答,出示表格填空。意义项数基本性质举例比比例
三、解比例
1、什么叫解比例?
2、解比例是解方程吗?解方程也是解比例吗?为什么?
3、解比例。
完成课文“整理与复习”第2题。过程要求:
(1)学生独立练习活动。
(2)说一说解比例的步骤,每一步运算的根据是什么?
(3)请学生上台板书。
(4)师生共同评价,并强调书写格式。
四、正(反)比例的意义
1、什么叫成正比例的量和正比例关系?
2、什么叫成反比例的量和反比例关系?
3、比较正、反比例的相同点和不同点。相同点不同点关系式正比例反比例
4、你是如何判断两种量是否成正比例或反比例的?学生通过交流,概括出“一找、二想、三判断”。
一找:哪两种上关联的量。听课随想比例单元有哪些知识?
二想:两种相关联的量的变化情况,写出关系式。
三判断:联系关系式,看商一定还是积一定,判断成什么比例。
5、完成课文“整理与复习”第3题。过程要求:
按复习中概括“一找二想三判断”三步骤进行练习。(
1)找出两种相关联的量。
(2)说一说两种量的变化情况,写出关系式。
(3)这里哪一种量一定,两种量成什么比例。五、巩固练习
1、判断下列关系式中,两种变化的量成不成比例?若成比例,成什么比例?
(1)被除数÷除数=商
(2)被除数÷除数=商
(3)因数×因数=积
(4)因数×因数=积2、完成课文练习十第1~3题。
六、分享收获畅谈感想
这节课,你有什么收获?
反思与体会:
《比例的整理和复习》的教学设计
【六年级数学下册比例教案】相关文章:
六年级数学下册《正比例与反比例》教案03-25
六年级数学下册《正比例》的教案03-26
小学数学六年级下册正比例的教案10-08
数学比例教案10-07
《比例》苏教版六年级数学下册第四单元教案09-26
苏教版数学六年级下册按比例分配应用题教案03-26
数学《比例尺》教案03-26