教案

四年级数学第十一单元《解决问题的策略》教学教案

时间:2022-12-09 17:20:19 小花 教案 我要投稿
  • 相关推荐

四年级数学第十一单元《解决问题的策略》教学教案(通用10篇)

  作为一名优秀的教育工作者,时常要开展教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。那么问题来了,教案应该怎么写?下面是小编帮大家整理的四年级数学第十一单元《解决问题的策略》教学教案,仅供参考,大家一起来看看吧。

四年级数学第十一单元《解决问题的策略》教学教案(通用10篇)

  四年级数学第十一单元《解决问题的策略》教学教案 篇1

  一、解决问题的策略

  二、完成想想做做:

  三、整理信息,解决问题

  四、应用拓展

  1、放学后,我们两个同时从学校出发,分别向东去新华书店,向西去文具店,

  问:这道题和例题有什么不同?

  你能根据题意自己独立画线段图整理。

  展示学生的线段图,并让学生说说自己是怎样想的。

  补充合适的问题后,学生独立解答。交流的`时候分别说清楚自己是怎么想的。

  2、比较两题,找联系。

  说说两题有什么不同?(方向上的不同,一个是相向的,一个是相背的)做手势。

  什么相同?(都是求两断之间的距离,可以先分别算出各自的距离再相加,也可以先算出合起来的速度再算总的路程。……)

  五、完成想想做做:(做在作业本上)

  1、先画图整理,再解答。

  2、读题后问:这道题和刚才的有什么不同?可以怎么想?把你的算式写在作业本上。

  3、读题后问:这道题和例题有什么联系?你会解答吗?

  四年级数学第十一单元《解决问题的策略》教学教案 篇2

  教学目标:

  1、运用画线段图的方法整理已知条件和问题,理解和差问题的解题思路,掌握和差问题的解题方法。

  2、掌握画线段图分析问题的方法,感受画线段图的策略在分析问题中的好处,培养学生运用线段图进行分析问题的意识。

  3、培养学生良好的逻辑思维能力,鼓励学生在合作交流中激发自主探究、创新的精神。

  教学重点:理解和差问题的解题思路,掌握和差问题的解题方法。

  教学难点:掌握画线段图分析问题的方法,培养学生运用线段图进行分析问题的意识。

  教学准备:课件

  教学过程:

  一、谈话引入

  1、课件出示:小明买3本故事书用了27元,小军买了5本同样的故事书需要多少元?

  (1)将题目中的信息整理到下面的表格中。

  (2)分析表格中的信息,明确解题思路。

  引导学生明确:可以先算出一本故事书多少元,再计算出5本故事书多少元。

  (3)学生独立解答。

  一本故事书:27÷3=9(元)

  5本故事书:9×5=45(元)

  2、谈话导入。

  刚才我们采用了哪种解决问题的策略?(列表)

  师:通过列表的策略来分析数量关系,可以让一些复杂的问题变得浅显。除了列表这种解决问题的策略外,还有许多其

  他的解决问题的策略,同学们想学吗?今天我们就一起来学习新的解决问题的`策略。(板书课题)

  二、交流共享

  1、课件出示教材第48页例题1。

  让学生读题,说说题目中的已知条件和所求的问题。

  已知条件:小宁和小春共有72枚邮票;小春比小宁多12枚。

  所求问题:两人各有邮票多少枚?

  2、交流解题策略。

  提问:想一想:这道题我们用列表的方法来分析,能找到解题思路吗?

  学生交流得出:由于两人的邮票数量都是未知的,用列表的方法进行分析,不容易找到解题思路。

  引导:接下来我们就来学习用画线段图的策略来分析这道题。

  3、根据题意画线段图。

  (1)提问:题目中有几个相关联的量?应该用几条线段来表示呢?学生回答后课件出示:

  小宁:

  多()枚()枚

  小春:

  (2)追问:你能根据题意把线段图填写完整吗?

  让学生在教材的线段图上填一填,完成后组织汇报交流。

  小宁:

  多(12)枚(72)枚

  小春:

  4、看线段图,分析数量关系。

  提问:观察线段图,想一想可以先算什么?

  (1)学生独立观察思考后,小组交流讨论。

  (2)全班交流解题思路。

  汇报预测:

  解题思路一:先算出小宁有多少枚邮票。两人邮票的总数减去12枚,等于小宁邮票枚数的2倍。

  解题思路二:先算出小春有多少枚邮票。两人的总数加上12枚,等于小春邮票枚数的2倍。

  5、学生独立解答。

  引导学生选择一种自己喜欢的方法解答。

  6、组织检验。

  (1)提问:我们用什么方法进行检验?

  (2)追问:检验要分几步进行?

  (3)学生独立进行检验,并写出答案。

  7、回顾反思。

  引导:回顾解决问题的过程,你有什么体会?

  先让学生在四人小组内说一说自己的体会,再组织全班交流。

  8、交流讨论。

  在之前的学习中,我们曾经运用画图的策略解决过哪些问题?

  三、反馈完善

  1、完成教材第49页“练一练”。

  这道题和例题1相似,只不过要让学生自己从线段图中获取已知条件,通过这样的练习可以培养学生的读图能力。

  2、完成教材第52页“练习八”第1题。

  这道题也和例题1相似,但题目要求先把线段图补充完整,组织练习时要把重点放在线段图的画法上。

  3、完成教材第52页“练习八”第3题。

  这道题练习的重点应放在观察线段图、分析数量关系上,引导学生从线段图上看出下层图书的2倍就是60×2=120(本)

  四、反思总结

  通过本课的学习,你有什么收获?还有哪些疑问?

  四年级数学第十一单元《解决问题的策略》教学教案 篇3

  一、教学目标

  【知识与技能】

  理解用转化的方法解决问题的思路,能根据具体问题找到对应的转化方法,从而解决问题,了解转化思想在数学课程中普遍存在。

  【过程与方法】

  通过转化比较两个不规则图形面积大小的过程,提高观察、分析、解决问题的能力;通过对解决问题过程的反思,提高归纳、总结、概括的能力,以及知识迁移能力。

  【情感、态度与价值观】

  在主动参与数学活动的过程中,感受成功的体验,提高学习数学的兴趣。

  二、教学重难点

  【重点】用转化策略比较不规则图形的面积。

  【难点】转化的方法及应用。

  三、教学过程

  (一)导入新课

  大屏幕出示学习多边形面积时的图片,引导学生回忆之前比较两个图形面积时,用到数方格、平移等方法。

  教师指出前面接触的图形相对简单,本节课进一步学习比较两个图形面积的大小。

  引出课题——解决问题的策略。

  (二)讲解新知

  1。问题探究

  大屏幕出示教材图片,并提问下面两个图形,哪个面积大一些?

  学生根据之前学习经验,直观的会提出数方格,教师引导学生注意其中涉及不满一格的`情况,若按照前面数方格时不满一格按半格计算,得到的结果不够准确,并且较为繁琐,引发学生思考更为确切的比较方法。

  学生根据导入中的情境,能够想到可以通过平移将不规则图形转化为规则图形进行比较。

  教师组织学生小组活动,5分钟时间,探究图片中的不规则图形可否转化为较为规则的图形,若可以,思考如何转化。小组代表做好讨论记录,探究结束找小组分享讨论结果。教师巡视,对于有困难的学生及时给予指导。

  教师总结学生回答,两个图形都可转化为规则的矩形,通过平移或旋转的方法得到。通过比较转化后的图形面积(数方格、数边长)得到两个图形面积相等。教师利用多媒体演示图形多种变化过程。

  2。方法总结

  教师组织学生思考上述图形变换前后的区别与联系,总结图形转换的方法与特点,同桌之间交流分享。

  教师总结学生回答:

  (1)变换前后图形的形状改变了,由复杂变为简单熟悉,但面积的大小不变;

  (2)图形转化可通过平移、旋转、翻折、拼接等方法;

  (3)经过转化之后将无解变得可解,将复杂问题变成简单问题。

  教师讲解其为转化的策略解决问题,即将未知事物转化为已知事物,从而解决问题的方法。组织学生回忆学习过程中,哪些知识的学习中用到了转化的策略,小组间进行交流总结。

  教师总结学生回答:探究平行四边形、三角形、梯形、圆的面积时;代数领域学习异分母分数运算、小数乘法等。通过回忆学习过程,感受数学知识间的联系。

  (三)课堂练习

  算一算下列三个图形中阴影部分面积占整个面积的几分之几。

  (四)小结作业

  小结:总结本节课学习内容。

  作业:课后练一练。

  四年级数学第十一单元《解决问题的策略》教学教案 篇4

  教学内容:苏教版小学数学五年级下册第88~89页。

  教学目标:

  1、让学生通过分析具体情境中的实际问题,学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2、使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:学会用“倒过来推想”的策略解决问题。

  教学难点:掌握用“倒过来推想”的策略解决问题的思路。

  教学过程:

  一、结合情境,初步感知。

  今天早上我从家里出发,下楼到车库,取出二轮宝马自行车,然后在路边的忘不了早餐店吃个早餐,共用了十分钟,在路上骑车又用了二十分钟才到学校,这时刚好是7点40,请问你们知道我是什么时候从家里出发的吗?

  你是用什么方法得出结论的,倒过来推想,是呀,倒过来推想是我们解决数学问题重要的一种策略,今天这节课我们就学习这种策略。板书:解决问题的策略,倒过来推想

  请同学们看大屏幕:

  二、自主探索,解决问题。

  (一)教学例1

  老师这里有两个杯子,装了一些果汁,共400毫升。如果把甲杯中的40毫升果汁倒人乙杯,现在两杯同样多。原来两杯果汁各有多少毫升?

  从题目中你了解了哪些信息?甲倒给乙40毫升后,什么不变?什么变了?怎么变的?我们可以用以前学过的什么相关策略我们解决呢?自己先想一想,再把你的想法写下来,在小组交流。先想好的同学可以帮助组里其他有困难的同学一下。根据小组的交流,发现你们有以下这么几种想法:

  (1)示意图 请画图的同学说说你的想法。

  说得不错,如果还不是十分清楚的同学,再看一下大屏幕,老师把他的想法用动画表示出来,这样你懂了吗?

  (2)画线段图

  他这样做也是先求什么?然后再把甲倒给乙的40毫升还回去,求出原来甲

  乙各有多少毫升。

  (3)表格

  我们已经求出了原来的甲是240毫升,原来的乙是160毫升。你能对这个结果作出检验吗?

  刚才同学们用了我们以前学过的画线段图、画示意图、列表等方法来解决这个问题。那想一想,不管你用的.是哪种方法,都是先从什么出发?然后再根据原来到现在的变化过程求出什么?这就是运用倒过来推想的策略来解决问题。请同学们打开课本88页把例1看一遍,再体验一下用倒推的策略解决问题。

  (二)教学例2

  这种策略在日常生活中运用非常广泛,请看大屏幕例2。

  你了解到哪些信息?你能想个办法来信息,清晰地表明邮票变化情况吗?先自己试一试,再与同组同学交流。现在请小组汇报一下。你们是怎样信息与解答的呢。

  箭头法教师板书

  原有?张  收集24张  送走30张  还剩52张”

  “原有?张  去掉24张  要回30张  还剩52张”

  线段图说出意思。

  符号表示我刚才在下面发现有个同学也是用箭头表示,不过不象我们用文字叙述,而是用符合来表示的,请同学们看黑板,你们看得明白吗?来那我们把掌声送给他。同时这掌声也是送给你们自己,你们的想法都不错,表现让我非常满意。

  刚才在解答时同学们用了什么策略? 现在大家有信心用这个策略来解决一些实际问题吗?

  请看书上89页的练一练。甲、乙两位同学到黑板上来做,其他同学在下面自己独立完成。

  请黑板上板演的同学说说你的想法。我刚才发现有两个同学是这样列式的,25*2+1,发现这种解法错在什么地方,做错的同学能不能自己主动站起来勇敢地说一说。同学们你看这位同学说得多好,我们不怕犯错误,关键是错了能知道错在什么地方,及时地改正过来,这是最珍贵的,我希望同学们在有错误时都能象这位同学一样,勇敢地承认自己错误,并改正过来,做一个诚实的人。掌声送给他,勇敢的人。

  下面请同学们打开课堂练习本,把书上90页的第1、2题做在本子上。

  通过刚才的作业我发现同学们这节课掌握得不错,只有两个同学计算时粗心错了。这节课我们学习的是什么内容?对用倒过来推想解决问题,这些问题有什么共同的特征?都是已知结果,求原来。用这个策略解决问题时,我们可以借助示意图、线段图、表格、箭头图等分析题意,如果对刚才课上还有不清楚的地方,欢迎同学们下课与我交流,好,这节课就到这里, 谢谢同学们的配合,下课。

  四年级数学第十一单元《解决问题的策略》教学教案 篇5

  教学目标:

  1、使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、确定解题思路,并有效地解决问题。

  2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:使学生理解并运用假设的策略解决问题。

  教学难点:当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。

  教学过程:

  一、直接导入:

  1.直接出示你知道吗?鸡兔同笼问题是我国古代的数学名题之一。它出自于我国古代的一部算书《孙子算经》。书中的题目是这样的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?师:你能理解这句话的含义吗?学生回答。

  2.师说明:解答鸡兔同笼问题时,我们会用到一个新的解决问题的策略假设,同时要用到以前的策略画图或列表。教师板书:解决问题的策略假设。

  二、以鸡兔同笼为例,探究假设

  1.教师出示题目:鸡和兔一共有8只,数一数腿有22条。你知道鸡和兔各有多少只?教师边出示边说明:为了解答方便,老师适当的改了几个数据。师:看到这个题目,是否觉得比较难?师:这样吧,我们用以前的.一种策略画图来解决。师让学生上台画鸡或兔,当学生有疑问时,问:这样画鸡或兔是否很麻烦,能否用其他方法来代替?师应引导学生用圈来表示鸡或兔,用2脚与4脚区分鸡与兔。问:能不能马上确定鸡兔各有几只?因此,我们画图时不能马上画出几只兔几只鸡。师:这时我们可以假设全部是鸡或兔了。

  分别板书:假设都是鸡 假设都是兔。师:我们先来假设都是兔,兔有几条腿?我们就用短线段表示脚,请同学们把所有的脚都画上。数一数,一共有几条腿?为什么会多腿?(要求学生一定说出因为把鸡当成是兔)了多几只腿?一只兔比一只鸡多几条腿?师:因为每只鸡比每只兔少2条腿,所以我们每次拿走2条腿。要拿走几次,你是怎样算的?师:现在你能发现什么吗? 现在兔有几只?鸡有几只了?你能否把刚才的过程表述出来?请同桌互说把刚才的过程表述出来。

  师:刚才的过程我们还可以用式子表示,谁来说明?教师根据学生回答分别板书。84=32(条)

  表示假设全部是兔总共有32条腿。32-22=10(条)

  表示实际多画了10条腿。4-2=2(条)

  表示一只兔比一只鸡多2条腿。102=5(只)

  表示鸡有5只。8-5=3(只)

  表示兔有3只。教师重点多次提问要求学生回答出每句话的含义。

  教师小结:我们可以首先假设全部是兔,然后数出兔的腿与实际的腿的差距,因为一只兔比一只鸡多2条腿,所以看这个差距里有几个2,所求出的与假设相反的鸡,最后求兔。

  2、刚才我们假设了全部是兔,如果假设全部是鸡,应该怎样想?先让学生小组内交流,然后有能力的学生独立完成,其他学生画图完成或看提示完成。在交流时分别对每步提问。问:82=16表示什么?(假设全部是鸡总共有16条腿)22-16=6表示什么?(实际少画了6条腿)4-2=2表示什么?(一只兔比一只鸡多2条腿)。102=5表示什么?(鸡有5只)8-5=3表示什么?(兔有3只)师:上面的方法有什么共同的特点?

  3、师:除了全部假设为鸡或兔,我们还可以假设每种各有一半,可以怎样假设?师:如果是总过8只可以假设鸡有4只,兔有4只。如果是11只呢,我们可以怎样假设?师:如果是偶数,我们可以假设每种各有一半;如果是奇数,我们可以假设一种为一半多一点,另一种为一半少一点。而且,此类假设我们用表格来解决。师出示表格 鸡的只数

  兔的只数

  腿的条数

  和22条腿比较

  师根据学生的回答分别板书。

  4 4 42+44=24

  多了2条在这里多了2条,表明什么?按照刚才的假设兔4只太多了还是太少了?如何调整?如果在这里少了4条,表明什么?该如何调整?师小结:此种方法我们首先假设各有一半,然后按照这种假设算出腿的总数,根据与题意差距,合理地调整。

  4、师:要知道我们所求的答案是否正确,我们还应检验,如何检验?教师根据学生的回答板书检验。

  5、小结:刚才我们用了三种方法解答了鸡兔同笼问题,都是采用的假设法,可以假设一种全是,也可以假设另一种全是,还可以假设各有一半,在解答时,可以选择你比较喜欢的一种来解答。

  三、以引入题为辅,再次巩固假设法。

  1、师:刚才我们采用假设法解决鸡兔同笼,我们回到刚才的你知道吗。老师把题目转化了。出示题目。现在你会解决了吗?这样吧,行的话你们可以直接完成,不行的话半分钟后会出现提示,还是不行的话一分钟后可以两人或四人商量商量。学生独立解决,完成后要求学生检验。

  2、交流时在实物转换仪展示学生作业,师提问学生每步的意义。

  方法一:354=140(条) 方法二:352=70(条) 140-94=46(条) 94-70=24(条) 4-2=2(条) 4-2=2(条) 鸡 462=23(只) 兔 242=12(只) 兔 242=12(只) 鸡 462=23(只)方法三: 鸡的只数

  兔的只数 18 20 23

  腿的条数 17 15 12

  和94条腿比较 182+174=104 多10条 202+154=100 多6条 232+124=94 正好

  小结:对于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。

  四、以例题为练,提炼假设方法。

  1、师:刚才我们解答了两道鸡兔同笼问题,知道了此类题目的方法,接下去老师来考考你。(出示例题)全班51人去公园划船,一共租了11条船。每只大船坐5人,每只小船坐3人。租用的大船和小船各有几只?学生独立完成,教师帮助有困难的学生。交流时要求学生说明理由。

  2、师:现在你能归纳这种方法的解答过程吗?小结:于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。

  五、总结。师:你什么收获?

  四年级数学第十一单元《解决问题的策略》教学教案 篇6

  教学目标:

  1、在解决简单实际问题的过程中,感受列表是解决问题的一种策略。

  2、学会收集有效信息,并会用列表的方法整理,通过列表的过程寻找解决问题的有效方法。

  3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验。

  教学重点:

  让学生学会用列表的方法整理信息,经历解决问题的过程。

  设计理念:

  《数学课程标准》指出要让学生形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。本节课设计时,我就是以这一理念为依托。整个教学过程紧紧围绕探索解题策略展开,先出示有很多信息,但隐含比较简单的数学问题的'情境图,让学生选择信息,选择整理的方法解决问题,初步感知解题过程中可以通过列表的方法来整理信息。然后通过两个问题情境,让学生达到策略内化和优化,并让学生体会到:解决问题要从方法、策略入手。

  教学预设:

  一、创设情境,让学生体会整理信息的必要性,初步感知用列表来整理信息的方法。

  1、提出问题:

  (1)你听到了或看到了哪些信息?

  (2)根据这些信息你可以提出什么问题?

  学生可能会提出:每本笔记本多少钱?

  每枝钢笔多少钱?

  小华买笔记本用去了多少钱?

  小军买了几本笔记本?

  把学生提出的问题进行梳理,一步计算的马上解决。

  2、解决小华买笔记本用去了多少钱?

  (1)找有用的信息

  ①要解决小华用去多少钱?图中那么多信息,你打算怎么办?

  ②那么哪些信息是有用的呢?请你找一找,和同桌说一说。

  (2)记录信息

  ①如果要求你们把这些有用的信息记录下来,你会怎样记录?

  ②选择自己喜欢的方法记录信息。

  ③汇报展示方法:你能说说你是怎样记录信息的吗?

  大家觉得怎么样?

  学生可能会有:完整地记录信息的方法

  摘记数字记录的方法

  摘录重点的方法

  (3)优化方法:

  ①如果现在再让你记录,你会选择哪种记录的方法?为什么?

  ③再来说一说:刚才他是怎么样记录的?

  ④在摘录重点这种方法的基础上添上表格线,使它成为一个表格。

  ⑤你能看着表格直接列式解答吗?

  (4)揭示课题

  3、初步应用列表的方法整理信息

  (1)现在你们能不能也用列表的方法把求小军买多少本笔记本?需要的信息记录下来?

  (2)汇报展示:你能说说你是怎么记录整理信息的吗?

  (3)列式解答。

  二、通过观察比较,巩固列表的方法,并对列表的方法进行适度的拓展延伸。

  (1)观察这两个表格,说说你发现了什么?

  (2)其实解决这两个问题,我们可以用这样的表格来整理信息。

  [出示表格]

  小明

  3本

  共18元

  小华

  5本

  共?元

  小军

  ?本

  共42元

  (3)还有更简单一些的呢?

  3本--18元

  5本--()元

  ()本--42元

  现在你能把括号里的数填出来吗?

  三、实践应用,再次体会列表整理信息的必要性。

  1、解决买球过程中出现的问题:

  (1)学生用列表的方法先整理信息。

  (2)汇报展示并列式解答。

  2、录音播放商店降价的信息:

  (1)现在有2个问题,请咱们班的小朋友帮忙解答。

  问题一:丽丽和芳芳一共付了多少元?

  问题二:丁丁比丽丽少付多少元?

  (2)学生选择一个问题,根据问题选择有用的信息进行整理并解答。

  四、课堂总结

  四年级数学第十一单元《解决问题的策略》教学教案 篇7

  【教学内容】

  课程标准实验教科书苏教版六年级上册教材第89页例1和“练一练”、练习十七第1题。

  【教材简析】

  本节课主要教学用替换的策略解决简单的实际问题。在此之前,学生已经学习了用画图、列表、一一列举和倒过来推想等策略解决简单的实际问题,并在学习和运用这些策略的过程中,感受了策略对于解决问题的价值,同时也逐步形成了一定的策略意识。

  通过解决例1这个问题,让学生初步理解并掌握等量替换的策略。解决这个问题的关键,一是能够由题意想到可以把“大杯”替换成“小杯”,或把“小杯”替换成“大杯”;二是正确把握替换后的数量关系,从而实现将复杂问题转化为简单问题的意图。

  “练一练”依然是把一种物体分装在两种不同容器中的实际问题。与例1的区别在于,大盒和小盒的关系不是用分数表示,而是用差数表示。因此在依据题意将大盒替换成小盒或者将小盒替换成大盒后,原题中的数量关系就有了不同的变化。

  【教学目标】

  1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值。

  2、在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

  3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

  【教学重点】

  使学生掌握用“替换”的策略解决一些简单问题的方法。

  【教学难点】

  使学生能感受到“替换”策略对于解决特定问题的价值。

  【教学用具】

  多媒体课件、一个大杯和几个小杯(大杯的容量正好是小杯的3倍)

  【教学过程】

  一、激趣导入

  1、谈话:我们先来看一段动画。

  2、问:看出是什么故事了吗?

  3、问:曹冲用了什么巧妙的办法称出了大象的重量?(教师引导说出“替换”并板书。)

  4、谈话:曹冲用替换的策略解决了生活中的难题,这节课我们也来学习用“替换”的策略解决一些数学难题,有信心吗?

  【设计意图:引导学生通过欣赏曹冲称象的故事,不但激发了学生的学习兴趣,而且使他们了解替换的策略不仅能解决数学问题,还能解决生活中的问题。从而培养了学生自觉地把数学知识应用于实际生活的意识。】

  二、探索新知

  (一)、理清大小杯的关系

  1、师出示一个大杯和几个小杯(5个)说:猜一猜,一个大杯可以倒满几个小杯?

  过渡:事实胜于雄辩!我们来倒一倒。

  2、师演示。(正好3杯)

  3、问:谁来说一说大杯容量和小杯容量的关系?

  4、师:假如老师再装满一大杯水,分给每个小朋友每人一杯水,一共可以给几个小朋友?你是怎么想的?(引导学生说出一个大杯可“替换”三个小杯)

  5、师:假如有30小杯的水,老师分给每个小朋友一大杯水,可以分给几个小朋友?你是怎么想的?(引导说出三个小杯可替换成一个大杯)教师板书。

  【设计意图:让学生根据实验结果说出大、小杯容量之间的关系,意在让学生确立起倍和比的关系意识,能顺利进行转化,为新知的学习奠定良好的基础。】

  (二)学习例题。

  过渡:小明在倒果汁的时候给我们出了个难题,我们一起去看看吧!

  1、[电脑出示]例1小明把720毫升果汁倒入6个小杯和1个大杯,正好倒满。小杯的容量是大杯的。小杯和大杯的容量各是多少毫升?

  2、读题获取信息:有哪些信息,求什么问题?

  3、指名说你是怎么理解“小杯的容量是大杯的”这句话的?

  过渡:直接求出小杯和大杯的容量来容易吗?你们准备用什么策略来解决这个问题?

  4、小组讨论。

  要求:

  1、把什么替换成什么?

  2、替换后的数量关系是什么?

  5、交流讨论结果

  学生汇报教师演示课件。

  6、小结策略。

  虽然是两种不同的替换方法,但它们有什么共同的地方?(两种不同的物体替换成一种物体)

  7、列式解答。

  根据刚才的两种思路让学生自选一种喜欢方法进行计算,教师指名解法不同的两名学生板书,并让其再说说自己的解题思路。

  【设计意图:这一层次安排了观察、操作、交流、归纳等数学活动,让学生自己感受、探索替换策略的应用。在交流中,学生把自己的想法表述出来,大家互相借鉴、互相补充,这样不仅调动了学习主动性,而且提高了独立获取知识的能力。】

  (三)、教学检验。

  过渡:跟他们一样的举手,确定百分之百做对了吗?那要确定做对怎么办?(检验)

  1、学生自己尝试检验。

  2、实物投影交流学生的检验方法。

  3、课件交流“只检验满足一个条件”的检验方法的不足之处。

  4、课件出示检验同时满足两个条件的检验方法。

  5、小结检验方法。

  【设计意图:使学生能够掌握这类题目的检验方法,检验时解答的结果必须满足题中所给的各个条件,培养学生的数学“还原思想”。】

  (四)、小结:

  你觉得“替换”的这个策略如何?

  三、巩固策略

  过渡:学到这儿有点累了,进段广告,轻松一下。[电脑播放广告]

  这则广告不仅教育我们好东西一定要和亲人、朋友分享,还给我们带来了一道题目。

  (一)、巩固练习。

  1、出示巩固练习题。

  [电脑出示]8块达能饼干的钙含量相当于1杯牛奶的`钙含量。小明早餐吃了12块饼干,喝了1杯牛奶,钙含量共计500毫克。你知道每块饼干的钙含量大约是多少毫克吗?1杯牛奶呢?

  2、学生独立完成,先好的同桌可小声交流。

  3、教师选择学生作业实物投影交流。并要求学生说出解题思路。

  4、口头检验。

  5、为什么不把饼干替换成牛奶来考虑?

  6、小结:我们还需选择适合自己的“替换”策略来解题。

  【设计意图:广告的插入可以很好的调节课堂气氛,学生感觉非常新鲜,既吸引了学生的注意力,又很好的对学生进行了思想教育。】

  (二)教学“练一练”

  过渡:小明在装网球时又给我们出了个难题,让我们一起来解决它!

  1、[电脑出示]小明在2个同样的大盒和5个同样的小盒里装满网球,正好是100个。每个大盒比小盒多装8个,每个大盒和小盒各装多少个?

  2、齐读题,从题目中获得哪些信息?

  3、问:与例1相比,有什么不同的地方?

  4、“每个大盒比小盒多装8个”这句话你是怎么理解的?

  5、你准备怎样替换?替换后的数量关系是什么?

  6、同桌讨论。

  6、交流:学生说,教师课件演示。

  方法一:把2个大盒换成2个小盒。在学生交流中,教师穿插提问:

  ①现在7个小盒还能装下100个球吗?为什么?

  ②现在一共可以装多少个?

  方法二:把5个小盒换成5个大盒。在学生交流中,教师穿插提问:

  ①现在7个大盒要都装满,100个球还够吗?为什么?

  ②现在一共可以装多少个?

  7、学生选择一种解法解题。

  8、实物投影交流。

  9、口头检验。

  10、小结:

  【设计意图:这道“练一练”实际也是本堂课的难点,通过图示的方法使学生能比较清楚的看出球的个数总量变化和盒子数量的不变,帮助学生较好的梳理解题的渠道,找准解题的依据,策划出比较明确的解题方案,同时也能进一步拓展学生的思维和能力,感受数学的趣味。】

  四、全课总结。

  1、例题和练一练,两种替换的方法有什么不同?我们要注意什么?

  指导学生明确:例题是倍比关系:替换时总量不变,数量会变;练一练是差比关系:替换时总量变了,数量不变。

  2、替换时你还注意到什么?有什么值得提醒大家注意的地方吗?

  明确:

  倍比关系:替换时,可以是“一个物体换几个物体”或“几个物体换一个物体”。

  差比关系:替换时,只能是“一个物体换一个物体”。

  3、在实际生活中如果遇到数学难题时,不要害怕,要像曹冲一样开动脑筋,合理选择策略,难题一定会迎刃而解的。

  【设计意图:这时的小结,是使学生能较好的掌握本节课的重点和难点,使学生能针对两种不同类型的问题,怎样抓住它们的依据特点,采用不同的“替换”策略去解答问题。】

  五、课后作业:

  练习十七第1题(可做为机动练习题)

  四年级数学第十一单元《解决问题的策略》教学教案 篇8

  教学内容:

  五上第63~64页的例1、例2和练一练。

  教学目标:

  1、使学生经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找出符合要求的所有答案。

  2、使学生在对解决简单实际问题过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。

  3、增强解决问题的策略意识,提高解决问题的实际能力。

  教学重点:

  能对信息进行用“一一列举”的策略解决实际问题。

  教学难点:

  能有条理的一一列举,并进行分析。

  教学准备:

  小棒、表格。

  教学过程:

  一、创设情景,体验列举

  1、课前游戏:飞镖激趣

  请几个精神饱满的同学上来玩飞镖游戏。投中内圈10环,中圈8环,外圈6环。比一比谁最厉害?

  师:如果全班每人投一次,可能出现哪些不同的情况?你能一一列举出来吗?

  打印:

  板书:一一列举

  2、揭示课题:

  师:一一列举也是解决问题的一种策略,今天我们学习这种策略解决新的问题。

  板书课题:解决问题的策略

  二、自主探究,运用列举

  (一)创设情景,引出问题

  1、引发列举需要。

  出示例题:(小黑板出示)

  王大叔用18根1米长的`栅栏围成一个长方形羊圈,有多少种不同的围法?

  (1)创设情景:

  师:图上有哪些数学信息?

  生:18根1米长的栅栏围成的长方形周长就是18米。

  师:围的时候要考虑什么?

  生:长方形的长和宽。

  (2)猜猜看会有几种围法。

  (3)动手操作:

  师:以两人小组为单位用小棒摆一摆,并记录你摆的长方形长和宽分别是多少?

  ①汇报交流:

  生1:长8,宽1米。

  生2:长5,宽4米。

  ……

  ②师:如果是180根栅栏用小棒摆又会怎么样?

  生1:用小棒摆有点烦。

  生2:答案可能有重复和遗漏(板书:重复、遗漏)

  师:那么你们有什么好的方法?

  2、运用填表列举

  (1)出示表格:

  师:用表格列举长和宽的和会怎样?生:长和宽的和一定是9米。

  (打印表格每人一张)

  (2)师:一共列举出多少种围法?

  师:比较学生两种围法(有顺序和无顺序)哪种好?板书:有序

  师:用表格列举与摆小棒相比有什么好处?

  生:不重复,不遗漏。

  板书:不重复,不遗漏

  小结:在列举的时候我们要按照一定的顺序列举,这样答案才能不重复、不遗漏。

  3、反思列举方法

  (1)观察这张表格,你有什么新的发现?[小组里交流]

  (2)师:如果你是工人师傅你会选择那种围法?

  教师说明:在周长不变的前提下,当长方形的长和宽的差越大,面积就越小;长方形的长和宽数据越接近,面积就越大。

  师:你们是用什么策略解决这个问题的?

  小结:通过一一列举可以将答案不重复、不遗漏的列举出来。

  (二)循序渐进,深入问题

  1、出示题目:(小黑板)

  订阅《科学世界》、《七彩文学》、《数学乐园》杂志,最少订阅1本,最多订阅3本。有多少种不同的订阅方法?

  师:想想,最少订阅1本,最多订阅3本是什么意思?

  2、一一列举:

  师:你们打算用什么策略解决这个问题?

  生:一一列举。

  师:列举时,打算分哪几种情况?

  生:分三类:订阅1本、2本、3本。

  师:分步出示表头和三类情况。

  (1)列举时可以用老师提供的表格,在表格里打钩。例如:《科学世界》“√”

  (2)也可以用文字列举。例如:订阅1本、2本……

  师:用自己喜欢的列举方式进行吧!

  3、反馈交流:

  师:你是怎样列举的?

  师:一共有几种不同的情况?

  三、拓展应用,发展列举

  1、飞镖游戏:

  师:“每人投中两次”是什么意思。

  师:有多少种不同的情况?请在练习纸上自己列举出所有可能的答案。

  2、完成练习十一第1题、第2题:

  四、总结延伸,发展列举

  1、通过这节课的学习,我们又认识了一种新的解决问题的策略“一一列举”。

  思考:

  (1)五(2)班有48人去划船,每条大船可坐6人,每条小船可坐4人;有多少种租船方案?

  (2)五(2)班有48人去划船,每条大船可坐6人,每条大船租金24元;每条小船可坐4人,每条小船租金20元;哪种租船方案最省钱?

  四年级数学第十一单元《解决问题的策略》教学教案 篇9

  教学内容

  苏教版数学四年级(上册)第65-67页。

  教学目标

  1、在解决简单的实际问题的过程中,初步体会用列表、摘录的方法整理相关信息的作用,学会用列表或摘录的方法整理简单的实际问题所提供的信息。

  2、进一步积累解决问题的经验,体悟解决问题的策略意识,获得解决问题的成功体验,提高学好数学的自信心。

  教学过程

  一、呈现问题,感受整理信息的必要性

  出示情景图,提问:同学们仔细观察这幅图,并说说从图中你能知道些什么信息?

  学生充分交流。

  结合学生的“无序”交流,教师组织学生根据所获得的信息提出问题。

  教师板书:

  (1)小华用去多少元?

  (2)小军能买多少元?

  二、解决问题,自主探究整理信息的方法

  1、提问:要解答“小华用去多少元”,需要的条件是什么?

  指名用简洁的语言陈述。

  学生回答后,让学生将发言的内容,即所要解决的问题和所需要的条件整理出来。

  18元买3本,()元买5

  学生的整理方案可能有:

  3本要18元,小华买15本

  小明买3本用去18元,

  小华买5本用去()元

  教师组织学生观察,比较,评说,在交流的基础上,引导学生列表整理。

  教师在小黑板上绘出空表格,学生完成填空:

  小明3本18元

  小华5本()元

  小明3本18元

  小华

  小明

  小华

  提问:下面我们来解决问题,你是看原先的购物图呢,还是看你整理的内容?为什么?

  学生小组交流后在全班交流,然后独立解答。

  指名汇报,教师板书:

  18÷3=6(元)

  6×5=30(元)

  再让学生口述算式每一步表示的意义。

  2、谈话:再来看问题2,大家会整理信息吗?

  学生自主整理,展示学生整理的内容。

  师生评议学生的整理结果。

  指名板演解答,其余自练。

  评析板演的解法,口述算式每一步表示的意义。

  引导比较,强化整理信息的方法。

  讨论、交流:

  A把刚才解决的两个问题联系起来比较,在计算方法上有什么相同的地方,有什么不同的地方?

  B把解决两个问题的数据合起来看,你发现了什么?

  结合学生的回答,教师引导学生发现:本数在变化,钱数也在变化;本数与钱数发生了相对应的变化,不变的是——每本的价钱。

  3、引导学生反思:在解决这两个问题的过程中,你感受最深的是什么?

  三、巩固应用,提高整理信息的自觉性

  1、完成“想想做做”第1题。

  学生根据题目中的条件和问题列表整理,教师巡视,对有困难的.少数学生作个别指导。

  展示学生的整理结果。

  提问:通过整理,解题的感觉如何?

  学生列式解答,教师指名板演,

  师生评析板演。

  2、完成“想想做做”第2题。

  学生独立整理、解答,指名板演。

  提问:大家觉得在这里解决问题要注意什么?

  四、揭示课题,提升对整理信息意义的认识

  谈话:回顾一下,今天的数学课我们探讨了——列表整理,摘录整理。这些都是解决问题的策略。(板书课题)

  今天所学习的列表、摘录问题信息等策略,都能使信息得到简明的表达,方便我们理解,有助于顺利解题。下一节课我们还要继续探讨解决问题的其他策略。

  五、课堂作业

  完成“想想做做”第3、4题。

  教后反思:

  教材中的例题及练习是我们比较熟悉的、以往被称之为“归一”、“归总”的内容,但在苏教版教材中,这部分内容的教学定位已发生了变化。在本课的教学过程中,解决问题不是目的,而是在解决问题的过程中,让学生学会用列表的方法来整理问题信息,体验解决问题中的思考策略。教学时采用了由扶到放的教学策略,通过引导,放手让学生用多种方式来摘录条件和问题,然后让学生来评论、比较、鉴别,从而认可最简洁的一种,形成共识;接着教师绘制表格,让学生填写。这里一方面相信和尊重学生,任由学生来摘录和整理信息;另一方面又不失指导点拨的教学主导作用,引导学生走向规范简洁的列表整理。

  四年级数学第十一单元《解决问题的策略》教学教案 篇10

  【教学内容】

  苏教版《实验义务教育课程标准实验教科书数学》五年级(下册)第88-89页例1、例2,完成练一练和练习十六的第1、2题。

  【教学目标】

  1.使学生学会运用倒推的策略寻求解决问题的思路,并能根据实际问题确定合理的解题步骤,从而有效地解决问题。

  2.在解决问题的反思过程中,感受倒推的策略对于解决特定问题的价值,进一步发展学生分析、综合和简单推理的能力。

  3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验。

  【教学重点】:学会用倒推的解题策略解决实际问题。

  【教学难点】:根据具体问题确定合理的解题步骤。

  【教学准备】:多媒体课件。

  【教学过程】

  一、激活经验,感知策略

  1.出示:选择其中一道进行填写,比一比,看谁做得又对又快。

  ① □ 7 □ 9 54

  ②一个数乘上4,再除以7后得12,这个数是□ 。

  你选择了哪道习题?选择这道习题的原因是什么?你能发现这两个问题有什么共同的特征吗?简单说说自己的解题思路。

  2.揭题:

  刚才我们在选择习题时发现,第一小题比第二小题更加形象、直观,所以我们解决问题时,我们可以把题中的条件变成示意图或摘录出来,有利于减轻思维的难度(请一名学生上去演示一下化繁为简的技巧)。师利用两道题的共性引出课题策略(板书:倒过来推想)

  这种从结果出发,倒过来推想的策略,在我们的生活中和数学学习中经常使用,是一种重要的解决问题的策略。今天我们这节课,就来研究这一解决问题的策略。(板书:解决问题的策略)

  [设计意图:通过调动学生原有的知识尝试解决新问题的过程,唤醒学生已有经验,为倒推策略的探索提供了着力点,促进新认知的高效建构。]

  二、初步体验,提炼策略

  1.出示例l,提出问题。多媒体动态呈现问题(教材第88页例1)。

  师:这儿有两杯果汁,从图中你可以了解到哪些数学信息?

  讨论:(出示问题)

  ①现在的两杯果汁和原来比,发生了怎样的变化?什么变了,什么没变?结合学生回答,板书。

  ②知道了现在两个杯子现在的果汁数量,可以怎样球原来两个杯子中的果汁数量?可以用怎样的方法来解决?

  提出问题:要求原来两杯果汁各有多少毫升?

  2.解决问题

  ①学生自主填写课本第88页的表格。提出要求:边填边思考表格中的每个数据是怎样推算出来的。

  甲杯/ml

  乙杯/ml

  现在

  原来

  ②同桌交流,互相说说说说是怎么推算的。

  ③全班交流,反馈。

  结合回答演示:甲杯的果汁数就在现在200毫升的基础上增加多少,乙杯呢?

  交流:展示学生的表格,说一说想法?

  追问:要求原来的情况,我们是从哪儿开始想起呢?原来的变化过程是甲杯倒人乙杯40毫升,倒推时是怎样变化的?(强调:变化过程相反)

  3.回顾反思

  师:回想一下,刚才解决问题的过程中运用了什么方法,我们先算的是什么?我们是从哪里开始倒推的'呢?

  先独立思考,同桌交流后,集体反馈。

  小结:看来当我们知道现在的量,要求原来的量时(板书),我们就可以用倒推的方法来解决。(完成板书:原来: 倒过来想一想 现在)

  小结:倒过来推想就要从现在的数量出发,根据各自发生的变化往回推算出原来的数量,也可以简称倒推的策略。(板书课题:解决问题的策略倒推)

  [设计意图:通过学生熟悉的生活情境,在解决问题的过程中,激活学生思维。借助多媒体动态展示题中的信息和问题,使学生感受到这类问题的结构特征,师生在互动对话中建构数学模型。接下来通过看一看、倒一倒、填一填、算一算、说一说,学生初步学会用倒推的策略解决实际问题,体验到倒推过程与变化过程的相反性,感悟倒推的顺序,为例2多步倒推的探究过程做好了良好的心理定向和认知铺垫。]

  1.探索例2

  出示例2:(教材第89页)

  师:哪位同学来读读上面的信息?

  师:学习了例1后,同学们都信心十足,能自己独立解决这个问题吗?两点学习建议。

  多媒体呈现:

  ①你能把题目中的条件和问题摘录下来进行整理吗?

  ②你准备用什么策略解决这个问题?在小组内交流想法,列式并解答。

  2、学生独立思考,小组交流,解决问题,教师巡视指导。

  3.集体交流反馈。

  谈话:谁愿意把你们小组的想法和大家一起来分享的?

  学生展示自己的作业纸,说一说想法。

  追问:要求小明原来有多少张邮票,你们是用什么策略想这个问题的昵?

  结合学生的展示引导学生列式。

  学生可能出现的情况:

  第一种:

  52+30-24=58(张)

  师:先倒推哪一步?再倒推到哪一步?倒推时的过程与原来的变化过程相反吗?

  第二种:

  52+(30-24)=58(张)

  师:原来这两个变化的过程可以合二为一吗?现在比原来少6张,现在有52张,把这少的6张补起来就可以得出原来的张数了,52加6的过程;是不是用的倒推法。我们把它变成了一步倒推的题目了。

  3.检验。

  我们用不同的方法求出小明原有58张,结果是否正确该如何验证呢?

  在学生交流的基础上让学生检验。

  [设计意图:给学生提出学习建议,让学生主动探索,深化理解倒推的策略。学生在自主探索的过程中,因为思维的深度参与,必然决定了学生对获得策略过程的经历是深刻的。在汇报交流中,对两种方法的比较,体会到倒推不是解决问题的唯一策略,但却是一种重要的思想方法。检验答案是否正确,再次让学生体验事情的变化是有顺序的,从而感悟到有条理的思考是很重要的先让学生用自己喜欢的方法整理信息,再启发学生逆向推想,突出倒推的思路。]

  四、应用巩固,深化理解

  1.纸牌还原游戏(先用文字出现,学生熟练后师口头说,学生还原):

  师:我国著名数学家吴文俊先生曾说过数学好玩,如果我这有4张纸牌,按照一定的顺序操作:把四张纸牌排成一行,将第1张和第3张交换位置,再将第2张和第4张交换,翻开看到的结果。这四张牌原来是怎样放的呢?

  2.完成练一练

  引导:如果你是小军,会怎样拿出画片的一半多1张?

  学生独立完成后组织交流。

  3.哪几道题选用倒推的策略解答?请你列出算式。

  (1)方方和元元原来共有60张画片,方方给了元元5张画片后,两人的画片同样多。原来两人各有多少张画片?

  (2)小明今天带了12元钱去学校,买了一支钢笔用去5元,小红又还给他4元,小明身上还有多少钱?

  (3)一辆公共汽车从澄中开往青少年活动,经过瑞佳广场站时,下来了14人,又上去了10人,现在车上有乘客44人,你知道车上原来有多少名乘客吗?

  五、回顾反思,拓展延伸

  今天我们研究的这类问题,其实在古代早就有人研究了。我国唐代的天文学家、数学家张遂曾以李白喝酒为题材编了一道算题:

  李白街上走,提壶去买酒。遇店加一倍,见花喝一斗(斗是古代酒具,也可作计量单位)。三遇店和花,喝光壶中酒。借问此壶中,原有多少酒?(灵活调度,如果时间不允许,留置课外思考)

  师:你认为什么样的情况适合用倒推的策略来解决问题呢?怎样运用呢?

  小结:如果某种数量经过一系列变化后,已经知道了现在的结果,要求原来的数量,就可以用倒推的策略。先从结果出发,一步一步往前倒推,直至求出答案。在倒推的时候要注意变化顺序。(板书:变化顺序)

  六、课外书面作业:完成练习十六第1、2题。

  [设计意图:在解决问题后,对解题的过程和策略进行反思,使学生认识到是如何运用倒推的策略来分析并解决具体问题的,体会到倒推策略的问题特点,从而建构倒推策略的模型,由感性认识上升到理性认识。课后的拓展延伸,使学生感知倒推的策略在生活中的价值,同时润物无声地渗透思想教育,激发学生课后探究的浓厚兴趣。]

【四年级数学第十一单元《解决问题的策略》教学教案】相关文章:

解决问题策略心得体会03-06

数学单元复习教案12-19

小学数学教学策略心得11-22

解决问题教案11-06

《解决问题》教案02-11

关于解决问题的教学教案(通用16篇)10-12

数学教学教案11-05

数学的教学教案12-09

数学解决问题心得体会04-01