- 相关推荐
高中函数教案
作为一位杰出的教职工,很有必要精心设计一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么什么样的教案才是好的呢?以下是小编收集整理的高中函数教案,欢迎阅读与收藏。
高中函数教案1
【教学目标】
(一)知识与技能
1、了解幂函数的概念,会画幂函数y?x,y?x,y?x,y?x,y?x的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。
2、了解几个常见的幂函数的性质。
(二)过程与方法
1、通过观察、总结幂函数的性质,提高概括抽象和识图能力。
2、体会数形结合的思想。
(三)情感态度与价值观
1、通过生活实例引出幂函数的概念,体会生活中处处有数学,树立学以致用的意识。
2、通过合作学习,增强合作意识。
【教学重点】
幂函数的定义
【教学难点】
会求幂函数的定义域,会画简单幂函数的图象、
【教学方法】
启发式、讲练结合教学过程
一、复习旧课
二、创设情景,引入新课
问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?
(总结:根据函数的定义可知,这里p是w的函数)
问题2:如果正方形的边长为a,那么正方形的面积S?a2,这里S是a的函数。
问题3:如果正方体的边长为a,那么正方体的体积V?a3,这里V是a的函数。
问题4:如果正方形场地面积为S,那么正方形的边长a?S12,这里a是S的函数
问题5:如果某人ts内骑车行进了1km,那么他骑车的速度V?t?1km/s,这里v是t的函数。
以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)
二、新课讲解
(一)幂函数的概念
如果设变量为x,函数值为y,你能根据以上的生活实例得到怎样的一些具体的函数式?
这里所得到的.函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗?幂函数的定义:一般地,我们把形如y?x?的函数称为幂函数(power function),其中x是自变量,?是常数。 【探究一】幂函数有什么特点?
结论:对幂函数来说,底数是自变量,指数是常数试一试:判断下列函数那些是幂函数练习1判断下列函数是不是幂函数3(1) y=2 x;(2) y=2 x5;7(3) y=x8;(4) y=x2+3、
根据你的学习经历,你觉得求一个函数的定义域应该从哪些方面来考虑?
(二):求幂函数的定义域
1.什么是函数的定义域?
函数自变量的取值范围叫做函数的定义域2.求函数的定义域时依据哪些原则?(1)解析式为整式时,x取值是全体实数。
2 (2)解析式是分式时,x取值使分母不等于零。
(3)解析式为偶次方根时,x取值使被开方数取非负实数。 (4)以上几种情况同时出现时,x取各部分的交集。
(5)当解析式涉及到具体应用题时,x取值除了使解析式有意义还要使实际问题有意义。例1写出下列函数的定义域:1(1) y=x3;(2) y=x2;-32、 (3) y=x-;(4) y=x2解:(1)函数y=x3的定义域为R;
1(2)函数y=x2,即y=x,定义域为[0,+∞);
12(3)函数y=x-,即y=2,定义域为(-∞,0)∪(0,+∞);
x3-1(4)函数y=x2,即y=,其定义域为(0,+∞)、
3 x练习2求下列函数的定义域:
11-(1) y=x2;(2) y=x 3;(3) y=x-1;(4) y=x2、
(三)、几个常见幂函数的图象和性质
我们已经学习了幂函数(1) y=x;(2) y=x2.(3) y=x-、(4)y=x3 (5) y=1x2;请同学们在同一坐标系中画出它们的图象.性质:幂函数随幂指数α的取值不同,它们的性质和图象也不尽相同,但也有一些共性,例如,所有的幂函数都通过点(1,1),都经过第一象限;当??0是,图象过点(1,1),(0,0),且在第一象限随x的增大而上升,函数在区间?0,???上是单调增函数。??0时幂函数y?x?图象的基本特征:过点(1,1),且在第一象限随x的增大而下降,函数在区间(0,??)上是单调减函数,且向右无限接近X轴,向上无限接 近Y轴。
(四)课堂小结
(五)课后作业
1、教材P 100,练习A第1题、
12在同一坐标系中画出函数y=x与y=x2的图象,并指数这两个函数各有什么性质以
3及它们的图象关系
高中函数教案2
一、教学目标
(一)知识教学点
知道一次函数的图象是直线,了解直线方程的概念,掌握直线的倾斜角和斜率的概念以及直线的斜率公式。
(二)能力训练点
通过对研究直线方程的必要性的分析,培养学生分析、提出问题的能力;通过建立直线上的点与直线的方程的解的一一对应关系、方程和直线的对应关系,培养学生的知识转化、迁移能力。
(三)学科渗透点
分析问题、提出问题的思维品质,事物之间相互联系、互相转化的辩证唯物主义思想。
二、教材分析
1。重点:通过对一次函数的研究,学生对直线的方程已有所了解,要对进一步研究直线方程的内容进行介绍,以激发学生学习这一部分知识的兴趣;直线的倾斜角和斜率是反映直线相对于x轴正方向的倾斜程度的,是研究两条直线位置关系的重要依据,要正确理解概念;斜率公式要在熟练运用上多下功夫。
2。难点:一次函数与其图象的对应关系、直线方程与直线的对应关系是难点。由于以后还要专门研究曲线与方程,对这一点只需一般介绍就可以了。
3。疑点:是否有继续研究直线方程的必要?
三、活动设计
启发、思考、问答、讨论、练习。
四、教学过程
(一)复习一次函数及其图象
已知一次函数y=2x+1,试判断点A(1,2)和点B(2,1)是否在函数图象上。初中我们是这样解答的:∵A(1,2)的坐标满足函数式,
∴点A在函数图象上。
∵B(2,1)的坐标不满足函数式,∴点B不在函数图象上。
现在我们问:这样解答的理论依据是什么?(这个问题是本课的难点,要给足够的时间让学生思考、体会。)讨论作答:判断点A在函数图象上的理论依据是:满足函数关系式的点都在函数的图象上;判断点B不在函数图象上的理论依据是:函数图象上的点的坐标应满足函数关系式。简言之,就是函数图象上的点与满足函数式的有序数对具有一一对应关系。
(二)直线的方程
引导学生思考:直角坐标平面内,一次函数的图象都是直线吗?直线都是一次函数的图象吗?
一次函数的图象是直线,直线不一定是一次函数的图象,如直线x=a连函数都不是。一次函数y=kx+b,x=a都可以看作二元一次方程,这个方程的解和它所表示的直线上的点一一对应。
以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解。这时,这个方程就叫做这条直线的方程;这条直线就叫做这个方程的.直线。
上面的定义可简言之:(方程)有一个解(直线上)就有一个点;(直线上)有一个点(方程)就有一个解,即方程的解与直线上的点是一一对应的。
显然,直线的方程是比一次函数包含对象更广泛的一个概念。
(三)进一步研究直线方程的必要性
通过研究一次函数,我们对直线的方程已有了一些了解,但有些问题还没有完全解决,如y=kx+b中k的几何含意、已知直线上一点和直线的方向怎样求直线的方程、怎样通过直线的方程来研究两条直线的位置关系等都有待于我们继续研究。
(四)直线的倾斜角
一条直线l向上的方向与x轴的正方向所成的最小正角,叫做这条直线的倾斜角,如图1-21中的α。特别地,当直线l和x轴平行时,我们规定它的倾斜角为0°,因此,倾斜角的取值范围是0°≤α<180°。
直线倾斜角角的定义有下面三个要点:
(1)以x轴正向作为参考方向(始边);
(2)直线向上的方向作为终边;
(3)最小正角。
按照这个定义不难看出:直线与倾角是多对一的映射关系。
(五)直线的斜率
倾斜角不是90°的直线。它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示,即
直线与斜率之间的对应不是映射,因为垂直于x轴的直线没有斜率。
(六)过两点的直线的斜率公式
在坐标平面上,已知两点P1(x1,y1)、P2(x2,y2),由于两点可以确定一条直线,直线P1P2就是确定的。当x1≠x2时,直线的倾角不等于90°时,这条直线的斜率也是确定的。怎样用P2和P1的坐标来表示这条直线的斜率?
P2分别向x轴作垂线P1M1、P2M2,再作P1Q⊥P2M,垂足分别是M1、M2、Q。那么:
α=∠QP1P2(图1-22甲)或α=π-∠P2P1Q(图1-22乙)
综上所述,我们得到经过点P1(x1,y1)、P2(x2,y2)两点的直线的斜率公式:
对于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(七)例题
例1如图1-23,直线l1的倾斜角α1=30°,直线l2⊥l1,求l1、l2的斜率。
∵l2的倾斜角α2=90°+30°=120°,
本例题是用来复习巩固直线的倾斜角和斜率以及它们之间的关系的,可由学生课堂练习,学生演板。
例2求经过A(-2,0)、B(-5,3)两点的直线的斜率和倾斜角。
∴tgα=-1。∵0°≤α<180°,∴α=135°。
因此,这条直线的斜率是-1,倾斜角是135°。
讲此例题时,要进一步强调k与P1P2的顺序无关,直线的斜率和倾斜角可通过直线上的两点的坐标求得。
(八)课后小结
(1)直线的方程的倾斜角的概念。(2)直线的倾斜角和斜率的概念。
(3)直线的斜率公式。
五、布置作业
1。(练习
六、板书设计
直线方程的点斜式、斜截式、两点式和截距式
高中函数教案3
一、教材分析
1、教材的地位和作用
二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,在初中的学习中已经给出了二次函数的图象及性质,学生已经基本掌握了二次函数的图象及一些性质,只是研究函数的方法都是按照函数解析式---定义域----图象----性质的方法进行的,基于这种情况,我认为本节课的作用是让学生借助于熟悉的函数来进一步学习研究函数的更一般的方法,即:利用解析式分析性质来推断函数图象。它可以进一步深化学生对函数概念与性质的理解与认识,使学生得到较系统的函数知识和研究函数的方法,站在新的高度研究函数的性质与图象。因此,本节课的内容十分重要。
2、教学的重点和难点
教学重点:使学生掌握二次函数的概念、性质和图象;从函数的性质推断图象的方法。
教学难点:掌握从函数的性质推断图象的方法。
二、目标分析
按照新课标指出三维目标,根据任教班级学生的实际情况,本节课我确定的教学目标是:
1、知识与技能:掌握二次函数的性质与图象,能够借助于具体的二次函数,理解和掌握从函数的性质推断图象的方研究法。
2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,掌握从函数解析式、性质出发去认识函数图象的高度理解和研究函数的方法。
3、情感、态度、价值观:让学生感受数学思想方法之美、体会数学思想方法之重要;培养学生主动学习、合作交流的意识等。
三、教法学法分析
遵循“教师的主导作用和学生的主体地位相统一的教学规律”,从教师的角色突出体现教师是设计者、组织者、引导者、合作者,经过教师对教材的分析理解,在教师的组织引导和师生互动过程中以问题为载体实施整个教学过程;在学生这方面,通过自主探索、合作交流、归纳方法等一系列活动为主线,感受知识的形成过程,拓展和完善自己的认知结构,进而体现出教学过程中教师与学生的双主体作用。
四、教学过程分析
根据新课标的理念,我把整个的教学过程分为六个阶段,即:创设情景、提出问题
师生互动、探究新知
独立探究,巩固方法
强化训练,加深理解
小结归纳,拓展深化
布置作业,提高升华
环节1本节课一开始我就让学生直接总结出二次函数的性质与图象形状,在学生回答后,以有必要再重复吗?编者的失误?还是另有用意呢?的设问来激发学生的求知欲,在学生感觉很疑惑的时候马上进入环节2:试作出二次函数
的图象。目的是充分暴露学生在作图时不能很好的`结合函数的性质而出现的错误或偏差问题,突出本节课的重要性。在学生总结交流的基础上教师指出学生的错误并以设问的方式提出本节课的目标:如何利用函数性质的研究来推断出较为准确的函数图象,进而引导学生进入师生互动、探究新知阶段。
在这个阶段,我引用课本所给的例题1请同学们以学习小组为单位尝试完成并作出总结发言。目的是:让学生充分参与,在合作探究中让学生最大限度地突破目标或暴露出在尝试研究过程中出现的分析障碍,即不能很好的把握函数的性质对图象的影响,不能把抽象的性质与直观的图象融会贯通,这样便于教师在与学生互动的过程中准确把握难点,各个击破,最终形成知识的迁移。在学生探讨后,教师选小组代表做总结发言,其他小组作出补充,教师引导从逐步完善函数性质的分析。其中,学生对于对称轴的确定、单调区间及单调性的分析阐述等可能存在困难。这时教师可以利用对解析式的分析结合多媒体演示引导学生得到分析的思路和解决的方法,在师生互动的过程中把函数的性质完善。之后进入环节3:再次让学生利用二次函数的性质推断出二次函数的图象,强化用二次函数的性质推断图象的关键。进而突破教学难点。让学生真正实现知识的迁移,完成整个探究过程,形成较为完整的新的认知体系.当然,在这个过程中可能会有学生提出图象为什么是曲线而不是直线等问题,为了消除学生的疑惑,进入第4个环节:教师要简单说明这是研究函数要考虑的一个重要的性质,是函数的凹凸性,后面我们将要给大家介绍,同学们可以阅读课本第110页的探索与研究。这样也给学生留下一个思考与探索的空间,培养学生课外阅读、自主研究的能力,增强学生学习数学的积极性.
在以上环节完成后,进入第5个环节:让学生对利用解析式分析性质然后推断函数图象的研究过程进行梳理并加以提炼、抽象、概括,得出研究函数的具体操作过程,使问题得以升华,拓宽学生的思维,将新知识内化到自己的认知结构中去.最终寻求到解决问题的方法。
教学的最终目标应该落实到每一个学生个体的内化与发展,由此让引导学生进入独立探究,巩固方法的阶段。例2在题目的设置上变换二次函数的开口方向,目的是一方面使学生加深对知识的理解,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.学生在例1的基础上将会目标明确地进行函数性质的研究,然后推断出比较准确的函数图象,使新知得到有效巩固.
通过前面三个阶段的学习,学生应该基本掌握了本节课的相关知识。但对二次函数中系数a、b、c的对二次函数的影响还有待提高,为此我把课本中的例3进行改编,引导学生进入强化训练,加深理解阶段。一方面可以解决学生对奇偶性的质疑,另一方面也可以把学生对二次函数的认识提到新的高度。
第五个阶段:小结归纳,拓展深化。为了让学生能够站在更高的角度认识二次函数和掌握函数的一般研究方法,教师引导学生从两个方面总结。在你对函数图象与性质的关系有怎样的理解方面教师要引导、拓展,明确今天所学习的方法实际上是研究函数性质图象的一般方法,对于一些陌生的或较为复杂的函数只要借助于适当的方法得到相关的性质就可以推断出函数的图象,从而把学生的认知水平定格在一个新的高度去理解和认识函数问题。
最后一个阶段是布置作业,提高升华,作业的设置是分层落实.巩固题让学生复习解题思路,准确应用,以便举一反三.探究题通过对教材例题的改编,供学有余力的学生自主探索,提高他们分析问题、解决问题的能力.
以上六个阶段环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的形成和发展过程,并得以迁移内化。而最终的探究作业又将激发学生兴趣,带领学生进入对二次函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。总之,这节课是本着“授之以渔”而非“授之以鱼”的理念来设计的。
高中函数教案4
教学目的:
1、掌握求函数值域的基本方法(直接法、换元法、判别式法);掌握二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法。
2、培养观察分析、抽象概括能力和归纳总结能力;
教学重点:
值域的求法
教学难点:
二次函数在某一给定区间上的值域(最值)的求法
教学过程:
一、复习引入:函数的三要素是:定义域、值域和定义域到值域的.对应法则;定义域和对应法则一经确定,值域就随之确定。已学过的函数的值域二、讲授新课
1、直接法:利用常见函数的值域来求
例1、求下列函数的值域
①y=3x+2(—1x1)②
③④
2、二次函数比区间上的值域(最值):
例2求下列函数的最大值、最小值与值域:
①;②;
③;④;
3、判别式法(△法):
判别式法一般用于分式函数,其分子或分母中最高为二次式且至少有一个为二次式,解题中要注意二次项系数是否为0的讨论及函数的定义域。
例3、求函数的值域
4、换元法
例4、求函数的值域
5、分段函数
例5、求函数y=|x+1|+|x—2|的值域。
三、单元小结:
函数的概念,解析式,定义域,值域的求法。
四、作业:
《精析精练》P58智能达标训练
高中函数教案5
教学目标:
掌握二倍角的正弦、余弦、正切公式,能用上述公式进行简单的求值、化简、恒等证明;引导学生发现数学规律,让学生体会化归这一基本数学思想在发现中所起的作用,培养学生的创新意识.
教学重点:
二倍角公式的推导及简单应用.
教学难点:
理解倍角公式,用单角的三角函数表示二倍角的三角函数.
教学过程:
Ⅰ.课题导入
前一段时间,我们共同探讨了和角公式、差角公式,今天,我们继续探讨一下二倍角公式.我们知道,和角公式与差角公式是可以互相化归的'当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?请同学们试推.
先回忆和角公式
sin(α+β)=sinαcosβ+cosαsinβ
当α=β时,sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
当α=β时cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
当α=β时,tan2α=2tanα1-tan2α
Ⅱ.讲授新课
同学们推证所得结果是否与此结果相同呢?其中由于sin2α+cos2α=1,公式C2α还可以变形为:cos2α=2cos2α-1或:cos2α=1-2sin2α
同学们是否也考虑到了呢?
另外运用这些公式要注意如下几点:
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有当α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)时才成立,否则不成立(因为当α=π2 +kπ,k∈Z时,tanα的值不存在;当α=π4 +kπ2 ,k∈Z时tan2α的值不存在).
当α=π2 +kπ(k∈Z)时,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式:
即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情况下,sin2α≠2sinα
例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情况下,才有可能成立[当且仅当α=kπ(k∈Z)时,sin2α=2sinα=0成立].
同样在一般情况下cos2α≠2cosαtan2α≠2tanα
(3)倍角公式不仅可运用于将2α作为α的2倍的情况,还可以运用于诸如将4α作为2α的2倍,将α作为 α2 的2倍,将 α2 作为 α4 的2倍,将3α作为 3α2 的2倍等等.
高中函数教案6
教学目标
1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.
(2)能从数和形两个角度认识单调性和奇偶性.
(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.
2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.
3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的.代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.
(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.
函数的奇偶性概念引入时,可设计一个课件,以
的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值
开始,逐渐让
在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式
时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如
)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.
教案网权威发布高中高一下册语文《孔雀东南飞》教学设计,更多高中高一下册语文《孔雀东南飞》教学设计相关信息请访问教案网。
设计说明
1、指导思想
本设计依据新课标的要求,立足于培养学生识记理解古汉语知识和鉴赏古典文学作品的能力,在自主、合作、探究的学习过程中养成自主学习、深入探究的良好习惯。
2、教学设想
《孔雀东南飞》是我国古代最长的叙事诗,也是乐府诗中的一朵奇葩,在思想上和艺术上都有极高的成就,对于这样一篇经典名作,我认为应该不惜时间精读细研,因此我确定用三课时完成。
本单元的话题为“爱的生命的乐章”,与单元话题相一致,我把本课的教学重点确定为:理解青年男女对美好爱情的执著追求和封建礼教、专制家长摧残青年男女爱情的罪恶。要深入理解这一重点问题,必须先扫清字词障碍,读懂原文。本文写作年代离我们十分久远,文中有很多生词、古今异义词等文言知识,可通过本课的学习让学生积累有关文言基础知识,培养学生阅读文言文的能力。另外,人物形象的塑造、思想价值的实现要借助于一定的写作手法,乐府诗常用的赋、比、兴手法也应是学习的内容之一。因此,我确定了这样三个方面的学习目标。
疏通文意,学习积累文言基础知识,学生依靠课下注释和工具书基本可以完成,因此可采用自主、合作、探究的学习方式以学生自行解决为主,教师可就疑难问题略作指导。重点目标的实现可从分析人物形象入手,采用问题研讨的方式引导学生层层深入地理解作品思想内涵和社会意义。难点(起兴手法)的突破可引导学生拓展联想,用学生较为熟悉的例子帮助他们理解。
3、本设计的特点
本设计没有刻意求新,而是重在扎实严谨上作文章。教学内容的安排由易到难;各教学环节环环相扣,层层深入,过渡严谨自然。教学活动突出了学生的主体地位。
《孔雀东南飞》教学设计
教学目标:
1、学习积累文言基础知识:实词、多义词、偏义复词、古今异义词、互文等,培养学生阅读文言文的能力
2、分析人物形象,理解刘兰芝、焦仲卿对爱情的执著追求和封建礼教、专制家长摧残青年男女爱情幸福的罪恶,深入理解作品的社会意义,培养学生分析鉴赏文学作品的能力并引导学生树立正确的爱情观、价值观
3、了解乐府诗歌的常用表现手法赋、比、兴
教学重点:刘兰芝、焦仲卿对爱情的执著追求和封建礼教、专制家长摧残青年男女爱情幸福的罪恶
教学难点:赋、比、兴手法
教学用具:课件
教学时数:三课时
教学过程:
第一课时
活动内容:疏通文本,理清情节结构,初步认识作品思想内涵
活动过程:
一、导入
爱情是文学作品永恒的主题,古今中外的文人墨客写下无数优美的诗篇讴歌美丽的爱情。但在中国漫长的封建社会里,封建礼教、家长制等传统文化的冷漠残酷使无数美丽的爱情遭到了无情的摧残,从而造成了一幕幕爱情悲剧。今天就让我们走近焦仲卿和刘兰芝的爱情悲剧,感受封建家长制的罪恶和这种制度下的青年男女对爱情的不屈追求。
二、学生自己阅读注解,识记有关文学常识
1、乐府:本是汉武帝设立的音乐机关,它的职责是采集民间歌谣或文人的诗来配乐,以备朝廷之用。它所搜集整理的诗歌后世就叫“乐府诗”或“乐府”。
2、《孔雀东南飞》是我国古代最长的一首长篇叙事诗,也是乐府民歌的代表作之一,与北朝的《木兰辞》并称“乐府双璧”。
3、本诗出自南朝徐陵编写的《玉台新咏》。《玉台新咏》是继《诗经》、《楚辞》之后最早的一部诗歌总集。
三、初读课文,疏通文意,掌握有关文言知识
1、学生默读全诗,借助工具书和注释疏通文意,不懂的词句做出记号
2、就自己不懂的词句在小组内讨论交流
3、教师解答学生解决不了的疑难字词,并指导学生理解归纳本课中古今异义词、偏义复词、互文等文言知识
出示示例:(前两类现象各出示一个例子,其他让学生自己去整理)
①古今异义词
汝岂得自由(古:自作主张 今:没有束缚)
可怜体无比(古:可爱 今:值得同情)
叶叶相交通(古:交错相通 今:指运输)
本自无教训(古:教养 今:失败的经验)
处分适兄意(古:处理 今:处罚)
②偏义复词
两个意义相关或相反的词连起来当作一个词使用,实际上只取其中一个词的意义,另一个词只作陪衬。如:
昼夜勤作息(只取“作”之意,“息”只为陪衬)
便可白公姥(只取“姥”之意)
我有亲父母(只取“母”之意)
逼迫兼弟兄(只取“兄”之意)
③ 互文句
东西植松柏,左右种梧桐
枝枝相覆盖,叶叶相交通
四、在扫清文字障碍的基础上,再浏览课文。
1、结合诗前小序,了解故事梗概
2、理清情节结构,给故事发展的每一个阶段拟一个小标题
学生回答后教师出示:
故事开端(1-2段) 自请遣归
教案网权威发布高中高一数学教案:两角差的余弦公式教案,更多高中高一数学教案相关信息请访问教案网。
两角差的余弦公式
【使用说明】 1、复习教材P124-P127页,40分钟时间完成预习学案
2、有余力的学生可在完成探究案中的部分内容。
【学习目标】
知识与技能:理解两角差的余弦公式的推导过程及其结构特征并能灵活运用。
过程与方法:应用已学知识和方法思考问题,分析问题,解决问题的能力。
情感态度价值观: 通过公式推导引导学生发现数学规律,培养学生的创新意识和学习数学的兴趣。
.【重点】通过探索得到两角差的余弦公式以及公式的灵活运用
【难点】两角差余弦公式的推导过程
预习自学案
一、知识链接
1. 写出 的三角函数线 :
2. 向量 , 的数量积,
①定义:
②坐标运算法则:
3. , ,那么 是否等于 呢?
下面我们就探讨两角差的余弦公式
二、教材导读
1.、两角差的余弦公式的推导思路
如图,建立单位圆O
(1)利用单位圆上的三角函数线
设
则
又OM=OB+BM
=OB+CP
=OA_____ +AP_____
=
从而得到两角差的余弦公式:
____________________________________
(2)利用两点间距离公式
如图,角 的终边与单位圆交于A( )
角 的终边与单位圆交于B( )
角 的终边与单位圆交于P( )
点T( )
AB与PT关系如何?
从而得到两角差的余弦公式:
____________________________________
(3) 利用平面向量的知识
用 表示向量 ,
=( , ) =( , )
则 . =
设 与 的夹角为
①当 时:
=
从而得出
②当 时显然此时 已经不是向量 的夹角,在 范围内,是向量夹角的补角.我们设夹角为 ,则 + =
此时 =
从而得出
2、两角差的余弦公式
____________________________
三、预习检测
1. 利用余弦公式计算 的值.
2. 怎样求 的值
你的疑惑是什么?
________________________________________________________
______________________________________________________
探究案
例1. 利用差角余弦公式求 的值.
例2.已知 , 是第三象限角,求 的值.
训练案
一、 基础训练题
1、
2、
3、
二、综合题
--------------------------------------------------
高中函数教案7
高一数学上册知识点整理:指数函数、函数奇偶性
指数函数
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性
注图:(1)为奇函数(2)为偶函数
1.定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的.任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
2.奇偶函数图像的特征:
定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
3.奇偶函数运算
(1).两个偶函数相加所得的和为偶函数.
(2).两个奇函数相加所得的和为奇函数.
(3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.
(4).两个偶函数相乘所得的积为偶函数.
(5).两个奇函数相乘所得的积为偶函数.
(6).一个偶函数与一个奇函数相乘所得的积为奇函数.
相关知识
高一数学函数的奇偶性37
高中函数教案8
一、教材分析:
本节课是对第二章的基本知识和方法的总结与归纳,从整体上来把握本章,使学生基本知识系统化和网络化,基本方法条理化。本章内容大致分为三个部分:(1)直线的倾斜角和斜率;(2)直线方程;(3)两条直线的位置关系。可采用分单元小结的方式,让学生自己回顾和小结各单元知识。再此基础上,教师可对一些关键处予以强调。比如可重申解析几何的基本思想——坐标法,并用解析几何的基本思想串联全章知识,使全章知识网络更加清晰。指出本章学习要求和要注意的问题,可让学生阅读教科书中“学习要求和要注意的问题”有关内容。教师重申坐标法、函数与方程思想、数形结合思想、化归与转化思想及分类与讨论思想等数学思想方法在本章中的特殊地位。
二、教学目标:
通过总结和归纳直线与方程的知识,对全章知识内容进行一次梳理,突出知识间的内在联系,进一步提高学生综合运用知识解决问题的能力。能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养分析讨论的思想和抽象思维能力。
三、教学重点:
直线的倾斜角和斜率.
2.直线的方程和直线的位置关系的应用.
3.激发学生学习数学的兴趣,培养分类讨论的思想和抽象思维能力.
教学难点:
1、数形结合和分类讨论思想的渗透和理解.
2、处理直线综合问题的策略.
四、教学过程
(一).知识要点:学生阅读教材的`小结部分.
(二).典例解析
1.例1.下列命题正确的有⑤:①每条直线都有唯一一个倾斜角与之对应,也有唯一一个斜率与之对应;②倾斜角的范围是:0°≤α180°,且当倾斜角增大时,斜率也增大;③过两点A(1,2),B(m,-5)的直线可以用两点式表示;⑤直线Ax+By+C=0(A,B不同时为零),当A,B,C中有一个为零时,这个方程不能化为截距式.⑥若两直线平行,则它们的斜率必相等;⑦若两直线垂直,则它们的斜率相乘必等于-1.
2.例2.若直线与直线,则时,a_________;时,a=__________;这时它们之间的距离是________;时,a=________.答案:;;;
3.例3.求满足下列条件的直线方程:(1)经过点P(2,-1)且与直线2x+3y+12=0平行;(2)经过点Q(-1,3)且与直线x+2y-1=0垂直;(3)经过点R(-2,3)且在两坐标轴上截距相等;(4)经过点M(1,2)且与点A(2,3)、B(4,-5)距离相等;
答案:(1)2x+3y-1=0;(2)2x-y+5=0;(3)x+y-1=0或3x+2y=0;(4)4x+y-6=0或3x+2y-7=0
4.例4.已知直线L过点(1,2),且与x,y轴正半轴分别交于点A、B(1)求△AOB面积为4时L的方程。解:设A(a,0),B(0,b)∴a,b0∴L的方程为∵点(1,2)在直线上
∴∴①∵b0∴a1
(1)S△AOB===4∴a=2这时b=4∴当a=2,b=4时S△AOB为4
此时直线L的方程为即2x+y-4=0
(2)求L在两轴上截距之和为时L的方程.解:∴这时∴L在两轴上截距之和为3+2时,直线L的方程为y=-x+2+
5.例5.已知△ABC的两个顶点A(-10,2),B(6,4),垂心是H(5,2),求顶点C的坐标.
解:∵∴
∴直线AC的方程为
即x+2y+6=0(1)又∵∴BC所在直线与x轴垂直故直线BC的方程为x=6(2)解(1)(2)得点C的坐标为C(6,-6)
(三).课堂小结:本节课总结了第三章的基本知识并形成知识网络,归纳了常见的解题方法,渗透了几种重要的数学思想方法.
(四).作业.:教材复习参考题
五、教后反思:
高中函数教案9
我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。
一、教材分析
1、教材的地位和作用: 函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。
2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。
二、教学目标分析
基于对教材的理解和分析,我制定了以下的教学目标
1、知识目标(直接性目标):理解指数函数的.定义,掌握指数函数的图像、性质及其简单应用
2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的能力
3、情感目标(可持续性目标): 通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。
三、教法学法分析
1、教学策略:首先从实际问题出发,激发学生的学习兴趣。第二步,学生归纳指数的图像和性质。第三步,典型例题分析,加深学生对指数函数的理解。
2、教学: 贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。
3、教法分析:根据教学内容和学生的状况, 本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。
高中函数教案10
【教学课题】:
已知三角函数值求角
【教学目标】:
了解反三角函数的定义,掌握用反三角函数值表示给定区间上的角
【教学重点】:
掌握用反三角函数值表示给定区间上的角
【教学难点】:
反三角函数的定义
【教学过程】:
一、问题的提出:
在我们的学习中常遇到知三角函数值求角的情况,如果是特殊值,我们可以立即求出所有的角,如果不是特殊值(),我们如何表示呢?相当于中如何用来表示,这是一个反解的过程,由此想到求反函数。但三角函数由于有周期性,它们不存在反函数,这就要求我们把它们的定义域缩小,并且这个区间满足:
(1)包含锐角;
(2)具有单调性;
(3)能取得三角函数值域上的所有值。
显然对,这样的区间是;对,这样的区间是;对,这样的区间是;
二、新课的引入:
1、反正弦定义:
反正弦函数:函数,的反函数叫做反正弦函数,记作:。
对于注意:
(1)(相当于原来函数的值域);
(2)(相当于原来函数的定义域);
即:相当于内的一个角,这个角的正弦值为。
反正弦:符合条件()的角,叫做实数的反正弦,记作:。其中。
例如:
由此可见:书上的反正弦与反正弦函数是一致的,当然理解了反正弦函数,能使大家更加系统地掌握这部分知识。
2、反余弦定义:
反余弦函数:函数,的反函数叫做反余弦函数,记作:。
对于注意:
(1)(相当于原来函数的值域);
(2)(相当于原来函数的定义域);
即:相当于内的一个角,这个角的余弦值为。
反余弦:符合条件()的`角,叫做实数的反正弦,记作:。其中。
例如:由于,故为负值时,表示的是钝角。
3、反正切定义:
反正切函数:函数,的反函数叫做反正弦函数,记作:
对于注意:
(1)(相当于原来函数的值域);
(2)(相当于原来函数的定义域);
即:相当于内的一个角,这个角的正切值为。
反正切:符合条件()的角,叫做实数的反正切,记作:。其中。
对于反三角函数,大家切记:它们不是三角函数的反函数,需要对定义域加以改进后才能出现反函数。反三角函数的性质,有兴趣的同学可根据互为反函数的函数的图象关于对称这一特性,得到反三角函数的性质。根据新教材的要求,这里就不再讲了。
高中函数教案11
内容与解析
(一)内容:对数函数及其性质
(二)解析:从近几年高考试题看,主要考查对数函数的性质,一般综合在对数函数中考查。题型主要是选择题和填空题,命题灵活。学习本部分时,要重点掌握对数的运算性质和技巧,并熟练应用。
一、目标及其解析:
(一)教学目标
(1)了解对数函数在生产实际中的简单应用。进一步理解对数函数的图象和性质;
(2)学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质。。
(二)解析
(1)在对数函数中,底数且,自变量,函数值。作为对数函数的三个要点,要做到道理明白、记忆牢固、运用准确。
(2)反函数求法:①确定原函数的值域即新函数的定义域。②把原函数y=f(x)视为方程,用y表示出x。③把x、y互换,同时标明反函数的定义域。
二、问题诊断分析
在本节课的教学中,学生可能遇到的问题是不易理解反函数,熟练掌握其转化关系是学好对数函数与反函数的基础。
三、教学支持条件分析
在本节课一次递推的教学中,准备使用PowerPoint 20xx。因为使用PowerPoint 20xx,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。
四、教学过程
问题一。对数函数模型思想及应用:
①出示例题:溶液酸碱度的测量问题:溶液酸碱度pH的计算公式,其中表示溶液中氢离子的浓度,单位是摩尔/升。
(Ⅰ)分析溶液酸碱读与溶液中氢离子浓度之间的关系?
(Ⅱ)纯净水摩尔/升,计算纯净水的酸碱度。
②讨论:抽象出的函数模型?如何应用函数模型解决问题?强调数学应用思想
问题二。反函数:
①引言:当一个函数是一一映射时,可以把这个函数的因变量作为一个新函数的自变量,而把这个函数的.自变量新的函数的因变量。我们称这两个函数为反函数(inverse function)
②探究:如何由求出x?
③分析:函数由解出,是把指数函数中的自变量与因变量对调位置而得出的习惯上我们通常用x表示自变量,y表示函数,即写为。
那么我们就说指数函数与对数函数互为反函数
④在同一平面直角坐标系中,画出指数函数及其反函数图象,发现什么性质?
⑤分析:取图象上的几个点,说出它们关于直线的对称点的坐标,并判断它们是否在的图象上,为什么?
⑥探究:如果在函数的图象上,那么P0关于直线的对称点在函数的图象上吗,为什么?
由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线对称)
⑦练习:求下列函数的反函数:;
(师生共练小结步骤:解x;习惯表示;定义域)
(二)小结:函数模型应用思想;反函数概念;阅读P84材料
五、目标检测
1(20xx全国卷Ⅱ文)函数y=(x 0)的反函数是
1B解析:本题考查反函数概念及求法,由原函数x 0可知A、C错,原函数y 0可知D错,选B。
2(20xx广东卷理)若函数是函数的反函数,其图像经过点,则()
2 B解析:,代入,解得,所以,选B。
3求函数的反函数
3解析:显然y0,反解可得,将x,y互换可得。可得原函数的反函数为。
高中函数教案12
授课时间
撰写人
刘报
学习重点
函数单调性证明
学习难点
函数单调性应用及证明
学习目标
1.理解函数的最大(小)值及其几何意义;2.学会运用函数图象理解和研究函数的性质.3.函数单调性证明
教学过程
一自主学习
1.指出函数的单调区间及单调性,并进行证明.2.函数的最小值为,的最大值为.
3:先完成下表,函数
最高点
最低点
,,4设函数y=f(x)的定义域为I,如果存在实数M满足:对于任意的x∈I,都有f(x)≤M;存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的。
仿照最大值定义,给出最小值(MinimumValue)的定义.
二师生互动
例1一枚炮弹发射,炮弹距地面高度h(米)与时间t(秒)的变化规律是,那么什么时刻距离地面的高度达到最大?最大是多少?
变式:经过多少秒后炮弹落地?
试试:一段竹篱笆长20米,围成一面靠墙的矩形菜地,如何设计使菜地面积最大?
例2求在区间[3,6]上的最大值和最小值.
变式:求的最大值和最小值.
练一练函数的'最小值为,最大值为.如果是呢?
三巩固练习
1.函数的最大值是().A.-1B.0C.1D.22.函数的最小值是().A.0B.-1C.2D.33.函数的最小值是().A.0B.2C.4D.4.已知函数的图象关于y轴对称,且在区间上,当时,有最小值
3,则在区间上,当时,有最值为.5.函数的最大值为,最小值为.6.用多种方法求函数最小值.
四课后反思
五课后巩固练习
1.作出函数的简图,研究当自变量x在下列范围内取值时的最大值与最小值.(1);(2);(3).2.已知函数在区间是增函数,则实数a的取值范围
高中函数教案13
一.课前指导
学习目标
掌握余弦函数的周期和最小正周期,并能求出余弦函数的最小正周期。
掌握余弦函数的奇、偶性的判断,并能求出余弦函数的单调区间。并能求出余弦函数的最大最小值与值域、
学法指导
1.利用换元法转化为求二次函数等常见函数的值域.
2.将sin(-2x)化简为-cos2x,然后利用对数函数单调性及余弦函数的有界性求得最大值.
要点导读
1.从图象上可以看出,;,的最小正周期为;
2.一般结论:函数及函数,(其中为常数,且,)的周期T=;
函数及函数,的.周期T=;
3.函数y=cosx是(奇或偶)函数函数y=sinx是(奇或偶)函数
4.正弦函数在每一个闭区间上都是增函数,其值从-1增大到1;
在每一个闭区间上都是减函数,其值从1减小到-1.
余弦函数在每一个闭区间上都是增函数,其值从-1增加到1;
在每一个闭区间上都是减函数,其值从1减小到-1.
5.y=sinx的对称轴为x=k∈Zy=cosx的对称轴为x=k∈Z
二.课堂导学
例1.已知x∈,若方程mcosx-1=cosx+m有解,试求参数m的取值范围.
例2.已知y=2cosx(0≤x≤2π)的图像和直线y=2围成一个封闭的平面图形,则这个封闭图形的面积是_________________.
例3.求下列函数值域:
(1)y=2cos2x+2cosx+1;(2)y=.
例4.已知0≤x≤,求函数y=cos2x-2acosx的最大值M(a)与最小值m(a).
点拔:利用换元法转化为求二次函数的最值问题.
例5求下列函数的定义域:
(1)y=lgsin(cosx);(2)=.
三、课后测评
一、选择题(每小题5分)
1.下列说法只不正确的是()
(A)正弦函数、余弦函数的定义域是R,值域是[-1,1];
(B)余弦函数当且仅当x=2kπ(k∈Z)时,取得最大值1;
(C)余弦函数在[2kπ+,2kπ+](k∈Z)上都是减函数;
(D)余弦函数在[2kπ-π,2kπ](k∈Z)上都是减函数
2.函数f(x)=sinx-|sinx|的值域为()
(A){0}(B)[-1,1](C)[0,1](D)[-2,0]
3.若a=sin460,b=cos460,c=cos360,则a、b、c的大小关系是()
(A)cab(B)abc(C)acb(D)bca
4.对于函数y=sin(π-x),下面说法中正确的是()
(A)函数是周期为π的奇函数(B)函数是周期为π的偶函数
(C)函数是周期为2π的奇函数(D)函数是周期为2π的偶函数
5.函数y=2cosx(0≤x≤2π)的图象和直线y=2围成一个封闭的平面图形,则这个封闭图形的面积是()
(A)4(B)8(C)2π(D)4π
*6.为了使函数y=sinωx(ω0)在区间[0,1]是至少出现50次最大值,则的最小值是()(A)98π(B)π(C)π(D)100π
二.填空题(每小题5分)
7.(20xx江苏,1)f(x)=cos(x-)最小正周期为,其中>0,则=.
8.函数y=cos(sinx)的奇偶性是.
9.函数f(x)=lg(2sinx+1)+的定义域是;
10.关于x的方程cos2x+sinx-a=0有实数解,则实数a的最小值是.
三.解答题(每小题10分)
11..已知函数f(x)=,求它的定义域和值域,并判断它的奇偶性.
12.已知函数y=f(x)的定义域是[0,],求函数y=f(sin2x)的定义域.
13.已知函数f(x)=sin(2x+φ)为奇函数,求φ的值.
14.已知y=a-bcos3x的最大值为,最小值为,求实数a与b的值.
15求下列函数的值域:
(1)y=;
(2)y=sinx+cosx+sinxcosx;
(3)y=2cos+2cosx.
四、课后反思:通过本节课的学习你有哪些收获?
高中函数教案14
今天我说课的课题是《锐角三角函数》(第一课时),所选用的教材为人教版义务教育课程标准实验教科书。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法和学法分析,教学过程分析四个方面加以说明。
一、教材的地位和作用
本节教材是人教版初中数学新教材九年级下第28章第一节内容,是初中数学的重要内容之一。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础,也是高中进一步研究三角函数、反三角函数、三角方程的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析
从学生的年龄特征和认知特征来看:
九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。
从学生已具备的知识和技能来看:
九年级学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础
从心理特征来看:初三学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
从学生有待于提高的知识和技能来看:
学生要得出直角三角形中边与角之间的关系,需要观察、思考、交流,进一步体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。学生可能会产生一定的困难,所以教学中应予以简单明了,深入浅出的剖析。
3、教学重、难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:理解正弦函数意义,并会求锐角的正弦值。
难点确定为:根据锐角的正弦值及一边,求直角三角形的其他边长。
二、教学目标分析
新课标指出,教学目标应从知识技能、数学思考、问题解决、情感态度等四个方面阐述,而这四维目标又应是紧密联系的一个完整的整体,学生学知识技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识技能为主线,渗透情感态度,并把前面两者通过数学思考充分体现在问题解决中。借此结合以上教材分析,我将四个目标进行整合,确定本节课的教学目标为:
1。理解锐角正弦的意义,并会求锐角的正弦值;
2。初步了解锐角正弦取值范围及增减性;
3。掌握根据锐角的正弦值及直角三角形的一边,求直角三角形的其他边长的方法;
4。经历锐角正弦的意义探索的过程,培养学生观察分析、类比归纳的探究问题的能力;
5。通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
三、教学方法和学法分析
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的学情情况,本节课我采用“三动五自主”的教学模式,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和合作交流的形式,在教师的指道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
本节课的教法采用的是情境引导和探究发现教学法,在教学过程中,通过适宜的问题情境引发新的认知冲突;建立知识间的联系。教师通过引导、指导、反馈、评价,不断激发学生对问题的好奇心,使其在积极的自主活动中主动参与概念的建构过程,并运用数学知识解决实际问题,享受数学学习带来的乐趣。
本节课的学习方法采用自主探究法与合作交流法相结合。本节课数学活动贯穿始终,既有学生自主探究的,也有小组合作交流的,旨在让学生从自主探究中发展,从合作交流中提高。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(一)自主探究
1、复习旧知,温故知新
1、已知:在Rt△ABC中,∠C=900,∠A=350,则∠B= 0
2、已知:在Rt△ABC中,∠C=900,AB=5,AC=3,则BC=
设计意图:建构注意主张教学应从学生已有的知识体系出发,相似的三角形性质是本节课深入研究锐角正弦的认知基础,这样设计有利于引导学生顺利地进入学习情境。
2、创设情境,提出问题
利用多媒体播放意大利比萨斜塔图片,然后老师问:比萨斜塔中条件和要探究的问题:“你能根据问题背景画出直角三角形并且利用边求出斜塔的倾斜角吗?”这就是今天我们要学习锐角三角函数(板书课题)
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
(二)自主合作
1、发现问题,探求新知(要求学生独立思考后小组内合作探究)
1、(播放绿化荒山的视频)课本P74问题与思考,求的值
2、课本P75思考:求的值
设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。
2、分析思考,加深理解
1、课本P75探索,问:与有什么关系?你能解释吗?
2、正弦函数定义:在Rt△ABC中,∠C=900,把锐角A的'对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=
对定义的几点说明:
1、sinA是一个完整的符号,表示∠A的正切习惯上省略“∠”的符号。
2、本章我们只研究锐角∠A的正弦。
3、sinA的范围:0
设计意图:数学教学论指出,数学概念要明确其内涵和外延(条件、结论、应用范围等),通过对锐角正弦定义阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生引入到下一环节。
(三)自主展示(强化训练,巩固双基)
1、(例1课本P76)已知:在Rt△ABC中,∠C=900,根据图中数据
求sinA和sinB
2、判断对错(学生口答)
(1)若锐角∠A=∠B,则sinA=sinB ( )
(2)sin600=sin300+sin300 ( )
3、如图,将Rt△ABC各边扩大100倍,则tanA的值( )
A。扩大100倍B。缩小100倍C。不变D。不确定
4、如图,平面直角坐标系中点P(3,— 4),OP与x轴的夹角为∠1,求sin∠1的值。
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(四)自主拓展(提高升华)
1、课本习题28。1第1、2、题;
2、选做题:已知:在Rt△ABC中,∠C=900,sinA=,周长为60,求:斜边AB的长?
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
(五)自主评价(小结归纳,拓展深化)
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验是那个方面进行归纳,我设计了这么三个问题:
①通过本节课的学习,你学会了哪些知识;
②通过本节课的学习,你最大的体验是什么;
③通过本节课的学习,你掌握了哪些学习数学的方法?
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,为了使课堂效益达到最佳状态,我设计以下问题加以追问:
1、sinA能为负吗?
2、比较sin450和sin300的大小?
设计要求:(1)先学生独立思考后小组内探究
(2)各组交流展示探究结果,并且组内或各组之间自主评价。
设计意图:
(1)有一定难度需要学生进行合作探究,有利于培养学生善于反思的好习惯。
(2)学生通过互评自评,可以使学生全面了解自己的学习过程,感受自己的成长和进步,同时促进学生对学习及时进行反思,为教师全面了解学生的学习状况,改进教学,实施因材施教提供重要依据。我的说课到此结束,敬请各位老师批评、指正,谢谢!
教学反思
1。本教学设计以直角三角形为主线,力求体现生活化课堂的理念,让学生在经历“问题情境——形成概念——应用拓展——反思提高”的基本过程中,体验知识间的内在联系,让学生感受探究的乐趣,使学生在学中思,在思中学。
2。在教学过程中,重视过程,深化理解,通过学生的主动探究来体现他们的主体地位,教师是通过对学生参与学习的启发、调整、激励来体现自己的引导作用,对学生的主体意识和合作交流的能力起着积极作用。
3。正弦是生活中应用较广泛的三角函数。因而在本节课的设计中力求贴近生活。又从意大利比萨斜塔提炼出了数学问题,让学生体会学数学、用数学的乐趣。
高中函数教案15
补充,已知:f(x)是定义在[-1,1]上的增函数,且f(x-1)f(x2-1),求x的取值范围.
相关推荐
2.3函数的单调性(第三课时)
2.3函数的单调性(第三课时)
教学目的:函数单调性的应用
重点难点:含参问题的讨论,抽象函数问题.
教学过程
一、复习引入函数单调性的概念,复合函数的单调性.
二、例题.
例1.如果二次函数在区间内是增函数,求f(2)的取值范围.
分析:由于f(2)=22-(a-1)×2+5=-2a+11,f(2)的取值范围即一次函数y=-2a+11的值域,固应先求其定义域.
例2.设y=f(x)在R上是单调函数,试证方程f(x)=0在R上至多有一个实数根.
分析:根据函数的单调性,用反证法证明.
例3.设f(x)的定义域为,且在上的增函数,(1)求证f(1)=0;f(xy)=f(x)+f(y);
(2)若f(2)=1,解不等式
分析:利用f(x)的性质,脱去函数的符号,将问题化为解一般的不等式;注意,2=1+1=f(2)+f(2)=f(4).
例4.已知函数.
(1)当时,求函数f(x)的最小值;
(2)若对任意恒成立,试求实数a的取值范围.
分析:(1)利用f(x)的单调性即可求最小值;
(2)利用函数的性质分类讨论解之.
例5.求函数的单调区间.
分析:利用复合函数的单调性解题.
令即函数的定义域为[-3,1];
再根据复合函数的单调性求出其单调区间.
三、作业:《精析精练》P73智能达标训练.
函数的单调性
一名合格的教师要充分考虑学习的趣味性,作为高中教师就需要提前准备好适合自己的教案。教案可以让学生能够在课堂积极的参与互动,帮助高中教师有计划有步骤有质量的完成教学任务。你知道如何去写好一份优秀的高中教案呢?为了让您在使用时更加简单方便,下面是小编整理的“函数的单调性”,仅供您在工作和学习中参考。
数学必修1:函数的单调性
教学目标:理解函数的单调性
教学重点:函数单调性的概念和判定
教学过程:
1、过对函数、、及的观察提出有关函数单调性的问题.
2、阅读教材明确单调递增、单调递减和单调区间的概念
3、
例1、如图是定义在闭区间[-5,5]上的函数的图象,根据图象说出的单调区间,及在每一单调区间上,是增函数还是减函数。
解:函数的单调区间有,其中在区间,上是减函数,在区间上是
增函数。
注意:1单调区间的书写
2各单调区间之间的关系
以上是通过观察图象的.方法来说明函数在某一区间的单调性,是一种比较粗略的方法,那么,对于任给函数,我们怎样根据增减函数的定义来证明它的单调性呢?
例2、证明函数在R上是增函数。
证明:设是R上的任意两个实数,且,则
,所以,在R上是增函数。
例3、证明函数在上是减函数。
证明:设是上的任意两个实数,且,则
由,得,且
于是
所以,在上是减函数。
利用定义证明函数单调性的步骤:
(1)取值
(2)计算、
(3)对比符号
(4)结论
课堂练习:教材第50页练习A、B
小结:本节课学习了单调递增、单调递减和单调区间的概念及判定方法
课后作业:第57页习题2-1A第5题
§1.3.1函数的单调性与导数(1课时)
一名优秀的教师在教学时都会提前最好准备,准备好一份优秀的教案往往是必不可少的。教案可以让学生更好地进入课堂环境中来,帮助授课经验少的高中教师教学。高中教案的内容具体要怎样写呢?以下是小编为大家收集的“§1.3.1函数的单调性与导数(1课时)”相信您能找到对自己有用的内容。
§1.3.1函数的单调性与导数(1课时)
【学情分析】:
高一学过了函数的单调性,在引入导数概念与几何意义后,发现导数是描述函数在某一点的瞬时变化率。在此基础上,我们发现导数与函数的增减性以及增减的快慢都有很紧密的联系。本节内容就是通过对函数导数计算,来判定可导函数增减性。
【教学目标】:
(1)正确理解利用导数判断函数的单调性的原理;
(2)掌握利用导数判断函数单调性的方法
(3)能够利用导数解释实际问题中的函数单调性
【教学重点】:
利用导数判断函数单调性,会求不超过三次的多项式函数的单调区间
【教学过程设计】:
教学环节教学活动设计意图
情景引入过程
从高台跳水运动员的高度h随时间t变化的函数:
分析运动动员的运动过程:
上升→最高点→下降
运动员瞬时速度变换过程:
减速→0→加速从实际问题中物理量入手
学生容易接受
实际意义向函数意义过渡从函数的角度分析上述过程:
先增后减
由正数减小到0,再由0减小到负数
将实际的量与函数及其导数意义联系起来,过渡自然,突破理解障碍
引出函数单调性与导数正负的关系通过上述实际例子的分析,联想观察其他函数的单调性与其导数正负的关系
进一步的函数单调性与导数正负验证,加深两者之间的关系
我们能否得出以下结论:
在某个区间(a,b)内,如果,那么函数y=f(x)在这个区间内单调递增;如果,那么函数y=f(x)在这个区间内单调递减
答案是肯定的
从导数的概念给出解释表明函数在此点处的切线斜率是由左下向右上,因此在附近单调递增
表明函数在此点处的切线斜率是由左上向右下,因此在附近单调递减
所以,若,则,f(x)为增函数
同理可说明时,f(x)为减函数
用导数的几何意义理解导数正负与单调性的内在关系,帮助理解与记忆
导数正负与函数单调性总结若y=f(x)在区间(a,b)上可导,则
(1)在(a,b)内,y=f(x)在(a,b)单调递增
(2)在(a,b)内,y=f(x)在(a,b)单调递减
抽象概括我们的心法手册(用以指导我们拆解题目)
例题精讲1、根据导数正负判断函数单调性
教材例1在教学环节中的处理方式:
以学生的自学为主,可以更改部分数据,让学生动手模仿。
小结:导数的正负→函数的增减→构建函数大致形状
提醒学生观察的点的图像特点(为下节埋下伏笔)
丢出思考题:“”的点是否一定对应函数的最值(由于学生尚未解除“极值”的概念,暂时还是以最值代替)例题处理的目标就是为达到将“死结论”变成“活套路”
2、利用导数判断函数单调性以及计算求函数单调区间
教材例2在教学环节中的处理方式:
可以先以为例回顾我们高一判断函数单调性的定义法;再与我们导数方法形成对比,体会导数方法的优越性。
引导学生逐步贯彻落实我们之前准备的“心法手册”
判断单调性→计算导数大小→能否判断导数正负
→Y,得出函数单调性;
→N,求“导数大于(小于)0”的不等式的解集→得出单调区间
补充例题:
已知函数y=x+,试讨论出此函数的单调区间.
解:y′=(x+)′=1-1x-2=
令>0.解得x>1或x<-1.
∴y=x+的单调增区间是(-∞,-1)和(1,+∞).
令<0,解得-1<x<0或0<x<1.
∴y=x+的单调减区间是(-1,0)和(0,1)
要求根据函数单调性画此函数的草图
3、实际问题中利用导数意义判断函数图像
教材例3的处理方式:
可以根据课程进度作为课堂练习处理
同时还可以引入类似的练习补充(如学生上学路上,距离学校的路程与时间的函数图像)
堂上练习教材练习2——由函数图像写函数导数的正负性
教材练习1——判断函数单调性,计算单调区间针对教材的三个例题作知识强化练习
内容总结体会导数在判断函数单调性方面的极大优越性体会学习导数的重要性
课后练习:
1、函数的递增区间是()
ABCD
答案C对于任何实数都恒成立
2、已知函数在上是单调函数,则实数的
取值范围是()
AB
CD
答案B在恒成立,3、函数单调递增区间是()
ABCD
答案C令
4、对于上可导的任意函数,若满足,则必有()
AB
CD
答案C当时,函数在上是增函数;当时,在上是减函数,故当时取得最小值,即有
得
5、函数的单调增区间为,单调减区间为___________________
答案
6、函数的单调递增区间是___________________________
答案
7、已知的图象经过点,且在处的切线方程是
(1)求的解析式;(2)求的单调递增区间
解:(1)的图象经过点,则,切点为,则的图象经过点
得
(2)
单调递增区间为
函数单调性
年级高一
学科数学
课题
【高中函数教案】相关文章:
高中函数知识总结07-30
《函数的概念》教案06-25
正弦函数、余弦函数的图象教案09-08
高中数学函数的教学论文08-16
函数奇偶性教案02-15
二次函数教案08-28
《指数函数的概念》教案03-22
一次函数教案07-07
分段函数04-01