- 相关推荐
《求两个数的最大公约数》教案
教学目标
(1)掌握两个数的最大公约数的质因数特征,能正确地求两个数的最大公约数。
(2)能较快地说出倍数关系与互质关系的两个数的最大公约数。
教学重点、难点
重点:用短除法求两个数的最大公约数
难点:判断互质数
教具、学具准备
教学过程
一、复习准备
1、口答:下列各数中,哪些数是约数2?哪些数是约数3?哪些有约数5?
10、12、9、20、18457235
2、下列各数中,哪些是互质数?
4和67和81和105和119和63和12
学生回答后提问:谁能说一说什么叫互质数?
3、提问:什么叫公约数?最大公约数?
练习:
36的公约数有:
60的公约数有:
36和60的公约数有:
(1)学生全体笔练
(2)反馈:师生共同作简要评价。
4、谈话引入:上节课,我们学会了用找出每个数的约数的方法来求两个数的最大公约数,那么,除此外,还有没有更简洁的方法来求两个数的最大公约数呢?这就是本节课我们要学生的内容。(揭示课题)
二、教学新识
1、教学用短除法求最大公约数
(1)探求特征:将36、60分解质因数。
36=2×2×3×3
60=2×2×3×5
↓↓↓
12=2×2×3
分解以后观察:
12的质因数与36、60的质因数有什么联系?说明什么?(学生回答后教师36和60的公有质因数用方框框住,并用↓与12的质因数建立对应关系?如上图)
教学过程
备 注
谁能把你的发现用自己的话说出来。
结论:求两个数的最大公约数,可以先把这两个数分解质因数,然后把的它们全部公有质因数乘起来,就是最大公约数。
(2)用你的发现求54和72的最大公约数。
(全体笔练、两人板演)
54=2×3×3×3
72=2×2×2×3×3
54和72的最大公约数是:2×3×3=18(学生练习后检查板演、反馈评价)
(3)巩固练习
A、口答:
12=2×2×3
18=2×3×3
12和18的最大公约数是2×3×3=18(学生练习后检查板演,反馈评价)
10=2×514=2×7
10和14的最大公约数。()
B、笔练:求44和66,18和24的最大公约数。(两人做在投影片上)
C、反馈矫正。
(4)教学用简便方法求最大的公约数
A、为了方便,通常用P.48的方法求最大公约数:(教师边讲边板书)
36和60的最大公约数是:2×2×3=12
......把所有除数连乘
或:(36,60)=2×2×3=12
B、练习:课本P.51试一试。
提问:这种方法和刚才的方法有什么本质上的关系?
学生回答后明确:实际上是把两个数同时分解质因数,用两个数公有的质因数去除,所以除数之积就是最大公约数。
C、巩固练习:求42和54、39和65的最大公约数。
2、教学求特殊关系的两数的最大公约数。
(1)求下面各组的最大公约数
4和209和3628和7
A、学生练习
B、反馈讨论(学生汇报结果,教师板书)
(4,24)=4(9,36)=9(28,7)=7
C、观察每组数的最大公约数有什么特点?每组中的两个数又有什么关系?
你发现了什么?(用自己的话说一说)
D、规律应用:下面每组数的最大公约数各是几?(口答)
45和1536和1842和18
(2)求下面各组数的最大公约数
9和105和2117和8
A、学生练习并同桌讨论:每组的最大公约数有什么规律?每组中两个数又有什么特点?
B、反馈讨论,明确规律。
C、口答下列每组的最大公约数
3和1124和89和1425和2613和17
3、综合练习:求下面每组数的最大公约数。
20和2516和3528和36
6和1418和5485和115
(1)学生练习。
(2)反馈,效果检查。
三、课堂总结
提问:1、本节课学习可什么内容?
2、一般情况下怎样求两个数的最大公约数?
3、倍数关系与互质关系的最大公约数各有什么特点?
四、作业《作业本》
从繁琐到简单,从一一列举到短除法,从一般到特殊,逐步引导学生掌握求两个数的最大公约数的方法。
【《求两个数的最大公约数》教案】相关文章:
《求一个数的几分之几是多少的应用题》教案10-12
《求两数相差多少的实际问题》教案10-12
《最大的书》教案02-25
最大的麦穗教案范文08-16
《最大的麦穗》教案模板10-12
最大的麦穗教案集合06-21
动物之最大班教案07-24
《最大的麦穗》的教案设计10-11
《求平均数》教案03-06