- 相关推荐
《一次函数》数学教学教案
教学目标
1.知识与技能
领会一次函数的概念,会从实际问题中建立一次函数的模型
2.过程与方法
经历探索一次函数的过程,感受一次函数的解析式的特征
3.情感、态度与价值观
培养数形结合的数学思想,体会一次函数在实际生活中的应用价值
重、难点与关键
1.重点:一次函数的概念.
2.难点:从实际生活中建立一次函数的模型.
3.关键:把握好实际问题中的两个变量之间的相等关系,建立模型
教学方法
采用“情境──探究”的方法,让学生在实际问题中感悟一次函数的概念
教学过程
一、创设情境,揭示课题
问题思索1:某登山队大本营所在地的气温为5℃,海拔每升高1km,气温下降6℃,登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃,试用解析式表示y与x的关系.
【思路点拨】y随x变化的规律是,从大本营向上当海拔加xkm时,气温从5℃减少6x℃,因此y与x的函数关系为y=5-6x(或y=-6x+5),当登山队员由大本营向上登高0.5km时,他们所在位置的气温就是x=0.5时函数y=-6x+5的值,即y=2(℃).
【学生活动】合作探究,寻找解题途径,踊跃发言,发表各自看法.
问题思索2:下列问题中变量间的对应关系可用怎样的函数表示?这些函数有什么共同点?
(1)有人发现,在20~30℃时蟋蟀每分鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差;(C=7t-35)
(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值;(G=h-105)
(3)某城市市内电话的月收费额y(单位:元)包括:月租费22元,拨打电话x分的计时费按0.01元/分收取;(y=0.01x+22)
(4)把一个长10cm,宽5cm的长方形的长减少x,宽不变,长方形的面积y(单位:cm2)随x的值而变化.(y=-5x+50)
【教师活动】提出问题,引导学生思考.
【学生活动】独立思考,列出函数关系式,并进行比较,得到这一类型函数的共同特征:这些函数的形式都是自变量x的k(常数)倍与一个常数的和
【形成概念】一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数
二、随堂练习,巩固深化
课本P11.4第练习1,2,3题.
三、课堂总结,发展潜能
1.y=kx+b(k,b是常数,k≠0)是一次函数.
2.一次函数包含了正比例函数,即正比例函数是一次函数在b=0时的特例
四、布置作业,专题突破
选用课时作业设计
板书设计
14.2.2一次函数(1)
1、一次函数的概念例:
2、一次函数与正比例函数的关系练习:
【《一次函数》数学教学教案】相关文章:
《一次函数》教学教案(通用11篇)06-24
一次函数的图象教案11-23
数学的教学教案12-09
数学教学教案11-05
幼儿数学教学教案02-25
【热】数学教学教案12-16
【精】数学教学教案12-16
《数学广角》教学教案01-21
初中数学的教学教案02-05
数学教学教案【荐】12-09