- 《一次函数》数学教学教案 推荐度:
- 相关推荐
《一次函数》教学教案(精选15篇)
作为一名教职工,时常要开展教案准备工作,编写教案助于积累教学经验,不断提高教学质量。那么优秀的教案是什么样的呢?以下是小编为大家收集的《一次函数》教学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
《一次函数》教学教案 1
【学习目标】
1、会根据题目中题意或图表写出函数解析式;
2、根据函数解析式解决问题。
【学习重难点】
根据函数解析式解决问题,学会确定自变量的取值范围
【前置自学】
例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减小,平均耗油量为0.1 L / km。
(1)写出表示y与x的函数关系式,这样的式子叫做函数解析式。
(2)指出自变量x的取值范围;
(3)汽车行驶200km时,邮箱中还有多少汽油?
练习:拖拉机开始工作时,邮箱中有油30L,每小时耗油5L。
(1)写出邮箱中的余油量Q(L)与工作时间t(h)之间的函数关系式;
(2)求出自变量t的取值范围;
(3)画出函数图象;
(4)根据图像回答拖拉机工作2小时后,邮箱余油是多少?若余油10L,拖拉机工作了几小时?
【展示交流】
例2:一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度。
t / 时012345
y / 米1010.510.1010.1510.2010.25
(1)由记录表推出这5小时中水位高度y(单位:米)岁时间t(单位:时)变化的函数解析式,并画出函数图像;
(2)据估计按这种上涨规律还会持续上涨2小时,预测再过2小时水位高度将达到多少米?
练习:有一根弹簧最多可挂10kg重的物体,测得该弹簧的长度y(cm)与所挂物体的质量x(kg)之间有如下关系:
x(kg)012345
y(cm)1212.51313.51414.5
(1)写出y与x的函数关系式,并求出自变量的取值范围;
(2)画出函数图像;
(3)根据函数图像回答,当弹簧长为16.5cm时,所挂的物体质量是多少kg?当所挂物体质量为8kg的时候,弹簧的长为多少cm?
【达标拓展】
1、某种活期储蓄的月利率是0.06%,存入100元本金,则本息和y(元)随所存月数x变化的函数解析式为______________,当存期为4个月的时候,本息和为________元;
2、正方向边长为3,若边长增加x则面积增加y,则y随x变化的函数解析式为____________,若面积增加了16 ,则变成增加了___________;
3、甲车速度为20米/秒,乙车速度为25米/秒,现甲车在乙车前面500米,设x秒后两车之间的距离为y米,则y随x变化的函数解析式为________________,自变量x的取值范围是______________;
4、某学校组织学生到炬力千米的'博物馆无参观,小红因事没能乘上学校的包车,于是准备在学校门口改乘出租车去博物馆,车租车的收费标准如下:
里程收费
3千米及3千米以下7.00
3千米以上,每增加1千米2.00
(1)请写出出租车行驶的里程数x(千米)与费用y(元)之间的函数关系式;
(2)小红同学身上仅有14元钱,乘出租车到博物馆的车费够不够,请说明理由。
5、声音在空气中传播速度和气温间有如下关系:
气温(℃)05101520
声速(m/s)331334337340343
(1)若用t表示气温,V表示声速,请写出V随t变化的函数解析式;
(2)当声速为361m/s的时候,气温是多少?
【教学评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
《一次函数》教学教案 2
【学习目标】
1、理解正比例函数的概念
2、会画正比例函数的图像,理解正比例函数的性质。
【学习重难点】
1、理解正比例函数意义及解析式的特点
2、掌握正比例函数图象的性质特点。
【前置自学】
按下列要求写出解析式
(1)一本笔记本的单价为2元,现购买x本与付费y元的关系式为_________________;
(2)若正方形的周长为P,边长为a,那么边长a与周长p之间的关系式为______________;
(3)一辆汽车的速度为60 km / h ,则行使路程s与行使时间t之间的关系式为_________;
(4)圆的半径为r,则圆的周长c与半径r之间的关系式为______________。
一般地,形如 (k是常数,k≠0)的函数,叫做 ,其中k叫做比例系数。
※练习:1、下列函数钟,那些是正比例函数?______________
(1) (2) (3) (4) (5)
(6) (7) (8)
2、关于x的函数 是正比例函数,则m__________
【展示交流】
画出下列正比例函数
比较上面两个图像,填写你发现的规律:
(1)两个图像都是经过原点的 __________,
(2)函数 的图像经过第_____象限,从左到右_______,即y随x的增大而_______;
(3)函数 的图像经过第_____象限,从左到右______,即y随x的增大而_______;
【合作探究】
总结:正比例函数的解析式为__________________
相同点
图像所在象限
图像大致形状
增减性
【达标拓展】
1、关于函数 ,下列结论中,正确的是( )
A、函数图像经过点(1,3) B、函数图像经过二、四象限
C、y随x的增大而增大 D、不论x为何值,总有y>0
2、已知正比例函数 的图像过第二、四象限,则( )
A、y随x的增大而增大 B、y随x的增大而减小
C、当 时,y随x的增大而增大;当 时,y随x的增大而减少;
D、不论x如何变化,y不变。
3、当 时,函数 的`图像在第( )象限。
A、一、三 B、二、四 C、二 D、三
4、函数 的图像经过点P(-1,3)则k的值为( )
A、3 B、—3 C、 D、
5、若A(1,m)在函数 的图像上,则m=________,则点A关于y轴对称点坐标是___________;
6、若B(m,6)在函数 的图像上,则m=________,则点A关于x轴对称点坐标是___________;
7、y与x成正比例,当x=3时, ,则y关于x的函数关系式是____________
8、函数 的图像在第_______象限,经过点(0,____)与点(1,____),y随x的增大而_________
9、一个函数的图像是经过原点的直线,并且这条直线经过点(1,-3),求这个函数解析式。
【教学评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
《一次函数》教学教案 3
【学习目标】
1.理解一次函数的特点及意义
2.知道一次函数与正比例的函数关系
【学习重难点】
1.一次函数与正比例函数的关系
2.一次函数的结构特点。
【前置自学】
根据题意写出下列函数的解析式
(1)有人发现,在20~25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差;_______________
(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h,再减常数105,所得的差是G的值;_______________
(3)某城市的市内电话的月收费为y(单位:元)包括:月租22元,拨打电话x分的计时费(按0.1元/分收取);_______________
(4)把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的'面积y(单位:cm2)随x的值而变化。_______________
一般地,形如 (k,b是常数, )的函数,叫做一次函数,特别地,当 时, 即 ,即正比例函数是一种特殊的一次函数。
【展示交流】
1、下列函数中,是一次函数的有_____________,是正比例函数的有______________
(1) (2) (3) (4)
(5) (6) (7)
2、若函数 是正比例函数,则b = _________
3、在一次函数 中,k =_______,b =________
4、若函数 是一次函数,则m__________
5、在一次函数 中,当 时, ______;当 _____时, 。
6、下列说法正确的是( )
A、 是一次函数 B、一次函数是正比例函数
C、正比例函数是一次函数 D、不是正比例函数就一定不是一次函数
7、仓库内原有粉笔400盒,如果每个星期领出36盒,则仓库内余下的粉笔盒数Q与星期数t之间的函数关系式是________________,它是__________函数。
8、今年植树节,同学们中的树苗高约1.80米。据介绍,这种树苗在10年内平均每年长高0.35米,则树高y与年数x之间的函数关系式是_____________,它是_______函数,同学们在3年之后毕业,则这些树高________米。
9、随着海拔高度的升高,大气压下降,空气的含氧量也随之下降,已知含氧量y与大气压强x成正比例,当x=36时,y=108,请写出y与x的函数解析式___________,这个函数图像在第________象限,同时经过点(0,_____)与点(1,_____)
【教学评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
《一次函数》教学教案 4
【学习目标】
1、懂得画一次函数的图像,清楚知道一次函数之间的关系
2、理解一次函数图像的性质,了解 中的k,b对函数图像的影响
【学习重难点】
1.一次函数的图象的画法。
2.一次函数的图象特征与解析式联系。
【前置自学】
例1:在同一个直角坐标系中画出函数 , , 的图像
-2-1012
y=2x
y=2x+3
y=2x-3
【展示交流】
※ 观察这三个图像,这三个函数图像形状都是_________,并且倾斜度_______。函数 的图像经过原点,函数 与y轴交于点________,即它可以看作由直线 向_____平移_____个单位长度得到;同样的,函数 与y轴交于点________,即它可以看作由直线 向_____平移_____个单位长度得到。
※ 猜想:一次函数 的图像是一条________,当 时,它是由 向_____平移_____个单位长度得到;当 时,它是由 向_____平移_____个单位长度得到。
※ 练习:
1、在同一个直角坐标系中,把直线 向_______平移_____个单位就得到 的图像;若向_______平移_____个单位就得到 的图像。
2、(1)将直线 向下平移2个单位,可得直线________;
(2)将直线 向_____平移______个单位可得直线 。
例2 :分别画出下列函数的图像
(1) (2) (3) (4)
分析:由于一次函数的图像是直线,所以只要确定两个点就能画出它,一般选取直线与x轴,y轴的交点。
(1) (2) (3) (4)
x0
y0
※ 观察上面四个图像,(1) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;(2) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;(3) 经过_________象限;y随x的增大而_______,函数的.图像从左到右________;(4) 经过_________象限;y随x的增大而_______,函数的图像从左到右________。
【合作探究】
1、由此可以得到直线 中,k ,b的取值决定直线的位置:
(1) 直线经过___________象限;
(2) 直线经过___________象限;
(3) 直线经过___________象限;
(4) 直线经过___________象限;
2、一次函数的性质:
(1)当 时,y随x的增大而_______,这时函数的图像从左到右_______;
(2)当 时,y随x的增大而_______,这时函数的图像从左到右_______;
【达标拓展】
1、一次函数 的图像不经过( )
A、第一象限 B、第二象限 C、 第三想象限 D、 第四象限
2、已知直线 不经过第三象限,也不经过原点,则下列结论正确的是( )
A、 B、 C、 D、
3、下列函数中,y随x的增大而增大的是( )
A、 B、 C、 D、
4、对于一次函数 ,函数值y随x的增大而减小,则k的取值范围是( )
A、 B、 C、 D、
5、一次函数 的图像一定经过( )
A、(3,5) B、(-2,3) C、(2,7) D、(4、10)
6、已知正比例函数 的函数值y随x的增大而增大,则一次函数 的图像大致是( )
7、一次函数 的图像如图所示,则k_______,
b_______,y随x的增大而_________
8、一次函数 的图像经过___________象限,
y随x的增大而_________ (第6题)
9、已知点(-1,a)、(2,b)在直线 上,则a,b的大小关系是__________
10、直线 与x轴交点坐标为__________;与y轴交点坐标_________;图像经过__________象限,y随x的增大而____________,图像与坐标轴所围成的三角形的面积是___________
11、已知一次函数 的图像经过点(0,1),且y随x的增大而增大,请你写出一个符合上述条的函数关系式_____________
12、已知一次函数图像(1)不经过第二象限,(2)经过点(2,-5),请写出一个同时满足(1)和(2)这两个条的函数关系式:_______________
【教学评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
《一次函数》教学教案 5
【学习目标】
学会运用待定系数法和数形结合思想求一次函数解析式
【前置自学】
例1:已知一次函数的图像经过点(3,5)与(2,3),求这个一次函数的解析式。
分析:求一次函数 的解析式,关键是求出k,b的值,从已知条可以列出关于k,b的二元一次方程组,并求出k,b。
解: ∵一次函数 经过点(3,5)与(2,3)
解得
∴一次函数的解析式为_______________
像例1这样先设出函数解析式,再根据条确定解析式中未知的系数,从而具体
写出这个式子的方法,叫做待定系数法。
【展示交流】
1、已知一次函数 ,当x = 5时,y = 4,
(1)求这个一次函数。 (2)求当 时,函数y的值。
2、已知直线 经过点(9,0)和点(24,20),求这条直线的函数解析式。
3、已知弹簧的长度 y(厘米)在一定的限度内是所挂重物质量 x(千克)的一次函数.现
已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2
厘米.求这个一次函数的.关系式.
【合作探究】
例2:已知一次函数的图象如图所示,求出它的函数关系式
练习:已知一次函数的图象如图所示,求出它的函数关系式
例3:地表以下岩层的温度t(℃)随着所处的深度h(千米)的变化而变化,t与h之间在一定范围内近似地成一次函数关系。
深度(千米)
温度(℃)
(1)根据上表,求t(℃)与h(千米)之间的函数关系式;
(2)求当岩层温度达到1700℃时,岩层所处的深度为多少千米?
练习:为了学生的身体健康,学校桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套桌、凳上相对应的四档高度,得到如下数据:
(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式(不要求写出x的取值范围);
(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.
例4:某自水公司为了鼓励市民节约用水,采取分段收费标准。居民每月应交水费y(元)是用水量x(吨)的函数,其图象如图所示:
(1)分别写出 和 时,y与x的函数解析式;
(2)若某用户居民该月用水3.5吨,问应交水费多少元?
若该月交水费9元,则用水多少吨?
【达标拓展】
1、A(1,4),B(2,m),C(6,-1)在同一条直线上,求m的值。
2、已知一次函数的图像经过点A(2,2)和点B(-2,-4)
(1)求AB的函数解析式;
(2)求图像与x轴、y轴的交点坐标C、D,并求出直线AB与坐标轴所围成的面积;
(3)如果点(a, )和N(-4,b)在直线AB上,求a,b的值。
3、某市推出电脑上网包月制,每月收费y(元)与上网时间x(小时)的函数关系如图
所示:
(1)当 时,求y与x之间的函数关系式;
(2)若小李4月份上网20小时,他应付多少元
的上网费用?
(3)若小李5月份上网费用为75元,则他在该
月分的上网时间是多少?
4、某运输公司规定每名旅客行李托运费与所托运行李质量之间的关系式如图所示,请根据图像回答下列问题:
(1)由图像可知,行李质量只要不超过______kg,就可以免费携带。如果超过了规定的质
量,则每超过10kg,要付费_______元。
(2)若旅客携带的行李质量为x(kg),所付的行李费是y(元),请写出y(元)随x(kg)
变化的关系式。
(3)若王先生携带行李50kg,他共要付行李费多少元?
5、大拇指与小拇指尽量张开时,两指尖的距离称为指距。某研究表明,一般人的身高h时指距d的一次函数,下表中是测得的指距与身高的一组数据:
指距d(cm)20212223
身高h(cm)160169178187
(1)求出h与d之间的函数关系式
(2)某人身高为196cm,则一般情况下他的指距应为多少?
【教学评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
《一次函数》教学教案 6
【学习目标】
1、进一步认识和理解一次函数,同时进一步巩固一元一次方程的解法。
2、弄通一次函数与x轴的交点与一元一次方程的解的关系。
【前置学习】
1、解方程2x+4=0
2、自变量x为何值时函数y=2x+4的值为0?
3、以上方程2x+4=0与函数y=2x+4有什么关系?
4、是不是任何一个一元一次方程都可以转化为ax+b=0(a、b是常数,a≠0)?
5、当某个一次函数y=ax+b的值为0时,求相应的自变量x的值。从图像上看,相当于确定直线y=ax+b与x轴交点的横坐标的值。
6、仔细理解例1中的解法1与解法2有什么不同。
【展示交流】
1、解方程ax+b=0(a、b为常数,a≠0)
2、自变量x为何值时,一次函数y=ax+b的值为0,这句话与解方程ax+b=0(a、b为常数)到底有什么关系?
【合作探究】
一个物体现在的速度是3m/秒,其速度每秒增加2m/秒,再过几秒它的速度为11m/秒?
1)、此问题用方程解如何去解?
2)、画出y=2x-8的函数图象
如果速度y是时间x的`函数,则上述问题与y=2x+3有什么关系?如何去解上述问题?
【达标拓展】
1)、当自变量x的取值满足什么条时,函数y=3x+8的值满足于下列条:
①、y=0 ②、y=-7
2)、利用函数图象解5x-3=x+2
整体感知
如何理解一次函数与x轴交点的横坐标与解方程的关系?
【堂检测】
A、基础知识巩固
1、当自变量x的取值满足什么条时,函数y=5x+7的值满足下列条
(1)、y=0 (2)、y=20
B、能力提升
当自变量x取何值时,函数y= +1与y=5x+17的值相等?
【教学评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
【学习目标】
1、会用一次函数的图像解一元一次不等式,理解一次函数与一元一次不等式的关系,
2、经历从“数”与“形”两个角度解决问题的过程,体会数形结合的思想。
3、利用一次函数的图像确定一元一次不等式的解集
【前置学习】
1、什么是一元一次不等式?它的解集是什么?
2、看下面两个问题有什么关系
(1)、解不等式5x+6>3x+10
(2)、自变量x为何值时,函数y=2x-4的值大于0?
3、由上面两个问题的关系,能进一步得到“解不等式ax+b>0与求自变量x在什么范围内一次函数y=ax+b的值大于0”有什么关系?
4、一元一次不等式与一次函数有什么联系?
任何一元一次不等式都可以转化为____________或_____________(a、b为常数,a≠0) 的形式,所以解一元一次不等式可以看作是:当一次函数值大(小)于0时,求________相应的______________
【展示交流】
用画函数图像的方法解不等式5x+4<2x+10
解法1:原不等式化为3x-6<0,画出直线y=3x-6,可以看出,当x<2时_______________________,即y=3x-6<0,所以不等式的解集为x<2.
[解析]
解法2:将原不等式的两边分别看作两个一次函数,分别为:y=5x+4与直线y=2x+10,在同一坐标系内画出图像
如图所示,它们交点的横坐标为2,当x<2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10的下方,所以不等式的解集为x<2.
【合作探究】
用画图像法解不等式,首先要把不等式转化为函数的形式,根据图像判断不等式的解集,两种解法都把不等式转化为比较___________________的高低
如图:直线y=kx+b经过点A(-3,-2),B(2,4),根据图像解答下列问题:
(1)、求k,b的值
(2)、指明不等式 >0的解集
(3)、求不等式 >4的解
(4)、解不等式6x+8<-10
1、从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的
___________________的取值范围。
2、从函数图像的角度看,就是确定直线y=kx+b在x轴上方(或下方)部分所
3、理解y>0,y=0,y<0的几何意义:
一次函数y=kx+b,图像在x轴上方时,y____0,图像在x轴上时,y____0,图像在轴下方时,y____0.
【达标拓展】
1、已知一次函数y=kx+b的图像如图,当x<时,y的取值范围是( )
A、y>0 B、y<0 C、-2<y<0 D、y<-2
2、一次函数的图像如图,则它的解析式是_____________________.
当x=______时,y=0 当x_______时,y>0 当y_______时,x<0
3、利用函数图象解出x
5x-1=2x+5 (2)、6x-4<3x+2
4、利用函数图象解不等式
5x-1>2x+5 (2)、x-4<3x+1
5、某工厂加工一批产品,为了提前交货,规定每个工人完成100个以内,每个产品付酬
1.5元,超过100个,超过部分每个产品付酬增加0.3元,超过200 个,超过部分除
按上述规定外,每个产品再增加0.4元,求一个工人:
(1)完成100个以内所得报酬 y(元)与产品数x(个)之间的函数关系式。
(2)完成100个以上,但不超过200个所得报酬y(元)与产品数x(个)之间的函
数关系式。
(3)完成200个以上所得报酬y(元)与产品个数x(个)之间的函数关系式
【教学评价】
小组内合作任务完成情况:__________(组长评价:好、中、差)
达标练习完成情况:__________(教师评价:好、中、差)
《一次函数》教学教案 7
教学目标:
1、知道一次函数与正比例函数的意义
2、能写出实际问题中正比例函数与一次函数关系的解析式。
3、掌握“从特殊到一般”这种研究问题的方法
教学重点:
将实际问题用一次函数表示。
教学难点:
将实际问题用一次函数表示。
教学方法:
讲解法
教学过程:
一、复习提问
1、什么是函数?请举例说明。
2、购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)关系式是什么?
3、在上述式子中变量是谁。常量是谁?自变量又是谁?
二、讲解:
在前面我们遇到过这样一些函数:
y=x s=30t
y=2x+3 y=-x+2
这些函数都使用自变量的一次式来表示的,可以写成 y=kx+b 的形式
一般的,如果y=kx+b(k , b是常数,k≠0), 那么y叫做x的一次函数。
特别的,当b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y就叫做x的正比例函数。
例一 :
一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒。
(1) 求小球速度v (米/秒)与时间t(秒)之间的函数关系式;
(2) 求3.5秒时小球的速度。
分析:v与t之间是正比例关系。
解: (1)v=2t
(2)t=3.5时,v=2×3.5=7(米/秒)
例二: 拖拉机工作时,油箱中有油40升。如果每小时耗油6升,求油箱中的余油量Q(升)与工作时间t(时)之间的`函数关系式。
分析:t小时耗油6t升,从原油油量中减去6t,就是余油量。
解:Q=40 - 6t
课堂练习:
P96 1 ,2
小结:一次函数与正比例函数的意义,两者之间的关系,一次函数不一定是正比例函数,而正比例函数一定是一次函数,会将简单的实际问题用一次函数或正比例函数表示出来
《一次函数》教学教案 8
一、读一读
学习目标:
1、掌握“三角形内角和定理”的证明及其简单应用;
2、体会思维实验和符号化的理性作用
二、试一试
自学指导:
1、回忆三角形内角和的探索方式,想一想,根据前面给出的公里 和定理,你能进行论证么?
2、已知:如右图所示,△ABC
求证:∠A+∠B+∠C=180°
思考:延长BC到D,过点C作射线CE∥BA,这样就相
当于把∠A移到了 的位置,把∠B移到 的位置。
注意:这里的CD,CE称为辅助线,辅助线通常画成虚线
证明:作BC的延长线CD,过点C作射线CE∥BA,则:
3、你还有其它方式么(可参考课本239页“议一议”小明的想法;241页联系拓广4)?方法越多越好!
三、练一练
1、直角三角形的'两锐角之和是多少度?正三角形的一个内角是多少度?请证明你的结论。
2、已知:如图,在△ABC中,∠A=60°,∠C=70°,点D和点E分别在AB和AC上,且DE∥BC
求证:∠ADE=50°
3、如图,在△ABC中,DE∥BC,∠DBE=30°, ∠EBC=25°,求∠BDE的大小。
4、证明:四边形的内角和等于360°
《一次函数》教学教案 9
一、读一读
学习目标:
1、熟练证明的基本步骤和书写格式;
2、会根据“同位角相等,两直线平行”(公理)证明“同旁内角互补,两直线平行”“内错角相等,两直线平行”(定理),并能应用这些结论。
二、试一试
自学指导:平行线判定公理: 同位角相等,两直线平行
1、自学教材P229-231,学完后合上课本完成下列各题:
(1)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的同旁内角,且∠1和∠2互补。利用平行线判定公理证明a∥b
由此得,平行线判定定理1: ;
(2)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2利用平行线判定公理或上述已证明的判定定理证明a∥b
由此得,平行线判定定理2: .
三、练一练
1、在教材上完成P231随堂练习1;P232知识技能1;P233问题解决
2、已知:如右图所示,直线a,b被直线c所截,且∠1+∠2=180°
求证:a∥b 你有几种证明方法?请选择其中两种方法来证明
四、记一记:
证明命题的'一般步骤:
(1)根据题意画出图形(若已给出图形,则可省略)
(2)根据题设和结论,结合图形,写出已知和求证;
(3)经过分析,找出已知退出求证的途径,写出证明过程;
(4)检查证明过程是否正确完善。
《一次函数》教学教案 10
一、课程标准要求:
①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。
②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k0)探索并理解其性质(h0或b0时,图象的变化情况)。
③理解正比例函数。
④能根据一次函数的图象求二元一次方程组的近似解。
⑤能用一次函数解决实际问题。
二、识方法回顾:
1.已知直线y=2x+m不经过第二象限,那么实数m的取值范围是 _.
2.一次函数y=kx+b 的图象经过P(1,0)和Q(0,1)两点,则k= ,b= .
3.正比例函数的图象与直线y= - 3(2)x+4平行,则该正比例函数的解析式为 ____ .
4.函数y= - 2(3)x的图象是一条过原点(0,0)及点(2, )的直线,这条直线经过第 _____象限,y随的增大而 .
5.已知一次函数y= - 2(1)x+2当x= 时,y=0;当x 时y 当x 时y0.
6.把直线y= - 2(3)x -2向 平移 个单位,得到直线y= - 2(3)(x+4)
7.一次函数y=kx+b过点(-2,5),且它的图象与y轴的交点和直线y=-2(1)x+3与y轴的交点关于x轴对称,那么一次函数的解析式是 .
8. 直线y=kx+b经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则其解析式为 .
三、典型例题讲解:
例1 已知一次函数y=-2x-6。
(1)当x=-4时,则y= ,
当y=-2时,则x=
(2)画出函数图象;
(3)不等式-2x-60解集是_____,
不等式-2x-60解集是_____;
(4)函数图像与坐标轴围成的三角形的面积为
(5)若直线y=3x+4和直线y=-2x-6交于点A,则点A的坐标______;
(6)如果y 的取值范围-42,则x的取值范围__________;
(7)如果x的取值范围-33,则y的最大值是________,最小值是_______.
例2 在边长为的正方形ABCD的边BC上,有一点P从B点运动到C点,设PB=x,四边形APCD的面积为y,写出y与自变量x的函数关系式,并且在直角坐标系中画出它的图象.
例3 已知一次函数y=x+m和y=-x+n的图象交于点A(-2,0)且与y轴的交点分别为B、C两点,求△ABC的面积.
例4 某单位要印刷产品说明书,甲印刷厂提出:每份说明书收1元印刷费,另收1500元制版费;乙印刷厂提出:每份说明书收2.5元印刷费,不收制版费。
(1)分别写出两个印刷厂的收费y甲、y乙(元)与印刷数量x(份)之间的函数关系式;
(2)在同一坐标系中作出它们的'图像;
(3)根据图像回答问题:
①印刷800份说明书时,选择哪家印刷厂比较合算?
②该单位准备拿出3000元用于印刷说明书,找哪家印刷厂印制的说明书多一些?
四、探究实践:
【问题1】已知:一次函数的图象经过点(2,1)和点(-1,-3).
(1)求此一次函数的解析式;
(2)求此一次函数与x轴、y轴的交点坐标以及该函数图象与两坐标轴所围成的三角形的面积;
(3)若一条直线与此一次函数图象相交于(-2,a)点,且与y轴交点的纵坐标是5,求这条直线的解析式;
(4)求这两条直线与x轴所围成的三角形面积.
【问题2】有一卖报人,从报社批进某种证券报是每份1.5元,卖出的价格是每份2元,卖不掉的报纸以每份1元的价格退回报社,在30天的时间里有20天每天可卖出150份,其余10天只能卖出100份,但这30天每天从报社批进的份数必须相同.设卖报人每天从报社批出x份报纸,月利润为y元.
(1)写出y与x的函数关系式;
(2)画出此函数的图象;
(3)此卖报人应该每天从报社批进多少份报纸时才能使月利润最高?最高利润是多少?
五、巩固练习:
1.直线y=kx+b经过一、二、四象限,则直线y=-bx+k不经过第____象限.
2.已知等腰三角形周长为20,写出底边长y关于腰长x的函数解析式(x为自变量),并写出自变量取值范围,画出函数图象.
3.已知A(8,0)及在第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)求S=12时P点坐标;(4)画出函数S的图象.
4.某果品公司欲请汽车运输公司或火车货运站将60吨水果从A地运到B地。已知汽车和火车从A地到B地的运输路程均为s千米。这两家运输单位在运输过程中,除都要收取运输途中每吨每小时5元的冷藏费外,要收取的其它费用及有关运输资料由下表给出:
运输工具
行驶速度(千米/小时)
运费单价(元/吨千米)
装卸总费用(元)
汽车
50
2
3000
火车
80
1.7
4620
说明:1元/吨千米表示每吨每千米1元
(1) 请分别写出这两家运输单位运送这批水果所要收取的总费用y1(元)和y2(元)(用含s的式子表示);
(2) 为减少费用,你认为果品公司应选择哪家运输单位运送这批水果更为合算?
六、小结
本节我们主要是学习了哪些内容?
《一次函数》教学教案 11
一、目的要求
1、使学生初步理解一次函数与正比例函数的概念。
2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。
二、内容分析
1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。
2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。
3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面,初中数学教案《数学教案-一次函数》。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。
三、教学过程
复习提问:
1、什么是函数?
2、函数有哪几种表示方法?
3、举出几个函数的例子。
新课讲解:
可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:
(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)
(2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)
(3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的.什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)
(4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的层层设问,最后给出一次函数的定义。
一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。
对这个定义,要注意:
(1)x是变量,k,b是常数;
(2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)
由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。
在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
《一次函数》教学教案 12
<title> 从不同方向看</title>
一、教学目标
知识与技能目标
1.初步了解作函数图象的一般步骤;
2.能熟练作出一次函数的图象,掌握一次函数及其图象的简单性质;
3.初步了解函数表达式与图象之间的关系。
过程与方法目标
经历作图过程中由一般到特殊方法的转变过程,让学生体会研究问题的基本方法。
情感与态度目标
1.在作图的过程中,体会数学的美;
2.经历作图过程,培养学生尊重科学,实事求是的作风。
二、教材分析
本节课是在学习了一次函数解析式的基础上,从图象这个角度对一次函数进行近一步的研究。教材先介绍了作函数图象的一般方法:列表、描点、连线法,再进一步总结出作一次函数图象的特殊方法??两点连线法。结合一次函数的图象,教材以议一议的方式,引导学生探索函数解析式与图象二者间的关系,为进一步学习图象及性质奠定了基础。
教学重点:了解作函数图象的一般步骤,会熟练作出一次函数图象。
教学难点:一次函数及图象之间的对应关系。
三、学情分析
函数的图象的概念及作法对学生而言都是较为陌生的。教材从作函数图象的一般步骤开始介绍,得出一次函数图象是条直线。在此基础上介绍用两点连线得一次函数的图象,学生就容易接受了。在函数解析式与图象二者之间的探讨这部分内容上,不要作更高要求,学生能回答书中的问题就可以了。教学中尽可能的多作几个一次函数的图象,让学生直观感受到一次函数的图象是条直线。
四、教学流程
一、复习引入
下图是小红某天内体温变化情况的曲线图。你知道这幅图是怎样作出来的'吗?把每个时间与其对应的体温分别作为点的横坐标和纵坐标,在直角坐标系中描出这些点,这样就可以作出这个图象。
二、新课讲解
把一个函数的自变量和对应的因变量的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
下面我们来作一次函数y = x+1的图象
分析:根据定义,需要在直角坐标系中描出许多点,因此我们应先计算这些点的横、纵坐标,即x与对应的y的值。我们可借助一个表格来列出每一对x,y的值。因为一次函数的自变量X可以取一切实数,所以X一般在0附近取值。
解:列表:
描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。
连线:把这些点依次连接起来,得到y = x+1图象(如图)它是一条直线。
三、做一做
(1)仿照上例,作出一次函数y= ?2x+5的图象。
师:回顾刚才的作图过程,经历了几个步骤?
生:经历了列表、描点、连线这三个步骤。
师:回答得很好。作函数图象的一般步骤是列表、描点、连线。今后我们可以用这个方法去作出更多函数的图象。
师:从刚才同学们作出的一次函数的图象中我们可以观察到一次函数图象是一条直线。
(2)在所作的图象上取几个点,找出它们的横、纵坐标,验证它们是否都满足关系:y= ?2x+5
四、议一议
(1)满足关系式y= ?2x+5的x 、 y所对应的点(x,y)都在一次函数y= ?2x+5的图象上吗?
(2)一次函数y= ?2x+5的图象上的点(x,y)都满足关系式y= ?2x+5吗?
(3)一次函数y=kx+b的图象有什么特点?
一次函数y=kx+b的图象是一条直线,因此作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了。一次函数y=kx+b的图象也称为直线y=kx+b
例1做出下列函数的图象
作一次函数图象时,通常选取的两点比较特殊,即为一次函数和X轴、 y轴的交点,在列表计算时,分别令X=0,y=0就可计算出这两点的坐标。正比例函数当X=0时,y=0,即与x 、 y铀的交点重合于原点。因此做正比例函数的图象时,只需再任取一点,过它与坐标原点作一条直线即可得到正比例函数的图象。从而正比例函数y=kx的图象是经过原点(0,0)的一条直线。
练一练:作出下列函数的图象:
(1)y= ?5x+2,???? (2)y= ?x
(3)y=2x?1,(4)y=5x
五、课堂小结
这节课我们学习了一次函数的图象。一次函数的图象是一条直线,正比例函数的图象是经过原点的一条直线。在作图时,只需确定直线上两点的位置,就可得到一次函数的图象。一般地,作函数图象的三个步骤是:列表、描点、连线。
六、课后练习
随堂练习习题6.3
五、教学反思
本节课主要介绍作函数图象的一般方法,通过对一次函数图象的认识,得到作一次函数及正比例函数的图象的特殊方法(两点确定一条直线)。让学生能够迅速找到直线与坐标轴的交点,这是本节课的难点。数形结合,找准这两个特殊点坐标的特点(x=0或y=0),让学生理解的记忆才能收到较好的效果。
《一次函数》教学教案 13
一、教材的地位和作用
本 节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会“两点法”的简便,向学生渗透数形结合的数学思想, 以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一 次函数性质作准备。
(一)教学目标的确定
教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。
1、知识目标
(1)能用“两点法”画出一次函数的图象。
(2)结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响。
2、能力目标
(1)通过操作、观察,培养学生动手和归纳的能力。
(2)结合具体情境向学生渗透数形结合的数学思想。
3、情感目标
(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的.主动探索的意识和合作交流的习惯。
(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。
(二)教学重点、难点
用“两点法”画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。
二、学情分析
1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合“两点确定一条直线”,学生能画出一次函数图象。
2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。
3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。
三、教学方法
我采用自主探究—→合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。
四、教学设计
一、设疑,导入新课(2分钟)
师:同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗?
生1:函数的解析式都是用自变量的一次整式表示的,我们称这样的函数为一次函数。
生2:一次函数通常可以表示为y=kx+b的形式,其中k、b为常数,k≠0。
生3:正比例函数也是一次函数。
师:(同学们回答的都很好)通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢?
这节课让我们一起来研究 “一次函数的图象”。(板书)
二、自主探究——小组交流、归纳——问题升华:
1、师:问(1)你们知道一次函数是什么形状吗?(4分钟)
生:不知道。
师:那就让我们一起做一做,看一看:(出示幻灯片)
用描点法作出下列一次函数的图象。
(1)y= 0.5x (2) y= 0.5x+2
(3)y= 3x (4) y= 3x + 2
师:(为了节约时间)要求:用描点法时,最少5个点;以小组为单位,由小组长分配,每人画一个图象。画完后,小组订正,看是否画的正确?
然后讨论解决问题(1):观察你和你的同伴画出的图象,你认为一次函数的图象是什么形状?
小组汇报:一次函数的图象是直线。
师:所有的一次函数图象都是直线吗?
生:是。
师:那么一次函数y=kx+b(其中k、b为常数,k≠0),也可以称为直线y=kx+b(其中k、b为常数,k≠0)。(板书)
师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?(2分钟)
讨论正比例函数的图象与一般的一次函数图象在位置上有没有不同之处。
小组1:正比例函数图象经过原点。
小组2:正比例函数图象经过原点,一般的一次函数不经过原点。
师出示幻灯片3(使学生再一次加深印象)
师:问(3):对于画一次函数y=kx+b(其中k)b为常数,k≠0)的图象——直线,你认为有没有更为简便的方法?
(一边思考,可以和同桌交流)(2分钟)
生1:用3个点。
生2:老师我这个更简单,用两个点。因为两点确定一条直线嘛!
生3:如画y=0.5x的图象,经过(0,0)点和(2,1)点这两个点做直线就行。
师:我们都认为画一次函数图象,只过两个点画直线就行。
(幻灯片4:师,动画演示用“两点法”画一次函数的过程)
师:做一做,请你用“两点法”在刚才的直角坐标系中,画出其余三个一次函数的图象。(比一比谁画的既快又好)(4分钟)
师:问(4):和你的同伴比一比,看谁取的那两个点更为简便一些?
组1:若是正比例函数,我们组先取(0,0)点,如画y=0.5x的图象,我们再了取(2,
1)点。这样找的坐标都是整数。
组2:我们组认为尽量都找整数。
组3:我们组认为都从两条坐标轴上找点,这样比较准确。如y=3x+2,我们取点(0,3)和点(-2/3,0)
组4:我们组认为,正比例函数经过(0,0)点和(1,k)点;一般的一次函数经过(0,b)点和(-b/k,0)点。
师:同学们说的都很好。我觉得可以根据情况来取点。
2、师:我们现在已经用:“两点法”把四个一次函数图象准确而又迅速地画在了一个直角坐标系中,这四个函数图象之间在位置上有没有什么关系呢?
问(1):(由自己所画的图象)观察下列各对一次函数图象在位置上有什么关系?(独自观察——学生回答)(3分钟)
①y=0.5x与y=0.5x+2;②y=3x与y=3x+2;③y=0.5x与y=3x;④y=0.5x+2与y=3x+2。
生1:①y=0.5x与y=0.5x+2;两直线平行。
生2:②y=3x与y=3x+2;两直线平行。
生3:③y=0.5x与y=3x;两直线相交。
生4:④y=0.5x+2与y=3x+2;两直线相交。
师:其他同学有没有补充?
生5:③y=0.5x与y=3x都是正比例函数;两直线相交,并且交点是点(0,0)点。
生6:老师,我也发现了④y=0.5x+2与y=3x+2的图象相交,并且交点是点(0,2)。
师:(出示幻灯片5)同学们回答都不错,我们要向生5和生6学习,学习他们的细致思考。
《一次函数》教学教案 14
教材分析
课程标准的描述
要求学生明确确定一次函数需要两个条件,确定正比例函数需要一个条件;会用待定系数法求一次函数的解析式,并使学生初步形成数形结合的思想;
教学内容分析
通过例4,介绍了用待定系数法求一次函数的解析式的基本步骤,并明确待定系数法的用途和目的,进而形成数形结合的思想;
前面学生一直学习的是已知函数的解析式,然后研究函数的图象和性质,是从数到形的过程;从这一节课开始,学生反过来学习从形到数,并且在后面的学习中也经常用到数形结合的思想,所以这节课是整个学生的一种逆向思维的转折点,起着承上启下的作用,具有重要意义。
学情分析
教学对象分析
1.本班学生对于一次函数的图像和性质掌握的比较好,能通过解析式画出函数图象,通过图象判断k和b的符号,会用待定系数法计算简单的正比例函数的解析式,但求解二元一次方程组还有一定的困难,而利用待定系数法求一次函数的解析式,由于两个式子相减,b就可以抵消,所以计算问题不会很大。另外,学生在练习的过程中,对新题型比较陌生,特别是没有直接给出点或者没有说求函数解析式,这样的题学生掌握的不够好。
2.学生已经学过解二元一次方程组,并会求正比例函数的解析式,初步认识过待定系数法,以前也接触过数形结合的思想。在此基础上,可以先让学生知道什么是待定系数法,怎样去用,具体步骤有哪些,进而体会数形结合的思想,然后举例说明从数到形和从形到数的相互渗透。
3.如何根据所给的信息找到条件,确定一次函数的解析式,是学生学习的障碍,对于这个问题,主要利用四种题型(图象、列表、交点、实际应用)和学生一起探寻条件(主要是找两个点),从而突破这个障碍。
教学目标
1、理解待定系数法,并会用待定系数法求一次函数的解析式;
2、能结合一次函数的图象和性质,灵活运用待定系数法求一次函数解析式;
3、能根据函数图象确定一次函数的表达式,并由此进一步体会数形结合的思想;
4、通过引入待定系数法的过程,向学生渗透转化的思想,培养学生分析问题,解决问题的能力.
教学重点和难点
项 目
内 容
解 决 措 施
教学重点
利用待定系数法求一次函数的解析式
强调用待定系数法求一次函数解析式的步骤
教学难点
培养数形结合分析问题和解决问题的能力
指导学生从题目中找出两个条件
教学策略
教学策略的简要阐述
通过讲授不同题型,从浅入深掌握待定系数法求一次函数解析式的四个步骤。
教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果。因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。先“引导发现”,后“讲评点拨”,再加上多媒体的运用,使学生真正成为学习的主体。
教学过程
课堂教学过程设计
教学环节
教师活动
学生活动
设计意图、依据
复习
出了一组关于一次函数解析式、图象及性质的填空题。
一、温故知新:
1、在函数y=2x中,函数y随自变量x的增大__________。
2、已知一次函数y=2x+4的图像经过点(m,8),则m=________。
3、一次函数y=-2x+1的图象经过第 象限,y随着x的增大而 ; y=2x -1图象经过第 象限,y随着x的增大而
4、若一次函数y=x+b的图象过点A(1,-1),则b=________
5、已知一次函数y=kx+5过点P(-1,2),则k=_____
大部分同学很快就完成,一小组同学轮流说答案并简单讲解。
复习一次函数的图象和性质,并初步体会从数到形的思想
创设情景,提出问题
让学生画出y=2x和y=x+3的图象,并思考“你在作这两个函数图象时,分别描了几个点?你能否通过取直线上的这两个点来求这条直线的解析式呢”
接着让学生完成:
已知:一次函数y=kx+b当x=1时y的值为2,当x=2时y的值为5,求k和b.
解:把x=1,y=2;x=2,y=5分别代入函数y=kx+b得:
解得:
学生通过画图象确定“两点确定一条直线”,即求一次函数解析式需要两个条件,求出k和b即可。
激发学生学习的兴趣,培养学生分析问题的能力。通过填空题的形式,初步体会列二元一次方程组求k和b的值。
讲授例题
以教材例4为主,讲授待定系数法的四个步骤,如何利用待定系数法求函数的解析式,如何找到两个点,并总结归纳什么是待定系数法。
例:已知一次函数的图象经过点(3,5)与(-4,-9). 求这个一次函数的解析式.
待定系数法:______________________________________________________________
你能归纳出待定系数法求函数解析式的基本步骤吗?
(1)_______________(2)_______________(3)_______________(4)____________
学生能根据给的两个点的坐标代到一次函数的解析式,并且解出二元一次方程组,求出k和b,知道求一次函数的解析式,只需要求出k和b,也就是需要找两个条件,实质上就是找两个点。
通过例题使学生形成完整的利用待定系数法求函数解析式的步骤。
提出问题,形成思路
出示四种题型:图象、表格、两点的坐标、实际应用,分别用待定系数法求一次函数的解析式。
图象的学生基本能求出,会找两个点;对于利用表格信息确定函数解析式,学生不知道是求函数的解析式;实际应用问题,学生分析问题能力较差,但基本上能找到两个条件。
加深对待定系数法的理解,加强分析问题并解决问题的能力。
课堂小结
1、待定系数法求一次函数的解析式的步骤;
2、数形结合的思想:从数到形和从形到数的思路。
学生基本能说出这节课学习的主要内容,对于数形结合的思想,学生基本能理解。
复习巩固所学知识,体会数形结合的.思想。
小试身手
设计了一组从浅入深的题目,巩固本节课的内容。
由于时间关系,只完成了3题。
深化巩固所学知识,并能有所拓展提高。
板书设计
用待定系数法求一次函数的解析式
例、解:设这个一次函数的解析式为:y=kx+b
∵y=kx+b的图象过点(3,5)与(-4,-9).
3k+b=5
-4k+b=-9
解方程组得
K=2
b=-1
这个一次函数的解析式为:y=2x-1
用待定系数法求函数解析式的步骤:
1、设
2、代
3、解
4、写
教学特色
及时肯定学生和营造鼓励学生的氛围,激发学生学习的兴趣,积极参与课堂,自觉学习和思考。
利用多媒体辅助教学,增强直观性,提高学习效率和质量,增大教学容量,激发学生兴趣,调动积极性。
问题式教学, 互动式教学引导学生学会探究、学会合作、学会学习、学会体验。
设置了学案,让学生对教学内容更容易掌握。
教学反思
在导入新课时,通过一组练习,让学生清楚一次函数解析式或图象关键是k和b的确定。通过几种题型的练习,让学生思考和回答问题,令学生的数学语言概括能力,互助学习、合作学习的能力得到提高,因为之前学习了函数的图象和性质,学生的数形结合思想渗透也较好。反而,在教学过程中,特别是学生解二元一次方程组,本来说很简单的,但很多学生计算都出现了问题,所以在后面的教学中,要加强学生的计算能力。教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果.因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。先“引导发现”,后“讲评点拨”,再加上多媒体的运用,使学生真正成为学习的主体。在课堂总结环节应逐步培养学生学会总结的意识和习惯。
但有些细节还没把握好,譬如小组交流探讨时间较短等等,希望以后的课堂能更好的培养学生的合作交流能力。
《一次函数》教学教案 15
一、教学目标
(一)知识目标:
1、了解k值对两个一次函数的图象位置关系的影响。
2、理解当k>0时,k值对直线倾斜程度的影响。
3、结合图象,探究并掌握一次函数的性质。
4、能对一次函数的性质进行简单的应用。
(二)能力目标:
1、经历由特殊到一般的研究过程,培养学生的观察分析,自主探索,合作交流的能力。
2、结合图象探究性质,培养了学生数形结合的意识和能力。
(三)情感目标:
体验数学活动,激发学生学习数学的兴趣。
二、数学重难点
重点:掌握一次函数图象的性质及其一次函数性质的简单应用。难点:由一次函数的图象探究一次函数的性质。
三、数学过程
(一)、创设情境,回顾复习
1、播放动画视频《龟兔赛跑》的片段,利用兔子和乌龟的路程s与时间t的函数图象(如下图)引出对上一节知识的回顾,进行复习。
2、忆一忆
⑴、一次函数的图象有什么特点?做一次函数的图象一般需要描出几个点?
⑵、正比例函数的图象有什么特点?正比例函数图象经过的象限和增减性与k的关系?
(二)、情景再现,引入新课
1、设置故事情节:小兔子输掉了比赛,非常不服气,于是就邀请乌龟进行第二次比赛,为了证明自己的实力,兔子决定让乌龟先跑200米(如下图)。
2、进入本节课主题:(到底谁会赢?让学生带着问题进入本节课的学习)
(三)提出问题,归纳总结,层层闯关1、第一关:探讨直线y=kx+b所经过的象限
(1)观察在同一个平面直角坐标系的函数y=x、y=x+6、y=x—3、y=3x+3的图象。
问题1:观察四条直线,他们之间的位置关系有几种?
问题2:观察平行直线与相交直线,它们的系数k和b有什么特点?
问题3:直线y=x经过上下平移可以得到直线y=x+6和直线y=x—3吗?b的符号能决定平移的方向吗?
(2)合作交流、得到猜想:
规律:①当k值相同,b值不同时,两直线平行。②当k值不同时,两直线相交。
(3)归纳验证,得到结论:
规律:①当k值相同,b值不同时,两直线平行。②当k值不同时,两直线相交。
(4)问题延伸:
在观察图象的基础上,让学生发现当b≠0时,一次函数y=kx+b的图象必过三个象限,然后提出问题。
问题4:正比例函数的图象经过上下平移可以得到一次函数的图象,从这个规律,你能猜想出直线y=kx+b所经过象限与k、b符号的关系吗?
(5)合作交流,得到结论:
在一次函数y=kx+b中,当k>0,b>0时,直线经过第一、二、三象限当k>0,b<0时,直线经过第一、三、四象限当k<0,b>0时,直线经过第一、二、四象限当k<0,b<0时,直线经过第二、三、四象限第二关:探讨直线y=kx+b的增减性
(1)回顾知识:直线y=x的增减性如何?(2)提出问题:
问题1:观察图象,直线y=x+6,y=x—3,y=3x+3的增减性与直线y=x相同吗?问题2:从问题1中,你得到启发了吗?
k的符号对一次函数y=kx+b的增减性有什么影响?(3)合作交流,得出结论:
规律:k>0时,y随x的增大而增大,k<0时y随x的增大而减小第三关:探讨当k>0时,k的大小对直线y=kx+b的倾斜程度的影响。
(1)直观演示:(用几何画板演示当k值增大时,观察直线y=kx+b与x轴正方向的夹角的变化),观察当k值越来越大时,在x的增加量为1个单位长度时,函数值增加量的变化。
(2)合作交流,得到结论:当k>0时,k值越大,直线y=kx+b与x轴正方向所夹的锐角越大,直线的倾斜程度越大,随着x的增加,函数值增长的速度越快。
第四关:学以致用,巩固新知
例2:当x从0开始逐渐增大时,y=2x+6和y=5x哪一个直线到达20,这说明什么?(观察大屏幕上作出的直线y=2x+6和y=5x,当x从0开始逐渐增大时,y=5x先到达20,这说明k值越大,y的变化量越大)
(四)小组竞答
(五)首尾呼应,感悟收获
1、呼应开头,比比到底谁会赢?如图:
2、知识收获:
3、布置作业:
(1)习题6.41.2
(2)充分发挥你的想象,自编一则新的“龟兔赛跑”的寓言故事。要求:
1、用生动的语言描述故事情景。
2、画出相应的函数图象。
六、板书设计:问题与情境师生行为设计意图[活动1]1。已知函数。
(1)、当m取何值时,该函数是一次函数。
(2)、当m取何值时,该函数是正比例函数。
2、正比例函数和一次函数有何区别与联系?
3、在同一坐标系中描出以下6个函数的图像①y=2x②y=2x—1③y=—2x④y=—2x+1⑤⑥
(上节课的课外练习)观察你所画的图像的形状
能否发现一些规律(或共同点)?
1、教师出示问题,引导学生动手操作,动脑思考,总结规律。
2、学生猜想出结论:一次函数的图像是一条直线。
3、教师为了进一步验证学生猜想的结论的正确性,再出示一组课前画好的一次函数的图像
4、本次活动中,教师应重点关注:
⑴。学生能否准确理解正比例函数和一次函数有何区别与联系。
⑵。学生能否由问题3中六个函数的图像归纳出规律:一次函数的图像是一条直线。(适时点播)
问题1:复习正比例函数和一次函数的定义。
问题2:理解正比例函数是一次函数的特殊形式。为本课由正比例函数的性质类比、迁移到一次函数的性质作铺垫。
问题3:通过对图形的观察、总结、归纳、探究,猜想出一次函数的图像是一条直线。
1、在探究规律的过程中,培养学生的观察、总结、归纳、探究,猜想能力。
2、观察教师出示的一组一次函数的图象,进一步验证猜想结论的.正确性,体验成功。
3、引出课题:一次函数的图像和性质问题与情境师生行为设计意图
[活动2]问题:
1、正比例函数的图像是一条直线,除了描点法外,你还有更简便的方法画出它的图像吗?
2、用两点法分别在同一坐标系中画出下列函数的图像①②
问题:观察这两组图像:
(1)指出它们分别有什么共同点,它们所在的象限,以及上升与下降的趋势。
(2)分别在直线和上依次从左向右各取三个点A(x1,y1),B(x2,y2),C(x3,y3)。试比较y1、y2y3的大小。
1、教师引导学生分析:
(1)一条直线最少可以有几个点确定?
(2)可以取直线上的哪两个最简单、易取的点?(3)学生总结出选取(0,0),(1,k)两点。(其他的点也可以,但这两点最简单)
2、教师巡视,适时点拨,演示
几何画板课件,正比例函数的图像:k任取不同的数值,观察图像的位置,给出图像上任意一点测量出此点的坐标,拖动此点变换它的位置。观察此点的横纵坐标的变化情况。引导学生探究、讨论、归纳出正比例函数的性质:
(1)k>0时,图像在第一、三象限,y随x的增大而增大。(2)k0时,y随x的增大而增大。
(2)k问题1、问题2、问题3的解决,是巩固正比例函数的性质,为归纳一次函数的性质做准备。问题4,两点法画一次函数的图像,“数”与“形”转化,培养学生的画图能力。对图像的观察、归纳,“形”与“数”转化,培养他们的视图能力,几何画板课件的演示,帮助学生从感性认识上升到理性认识,形象直观的迁移到“形”与“数”转化。[活动4]问题A组:
1、已知函数y=kx的图像过(-1,3),那么k=______,图像过_________象限
2、函数y=-kx-2的图像通过点(0,__)如果y随x增大而减小,则k___03、在函数y=kx+b中,k<0,
b>0,那么这个函数图像不经过第___象限
4、直线与平行,与y轴的交点在x轴的上方,且,则此函数的解析式为______。B组:
1、直线,当k>0,
b0,y0,y0,y(1)积极评价不同层次的学生对本节内容的不同认识。
(2)理清本节所学知识,总结情感收获。数学知识与实际运用的密切关系。
1、帮助学生理清本节所学知识。总结情感收获。
2、巩固所学知识,选做题,给学生发展的空间。
教学设计说明
本节课的设计力求体现使学生“学会学习,为学生终身学习做准备”的理念,努力实现学生的主体地位,使数学教学成为一种过程教学,并注意教师角色的转变,为学生创造一种宽松和谐、适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围,根据学生的实际水平,选择恰当的教学起点和教学方法。由此我采用“问题猜想探究应用”的学科教学模式,把主动权充分的还给学生,让学生在自己已有经验的基础上提出问题,明确学习任务,教师引导学生观察、发现、猜想、操作、动手实践、自主探索、合作交流,寻找解决的办法并最终探求到真正的结果,从而体会到数学的奥妙与成功的快乐。
整堂课以问题思维为主线,充分利用几何画板及计算机辅助教学,特别是几何画板,巧妙地把数学实验引进了数学课堂,让学生充分参与数学学习,获得广泛的数学经验,整堂课融基础性、灵活性、实践性、开放性于一体。这样既注重知识的发生、发展、形成的过程,解题思路的探索过程,解题方法和规律的概括过程,又使学习者积极主动地将知识融入已构建的结构,而不是被动的接受并积累知识,从而“构建自己的知识体系”。并通过探索过程,不断丰富学生解决问题的策略,提高解决问题的能力,渗透数学的思想方法,发展数学思维。
【《一次函数》教学教案】相关文章:
《一次函数》数学教学教案10-09
一次函数教案07-07
一次函数的教学方案10-07
一次函数的图象教案11-23
《一次函数》数学教案10-07
关于一次函数的数学教学方案10-07
一次函数教学方案设计10-08
《一次函数图象的应用》教案10-07
一次函数的图象教案及反思10-07