- 相关推荐
函数教学教案设计(通用9篇)
作为一位优秀的人民教师,时常需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么什么样的教案才是好的呢?下面是小编精心整理的函数教学教案设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
函数教学教案设计 篇1
教学目标:
1.进一步理解指数函数的性质;
2.能较熟练地运用指数函数的性质解决指数函数的平移问题;
教学重点:
指数函数的性质的应用;
教学难点:
指数函数图象的平移变换.
教学过程:
一、情境创设
1.复习指数函数的概念、图象和性质
练习:函数=ax(a>0且a≠1)的定义域是_____,值域是______,函数图象所过的定点坐标为 .若a>1,则当x>0时, 1;而当x<0时, 1.若0<a<1,则当x>0时, 1;而当x<0时, 1.
2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a>0且a≠1,函数=ax的图象恒过(0,1),那么对任意的a>0且a≠1,函数=a2x1的图象恒过哪一个定点呢?
二、数学应用与建构
例1 解不等式:
(1) ;(2) ;
(3) ;(4) .
小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.
例2 说明下列函数的图象与指数函数=2x的图象的关系,并画出它们的示意图:
(1) ; (2) ;(3) ;(4) .
小结:指数函数的平移规律:=f(x)左右平移 =f(x+)(当>0时,向左平移,反之向右平移),上下平移 =f(x)+h(当h>0时,向上平移,反之向下平移).
练习:
(1)将函数f (x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数 的图象.
(2)将函数f (x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数 的图象.
(3)将函数 图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是 .
(4)对任意的a>0且a≠1,函数=a2x1的图象恒过的定点的坐标是 .函数=a2x-1的图象恒过的定点的坐标是 .
小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.
(5)如何利用函数f(x)=2x的图象,作出函数=2x和=2|x2|的图象?
(6)如何利用函数f(x)=2x的图象,作出函数=|2x-1|的图象?
小结:函数图象的对称变换规律.
例3 已知函数=f(x)是定义在R上的奇函数,且x<0时,f(x)=1-2x,试画出此函数的图象.
例4 求函数 的最小值以及取得最小值时的x值.
小结:复合函数常常需要换元来求解其最值.
练习:
(1)函数=ax在[0,1]上的`最大值与最小值的和为3,则a等于 ;
(2)函数=2x的值域为 ;
(3)设a>0且a≠1,如果=a2x+2ax-1在[-1,1]上的最大值为14,求a的值;
(4)当x>0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围.
三、小结
1.指数函数的性质及应用;
2.指数型函数的定点问题;
3.指数型函数的草图及其变换规律.
四、作业:
课本P71-11,12,15题.
五、课后探究
(1)函数f(x)的定义域为(0,1),则函数 的定义域为 .
(2)对于任意的x1,x2R ,若函数f(x)=2x ,试比较 的大小.
函数教学教案设计 篇2
教学目标
1.使学生了解反函数的概念;
2.使学生会求一些简单函数的反函数;
3.培养学生用辩证的观点观察、分析解决问题的能力。
教学重点
1.反函数的概念;
2.反函数的求法。
教学难点
反函数的概念。
教学方法
师生共同讨论
教具装备
幻灯片2张
第一张:反函数的定义、记法、习惯记法。(记作A);
第二张:本课时作业中的预习内容及提纲。
教学过程
(I)讲授新课
(检查预习情况)
师:这节课我们来学习反函数(板书课题)§2.4.1 反函数的概念。
同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的`定义、记法、习惯记法?
生:(略)
(学生回答之后,打出幻灯片A)。
师:反函数的定义着重强调两点:
(1)根据y= f(x)中x与y的关系,用y把x表示出来,得到x=φ(y);
(2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。
师:应该注意习惯记法是由记法改写过来的。
师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?
生:一一映射确定的函数才有反函数。
(学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。
师:在y= f(x)中与y= f -1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。)
在y= f(x)中与y= f –1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)
由此,请同学们谈一下,函数y= f(x)与它的反函数y= f –1(x)两者之间,定义域、值域存在什么关系呢?
生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的值域、定义域。
师:从反函数的概念可知:函数y= f (x)与y= f –1(x)互为反函数。
从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:
(1)由y= f (x)解出x= f –1(y),即把x用y表示出;
(2)将x= f –1(y)改写成y= f –1(x),即对调x= f –1(y)中的x、y。
(3)指出反函数的定义域。
下面请同学自看例1
(II)课堂练习 课本P68练习1、2、3、4。
(III)课时小结
本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。
(IV)课后作业
一、课本P69习题2.4 1、2。
二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。
板书设计
课题: 求反函数的方法步骤:
定义:(幻灯片)
注意: 小结
一一映射确定的
函数才有反函数
函数与它的反函
数定义域、值域的关系。
函数教学教案设计 篇3
教学目标:
(一)教学知识点:
1.对数函数的概念;2.对数函数的图象和性质.
(二)能力训练要求:
1.理解对数函数的概念;2.掌握对数函数的图象和性质.
(三)德育渗透目标:
1.用联系的观点分析问题;2.认识事物之间的互相转化.
教学重点:
对数函数的图象和性质
教学难点:
对数函数与指数函数的关系
教学方法:
联想、类比、发现、探索
教学辅助:
多媒体
教学过程:
一、引入对数函数的概念
由学生的预习,可以直接回答“对数函数的概念”
由指数、对数的定义及指数函数的概念,我们进行类比,可否猜想有:
问题:
1.指数函数是否存在反函数?
2.求指数函数的反函数.
3.结论
所以函数与指数函数互为反函数.
这节课我们所要研究的便是指数函数的反函数——对数函数.
二、讲授新课
1.对数函数的定义:
定义域:(0,+∞);值域:(-∞,+∞)
2.对数函数的图象和性质:
因为对数函数与指数函数互为反函数.所以与图象关于直线对称.
因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.
研究指数函数时,我们分别研究了底数和两种情形.
那么我们可以画出与图象关于直线对称的曲线得到的图象.
还可以画出与图象关于直线对称的'曲线得到的图象.
请同学们作出与的草图,并观察它们具有一些什么特征?
对数函数的图象与性质:
(1)定义域:
(2)值域:
(3)过定点,即当时,
(4)上的增函数
(4)上的减函数
3.练习:
(1)比较下列各组数中两个值的大小:
(2)解关于x的不等式:
思考:(1)比较大小:
(2)解关于x的不等式:
三、小结
这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.
四、课后作业
课本P85,习题2.8,1、3
函数教学教案设计 篇4
教学目标
1、掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。
(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。
(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。
2、通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。
3、通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。
教学建议
教材分析
(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。
(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的.图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。
(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。
教法建议
(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。
(2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,从而提高学习兴趣。
函数教学教案设计 篇5
【学习目标】
1、从单位圆和图像两个角度研究正弦函数的变化规律,学习从不同角度观察、研究问题;
2、体会正弦函数的周期性在画y=sinx图像过程中的应用;
3、理解利用单位圆画正弦函数的图像,会用五点法画函数y = sinx,x∈[0,2π]的图象。
【学习重点】
用五点法绘制正弦函数图象
【学习难点】
利用单位圆画正弦函数图像
【思想方法】
能从图形观察、分析得出结论,体会数形结合的思想方法
【知识链接】
1、 三角函数在单位圆中的定义
2、 正余弦函数的周期性
【学习过程】
一、预习自学(把握基础)
阅读课本第25~28页“练习”以上部分的内容,紧抓五点法作图的`规律
1、复习:正弦函数是一个周期函数,最小正周期是____,所以,关键就在于画出________上的正弦函数的图像。
2、预习:
(1)正弦函数 409【导学案】5.1正弦函数的图像, 409【导学案】5.1正弦函数的图像的图像叫做正弦曲线。
(2)五点作图法:
在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑曲线将它们连接起来,就得到这个函数的简图。我们称这种画正弦曲线的方法为“五点法”,这五个关键点是:_________________________ ,描出这五个点后,函数y=sinx,x[0,2p]的图像的形状就基本上确定了。
【导学案】5.1正弦函数的图像
二、合作探究(巩固深化,发展思维)
例1.用“五点法”画出下列函数在区间[0,2π]上的简图。
(1)y=-sinx (2)y=1+sinx
例2.用五点法作出函数y=3sinx, [0,2π]的图像。
三、学习体会
1、知识方法:
2、我的疑惑:
四、达标检测(相信自我,收获成功)
1、y=1+sinx,[0,2π]的图像与直线y= 409【导学案】5.1正弦函数的图像 的交点个数为
2、画出函数y=2+sinx x∈[0,2π]的图象。
3、画出函数y=sinx-1 x∈[0,2π]的图象。
函数教学教案设计 篇6
一、说课内容:
苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题
二、教材分析:
1、教材的地位和作用
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的`理解,发展学生的数学思维,增强学好数学的愿望与信心.
3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程
2、从学生活动出发,通过以旧引新,顺势教学过程
3、利用探索、研究手段,通过思维深入,领悟教学过程
四、教学过程:
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)
2.它们的形式是怎样的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?
【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较.
(二)引入新课
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)
例1、(1)圆的半径是r(cm)时,面积s (cm)与半径之间的关系是什么?
解:s=πr(r>0)
例2、用周长为20m的篱笆围成矩形场地,场地面积y(m)与矩形一边长x(m)之间的关系是什么?
解: y=x(20/2-x)=x(10-x)=-x+10x (0
例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。
(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1、强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)
3、为什么二次函数定义中要求a≠0 ?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)
4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零.
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.
【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)+1 (2)
(3)s=3-2t (4)y=(x+3)- x
(5) s=10πr (6) y=2+2x
(8)y=x4+2x2+1(可指出y是关于x2的二次函数)
【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。
(四)巩固练习
1.已知一个直角三角形的两条直角边长的和是10cm。
(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;
(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关
于x的函数关系式。
【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。
2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。
(1)分别写出S与x,V与x之间的函数关系式子;
(2)这两个函数中,那个是x的二次函数?
【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。
3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3
(1)分别写出C关于r;V关于r的函数关系式;
(2)两个函数中,都是二次函数吗?
【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。
4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围.
【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”。
(五)拓展延伸
1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式.
【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。
2.确定下列函数中k的值
(1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______
(2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______
【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.
(六) 小结思考:
本节课你有哪些收获?还有什么不清楚的地方?
【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。
(七) 作业布置:
必做题:
1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?
2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。
选做题:
1.已知函数 是二次函数,求m的值。
2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象
【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。
五、教学设计思考
以实现教学目标为前提
以现代教育理论为依据
以现代信息技术为手段
贯穿一个原则——以学生为主体的原则
突出一个特色——充分鼓励表扬的特色
渗透一个意识——应用数学的意识
函数教学教案设计 篇7
教学目标:
1、掌握一次函数解析式的特点及意义
2、知道一次函数与正比例函数的关系
3、理解一次函数图象特点与解析式的联系规律
教学重点:
1、 一次函数解析式特点
2、 一次函数图象特征与解析式的联系规律
教学难点:
1、一次函数与正比例函数关系
2、根据已知信息写出一次函数的表达式。
教学过程:
Ⅰ.提出问题,创设情境
问题1 小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.
分析 我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是
s=570-95t.
说明 找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.
问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式.
分析 我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.
问题3 以上问题1和问题2表示的这两个函数有什么共同点?
Ⅱ.导入新课
上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称
y是x的正比例函数。
例1:下列函数中,y是x的一次函数的是( )
①y=x-6;②y=2x;③y=;④y=7-x x8
A、①②③B、①③④ C、①②③④ D、②③④
例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?
(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);
(2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);
(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;
(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).
(5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;
(6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;
(7)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米) 分析 确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答. 解
(1)a=20,不是一次函数. h
(2)L=2b+16,L是b的一次函数.
(3)y=150-5x,y是x的一次函数.
(4)s=40t,s既是t的一次函数又是正比例函数.
(5)y=60x,y是x的一次函数,也是x的正比例函数;
(6)y=πx2,y不是x的正比例函数,也不是x的一次函数;
(7)y=50+2x,y是x的一次函数,但不是x的正比例函数
例3 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.
分析 根据一次函数和正比例函数的定义,易求得k的值.
解 若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=?
若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.
例4 已知y与x-3成正比例,当x=4时,y=3.
(1)写出y与x之间的函数关系式;
(2)y与x之间是什么函数关系;
(3)求x=2.5时,y的值.
解 (1)因为 y与x-3成正比例,所以y=k(x-3).
又因为x=4时,y=3,所以3= k(4-3),解得k=3,
所以y=3(x-3)=3x-9.
(2) y是x的一次函数.
(3)当x=2.5时,y=3×2.5=7.5.
1. 2
例5 已知A、B两地相距30千米,B、C两地相距48千米.某人骑自行车以每小时12千米的速度从A地出发,经过B地到达C地.设此人骑行时间为x(时),离B地距离为y(千米).
(1)当此人在A、B两地之间时,求y与x的函数关系及自变量x取值范围.
(2)当此人在B、C两地之间时,求y与x的函数关系及自变量x的取值范围.
分析 (1)当此人在A、B两地之间时,离B地距离y为A、B两地的距离与某人所走的路程的差.
(2)当此人在B、C两地之间时,离B地距离y为某人所走的路程与A、B两地的距离的差.
解 (1) y=30-12x.(0≤x≤2.5)
(2) y=12x-30.(2.5≤x≤6.5)
例6 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的`流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.
分析 因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.
解 在第一阶段:y=3x(0≤x≤8);
在第二阶段:y=16+x(8≤x≤16);
在第三阶段:y=-2x+88(24≤x≤44).
Ⅲ.随堂练习
根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y是否为x有正比例函数?
2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。
(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。
(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]
Ⅳ.课时小结
1、一次函数、正比例函数的概念及关系。
2、能根据已知简单信息,写出一次函数的表达式。
Ⅴ.课后作业
1、已知y-3与x成正比例,且x=2时,y=7
(1)写出y与x之间的函数关系.
(2)y与x之间是什么函数关系.
(3)计算y=-4时x的值.
2.甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资.
3.仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系.
4.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米.求树高与年数之间的函数关系式.并算一算4年后同学们中学毕业时这些树约有多高.
5.按照我国税法规定:个人月收入不超过800元,免交个人所得税.超过800元不超过1300元部分需缴纳5%的个人所得税.试写出月收入在800元到1300元之间的人应缴纳的税金y(元)和月收入x(元)之间的函数关系式.
函数教学教案设计 篇8
一、教材分析
本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1 函数的概念》共3课时,本节课是第1课时。
托马斯说:“函数概念是近代数学思想之花”。 生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。
函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。函数的的重要性正如恩格斯所说:“数学中的转折点是笛卡尔的变数,有了变数,运动就进入了数学;有了变数,辩证法就进入了数学”。
二、学生学习情况分析
函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;(二)高中用集合与对应的观点来刻画函数,研究函数的'性质,学习典型的对、指、幂和三解函数;(三)高中用导数工具研究函数的单调性和最值。
1.有利条件
现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。
初中用运动变化的观点对函数进行定义的,它反映了历史上人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。
2.不利条件
用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。
三、教学目标分析
课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.
1.知识与能力目标:
⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;
⑵理解函数的三要素的含义及其相互关系;
⑶会求简单函数的定义域和值域
2.过程与方法目标:
⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;
⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.
3.情感、态度与价值观目标:
感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。
四、教学重点、难点分析
1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;
重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。 但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。
突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。
2.教学难点:第一:从实际问题中提炼出抽象的概念;第二:符号“y=f(x)”的含义的理解.
难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。
突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。
五、教法与学法分析
1.教法分析
本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。
2.学法分析
在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。
函数教学教案设计 篇9
一、教学内容分析
本节内容是高一数学必修4(苏教版)第三章《三角恒等变换》第一节的内容,重点放在两角差的余弦公式的推导和证明上,其次是利用公式解决一些简单的三角函数问题。 在学习本章之前,已经学习了三角函数及向量的有关知识,从而为沟通代数、几何与三角函数的联系提供了重要的工具。本章我们将使用这些工具探讨三角函数值的运算。本节内容不仅是推导正弦和(差)角公式、正切和(差)角公式及倍角公式的基础,对于三角变换,三角恒等式的证明,三角函数式的化简、求值等三角问题的解决有重要的支撑作用,而且其推导过程本身就具有重要的教育价值。
二、学生学习情况分析
本节课的主要内容是“两角差的余弦公式的推导及证明”,用到的工具有“单位圆中三角函数的定义”和“平面向量数量积的定义及坐标表示”,都属于基础知识,内容简单,容易理解和接受。但是在向量法证明的过程中,向量夹角的范围是[0,π],与两角差α-β的范围不一致,学生对角的范围说明不清,是本节课的难点。
三、设计思想
教学理念:以“研究性学习”为载体,培养学生自主学习、小组合作的能力。
教学原则:注重学生自主学习与探究能力的培养,体现学生个性的发展与小组合作共性的融合。
教学方法:先学后教,小组合作,师生互动。
四、教学目标
知识与技能:了解用向量法推导两角差的余弦公式的过程,掌握两角和(差)的余弦公式并能运用公式进行简单的三角函数式的化简、求值。
过程与方法:自主探究两角差的余弦公式的'表现形式,经历用向量的数量积推导两角差的余弦公式的过程,并能独立利用余弦的差角公式推出余弦的和角公式,理解化归思想在三角变换中的作用。
情感态度与价值观:体验和感受数学发现和创造的过程,感悟事物之间普遍联系和转化的关系。
五、教学重点与难点
重点:两角差的余弦公式的推导及证明。
难点:引入向量法证明两角差的余弦公式及两角差范围的说明。
六、教学程序设计
1.情境创设,课上展示。
课前探究:
课上展示:请同学们展示一下课前所得到的结果吧。
设计意图:课前以问题串的形式给学生指明研究方向。问题层层递进,从特殊到一般,使学生的研究具有一定的坡度性。既让学生容易上手,又让学生在研究过程中慢慢深入与提高。
主要目的:让学生自主发现两角差的余弦公式的表达形式。
通过课上展示,学生把课下研究出来的成果与全班同学共享,产生共鸣,为进一步研究两角差的余弦公式做好准备,同时增强表达能力及自信心。
2.合作探究,小组展示。
探究一:两角差的余弦公式的推导
问题4:问题2中我们所得到的结论对于任意角还成立吗?你能证明吗?
问题5:观察我们得到结论的形式,你能联想到什么呢?
探究二:两角和的余弦公式的推导
问题6:你能根据差角的余弦公式推导出和角的余弦公式吗?
问题7:比较差角的余弦公式与和角的余弦公式,它们在结构上有何异同点?
通过小组展示,各个小组之间产生思维的碰撞,迸出火花,得到新的灵感与智慧。从而培养学生团结协作与小组合作的能力。
3.巩固知识,例题讲解。
例1:利用两角和与差的余弦公式证明下列诱导公式:
例3:化简cos100°cos40°+sin80°sin40°
设计意图:教师对各小组展示内容做适当点评,并且对“向量法证明的优点”,“向量法证明过程的完善”,“向量法中向量夹角与两角差的范围的统一”做简要讲解。
例1,例2都是公式的直接应用。例1让学生体会诱导公式将余弦的和差角公式推导出正弦的和差角公式,为下节课埋下伏笔。例2中根据cos15°的值求sin15°的值,tan15°的值的过程都是为推导正弦和差公式,正切和差公式做铺垫。
变式将例2中具体的角变成抽象的角,利用同角三角函数公式求解。在由sinα的值求cosα的值或由cosβ的值求sinβ的值时,要注意根据角的范围确定三角函数值的符号。 例3:是公式的逆用,培养学生逆向思维的能力,让学生对公式结构再认识。
4.提升总结,巩固练习。
提升总结:针对上面的3个例题,谈谈你学到了什么?
(2)利用两角和差的余弦公式求值时,应注意观察、分析题设和公式的结构特点,从整体上把握公式,灵活的运用公式。
(3)在解题过程中,要注意角的范围,确定三角函数值的符号,以防增根、漏根。 设计意图:主要以学生总结为主,老师做适当点评及补充。
七、教学反思
本节课主要以学生的自主学习、小组合作为主,充分发挥了学生的自主探究能力和团队协作能力,提高了学生发现问题、探究问题和解决问题的能力。情境创设中利用三个问题让学生在课前提前熟悉本节课所学的内容“是什么”,“我能得到哪些结论”,调动了学生的思维与学习的积极性,激发了学生的求知欲。但是
但是如果给出图像,则又会限制数学优秀的学生的解题思路与方法,这对矛盾是由学生的差异所决定的。教师在课堂上应指导、启发学生,注意教学的示范性,明确解题的规范性,实现学生在学习过程中知识的跨越。总之,教学有法,教无定法,贵在得法,为了提高课堂教学效率,我们要从学生的实际出发,以学法带动教法,为高效课堂保驾护航。
【函数教学教案设计】相关文章:
一次函数教案设计(通用6篇)06-22
教学教案设计01-24
教学教案设计15篇01-24
教学教案设计精选15篇01-24
《一次函数》教学教案(通用11篇)06-24
太阳教学教案设计(精选6篇)07-11
幼儿园教学教案设计01-16
教学教案设计(通用20篇)08-30
教学教案设计(集合15篇)01-24