教案

《商不变的规律》教学教案设计

时间:2023-03-08 17:17:55 教案 我要投稿
  • 相关推荐

《商不变的规律》教学教案设计(精选8篇)

  在教学工作者实际的教学活动中,时常需要编写教案,教案有助于顺利而有效地开展教学活动。如何把教案做到重点突出呢?下面是小编收集整理的《商不变的规律》教学教案设计,希望对大家有所帮助。

《商不变的规律》教学教案设计(精选8篇)

  《商不变的规律》教学教案设计 篇1

  教学目标:

  1. 理解和掌握商不变的规律,并能运用这一规律口算有关除法,培养学生的观察、概括以及提出问题、分析问题、解决问题的能力。

  2.学生在参与观察、比较、概括、验证等学习过程中,体验成功,收获学习的快乐。

  教学重难点:

  1重点:理解归纳出商不变的规律。

  2.难点:会初步运用商不变的规律进行一些简便计算。

  教学过程

  一、创设情境,激发兴趣

  导入:同学们想玩游戏吗?今天我们就一起玩一个自编除法的游戏。老师这有三个数字——8、2、0、,每个数字在一道算式中可以出现一次、两次或多次,也可以一次也不出现,但是要求每一道算式中的商必须等于4,限时一分钟,看谁写得多! 预测:

  8÷2=4

  80÷ 20=4

  800÷ 200=4

  8000÷ 2000=4

  88÷ 22=4

  888÷ 222=4 8888÷ 2222=488888÷ 22222=4 880 ÷220=4 8800 ÷2200=488000÷ 22000=4

  发现:我们无论编出多少道不同的算式,什么是不变的?(板书:商不变)

  商不变,是什么在变呢?(板书:被除数和除数)

  探究:被除数和除数究竟有怎样的变化,商却不变呢?这节课我们一起来研究商不变的'规律(板书课题)

  二、合作学习、探究规律

  探究:请观察我们自己编的一组算式,看看被除数和除数究竟是怎样变化的而商却不变?

  要求:可以自己研究,也可以小组内共同探究。

  交流:说出自己的发现。

  预测1:学生对于“同时”、“相同”的用词不一定能用的准,理解不一定能非常透彻。

  解决:让学生在自己充分的理解,叙述的基础上提炼出“同时”、“相同”一词。

  预测2:对于“零除外”,有些同学可能会想到这一情况,但对于其原因不是很清楚。

  解决:让学生实际举例,使其充分理解——零不能做除数。

  三、应用规律,反馈内化

  1.在○里填上运算符号,在 里填上适当的数。

  (1)16÷ 8=(16× 2)÷ (8 ×□ )

  (2)480÷80=(480÷10)÷(80○10)

  (3)150÷25=(150○□ )÷(25○□)

  2.口算。

  竞赛:一分钟内能完成几道题,并说说做的快的原因。

  3.简算

  400÷25=你会算吗?怎样变成我们学过的形式在计算呢?

  预测:400÷25=(400× 4)÷ ( 25× 4)=1600÷ 100=16 400÷25=(400÷5)÷(25÷5)=80÷5=16

  四、总结延伸,应用拓展

  今天我们一起研究了商不变的规律,请同学们大胆猜测一下,在乘法,加法、减法中会不会也有积、和、差不变的规律呢?请同学们利用课余时间与学习伙伴一起研究、思考。 教学反思:在小学阶段,商不变的规律是一个很重要的内容,给今后分数和比的性质打下了坚实的基础。但新教材却把商不变的规律及商的变化规律都放在一个例题中,大大增加了学习内容和理解难度,我将内容进行了分化,将商不变的规律单独作为一个完整的课时来讲,大胆创新,重点突出了商不变的规律,效果很好。 上完本节课有几点收获:

  1、由学生感兴趣的游戏引入新课,能激发学生探究新知的欲望;

  2、练习内容形式多样,由浅入深,让学生进一步内化商不变的规律;

  3、在探究商不变的规律时,重视学生的自主探究、合作交流的培养,体现主导与主体间的关系;

  4、揭示规律并非一步到位,而是分解揭示,首先让学生发现被除数和除数同时扩大相同的倍数,商不变,然后,再让学生发现被除数和除数同时缩小相同的数,商不变,最后提示学生0乘任何数都得0,0不能当做除数,然后总结出商不变的规律。然而也有不足之处:首先,在讲解完规律过渡到应用时,衔接不够自然;规律应用过程中,讲解简便运算后,总结不到位:由于在讲解练习题时,把握不熟练:在发动学生回答问题上不到位,以至于课堂气氛不够活跃,学生明明会的问题不敢回答,需要老师再三提示。在以后的教学工作中,我要扬长避短,精益求精,争取做到更好!

  《商不变的规律》教学教案设计 篇2

  一、教材分析:

  “商不变的规律”是小学数学中的重要基础知识,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材通过实例的分析、比较,使学生掌握商不变时被除数、除数的变化规律,从而抽象概括出商不变的规律。本小节内容要使学生理解和掌握商不变的规律,并能运用商不变的规律进行简便计算。同时,培养学生的观察、概括以及发现探求新知的能力。

  二、学生分析

  本节课内容“商不变的规律”是在学生已较好地掌握了多位数除法的计算方法的基础上学习的,因而对于学生来说,要学好这部分知识,发现和探索出商不变的规律,难度不是很大,但利用商不变的规律解决生活中的实际问题有一定的难度。我引导学生从身边最熟悉的事例入手,探索怎样利用商不变的规律用类推的数学方法来解决问题。

  三、教学目标:

  依据新课标要求,结合本课教学内容和学生的认知规律,确定如下学习目标。

  知识目标:探索与发现商不变的规律,其次是理解并掌握商不变的规律,而且能利用商不变的规律,进行一些除法运算的简便运算。 能力目标:初步培养学生主动探索,独立获取知识的能力和运用商不变的规律解决生活中的数学问题的能力。

  情感目标:渗透数学来自于生活实践的辨证唯物主义思想,培养学生初步的数学应用意识,唤起学生学数学的兴趣。

  教学重点:探索与发现商不变的规律。

  教学难点:运用商不变的规律进行除法的简便计算。

  教法:观察法、对比法。

  学法:小组合作交流

  教学过程:

  一、激趣引思,导入新课

  1、创设情境:

  秋天的时候,猴王在美丽的花果山上为小猴分桃子。猴王说:“我把8个桃子平均分给2只猴子。”小猴听了直叫:“太少,太少。”猴王又说:“我把80个桃子平均分给20只猴子。”小猴听了试着说:“能不能再多分一点?”猴王又说:“我拿800个桃子平均分给200只猴子,这回行了吧?”这时小猴笑了,猴王也跟着笑了。

  2、启发提问,小组讨论:为什么小猴和猴王都笑了?谁是聪明的一笑?

  学生分小组交流。

  能把算式列出来吗?

  二、探讨新知

  1、全班交流。

  板书:8÷2=4

  80÷20=4

  800÷200=4

  2、师:在除法算式里,除号左边的`8、80、800这些数我们称作为什么?(被除数)

  除号右边的2、20、200这些数我们称作什么?(除数) 除得的结果我们又称作什么?(商)

  3、师:如果以第一个等式为标准,下面两个等式中的被除数、除数和商,什么变了,什么不变?(被除数、除数变了,商不变)

  这节课我们就来讨论“商不变的规律”(板书课题:商不变的规律)

  4、仔细观察黑板上的三组算式,你能说说被除数和除数都是怎样变化的吗?

  先独立思考,再和同桌互相讨论

  5、汇报:

  我们先从上往下看,被除数和除数发生了什么变化?

  (被除数从8到80,乘10,除数从2到20,也是乘10; 被除数从80到800,乘10,除数从20到200,也是乘10。) 再从下往上看,被除数和除数又发生了什么变化?

  (被除数和除数同时除以相同的数)

  6、你能像猴王一样分桃子吗?试试看,写一些你的算式 ( )÷( )=( )

  ( )÷( )=( )

  ( )÷( )=( )

  7、你能从我们黑板上的一组算式以及你写的算式中,你发现了什么规律? 在纸上写一写

  8、汇报:重点找一组乘的数不相同

  师:谁能用一句话概括这两个规律?引导学生说出规律描述:被除数和除数同时乘或除以相同的数(零除外),商不变。

  三、巩固练习,深入讨论

  师:刚才通过大家的努力,我们找到被除数和除数的变化规律,使得商不变。现在老师要看看大家是否真正理解了

  判断题:(师:听清楚要求:用手势表示对错)

  (1)75÷15=(75÷5)÷(15÷5)

  (2)90÷30=(90×0)÷(30×0)

  师:乘以0可以吗?为什么?(因为0不能作为除数,没有意义) 看来我们要把0特殊对待,写上(0除外)

  (3)25×3=(25×4)×(3×4)

  师:这样对吗?口算左边75,右边1200,为什么会出现这样的问题? 商不变的规律适合在什么运算中?(除法中)

  (4)60÷12=(60÷2)÷12

  (5)15÷5=(15+5)÷(5+5)

  (6)80÷4=(80×6) ÷(4×2)

  师:同学们今天学得真细心!我们已经运用集体的智慧发现了完整的商不变规律,我们一起来读一读吧!

  师:读完了这个规律,你觉得运用这个规律时应该注意什么,有什么需要提醒大家的?

  (除法,同时,相同的数,零除外,教师标出重点符号)

  师:大家都提醒了别人这些需要注意的,智慧老人要考考你们到底会不会运用商不变的规律

  四、应用知识——星级挑战

  看例子:950÷50=(950÷10)÷(50÷10)= 95÷5

  《商不变的规律》教学教案设计 篇3

  〖教材分析〗

  这个教材内容是在学生经历了“有趣的算式”、“乘法的结合律”、“乘法的分配律”三个探索与发现的学习过程后,教材再次以“探索与发现”为主题,其宗旨是让学生经历观察、对比被除数与除数的变化及对应的商的关系,从而发现“商不变的规律”的学习过程,感受探索与发现的成功与快乐,进一步掌握探索与发现的方法;并使学生在深刻理解了“商不变的规律”的内涵的基础上,引导学生运用知识解决计算中和实际中的问题。

  〖教学目标〗

  知识技能:理解和掌握商不变的规律,并能运用这一规律口算有关除法;培养学生观察、概括以及提出问题、分析问题、解决问题的能力。

  情感态度:学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功,同时渗透初步的辩证唯物主义思想启蒙教育。

  〖教学重点〗

  使学生理解并归纳出商不变的规律。

  〖教学难点〗

  使学生会初步运用商不变的规律进行一些简便计算。

  〖教学过程〗

  一、创设情境,激发兴趣。

  师:同学们,喜欢听故事吗?今天柯老师给你们讲一个故事。(课件演示故事内容)

  猴子分桃

  花果山风景秀丽,气候宜人,那儿住着一群猴子。有一天,猴王让小猴分桃子。猴王说:“给你8个桃子,平均分给2只小猴子。”小猴子一听,连连摇头,“不行,太少了!太少了!”“那就给你80个桃子,平均分给20只猴子。”小猴子喊道:“还少,还少。”“还少呀?那就给你800个桃子,平均分给200只猴子吧。” 小猴子得寸进尺,试探地说:“大王开恩,再多给点行不行呀?”猴王一拍桌子,显 出慷慨的'样子:“那好吧,给你8000个桃子平均分给2000只小猴子,这下你该满 意了吧。”小猴子笑了,猴王也笑了。

  师:为什么小猴子笑了,猴王也笑了?

  生1:因为猴子吃到了了更多的桃子了。

  生2:因为无论怎样分,每个猴子吃到的个数都一样,都是4个。

  师:是这样的吗?你是怎么知道的呢?

  生:8÷2=4 80÷20=4 800÷200=4 8000÷2000=4

  师:哦,原来是这样,你真聪明!为什么每只猴子每次分到的桃子都一样呢?这节课我们就一起来研究这个问题。

  二、探索规律,概括性质。

  (一)观察算式,发现规律。

  (1)课件出示:

  8÷2=4 80÷20=4 800÷200=4 8000÷2000=4

  (2)观察讨论:

  A、从上往下看,被除数和除数有什么变化?商有什么变化?

  (学生观察讨论后,代表汇报结论,师板书:被除数和除数都乘一个数,商不变。)

  B、从下往上看,被除数和除数有什么变化?商有什么变化?

  (学生观察思考,个别汇报结论,师板书:被除数和除数都除以一个数,商不变。)

  C、你能举些例子说明你的发现吗?

  (学生举例,各抒己见)

  D、要使商不变,被除数和除数都乘0或除以0,可以吗?为什么?

  ( 生小组讨论,再代表汇报,举例说明)

  师:真棒,能把把你的发现用一句话说给大家听听吗?

  (学生尝试归纳发现的规律,师板书规律)

  (二)教师小结,揭示课题。(板书课题)

  三、反馈练习,深化认识。

  (1)完成P74的试一试。

  (2)填数。

  20÷5=4

  ( 20 ×6 )÷( 5 × )=4

  ( 20 ÷ )÷( 5 ÷5 )=4

  ( 20 × )÷( 5×8 )=4

  (3)在下面等式中的○里填上运算符号,在□里填上适当的数。

  16÷8=2

  (16÷ )÷(8○2)=2

  (16○3)÷(8× )=2

  (16÷ )÷(8÷ )=2

  3、已知48÷12=4,判断下列各式是否正确。如果不对,怎样改一下就对了。

  ⑴(48×5)÷(12×5) =4 ( )

  ⑵(48×3)÷(12×4) =4 ( )

  ⑶(48÷6)÷(12×6) =4 ( )

  ⑷(48÷4)÷(12÷4) =4 ( )

  4、抢答。

  ⑴在一道除法算式里,如果被除数除以5,除数也除以5,商( )。

  ⑵在一道除法算式里,如果被除数乘10,要使商不变,除数( )。

  ⑶在一道除法算式里,如果除数除以100,要使商不变,被除数( )。

  四、课堂总结。

  谁能用一句话说说这节课你的感受或收获。(思考半分钟后作答)

  五、作业布置。

  1、从上到下,先算出每组题中第一题的商,然后很快地写出下面两题的商。

  72÷9= 36÷3= 80÷4=

  720÷90= 360÷30= 800÷40=

  7200÷900= 3600÷300= 8000÷400=

  2、填空(在□中填数,在○中填运算符号)

  200÷40=5

  (200×4)÷(40×□)=5 (200÷2)÷(40÷□)=5

  (200×3)÷(40○□)=5 (200÷4)÷(40○□)=5

  (200×□)÷(40○□)=5

  《商不变的规律》教学教案设计 篇4

  【教学目标】

  1、 使学生结合具体情境,通过合作探究学习,经历观察、比较和探讨的数学研究过程,在已有知识基础上放手探讨商不变的规律。

  2、 通过本节课的教学,使学生理解掌握商的变化性质,会用商的变化性质对口算除法进行简便运算。

  3、 使学生体会数学来自生活实际的需要,进一步产生对数学的好奇心与兴趣,培养学生善于观察、勤于思考、勇于探索的习惯。渗透符号化、转化、模型、“变与不变”的函数等思想和科学的研究态度。

  【教学重难点】

  引导学生通过观察、比较、探讨发现并总结商的变化规律,获得探索规律的经验和方法。

  【教学流程】

  (一)创设情境,渗透规律。

  【设计意图:激发兴趣,引出故事中蕴含的算式,通过童话故事初步的直观感受到商不变的规律。】

  1.故事《猴子分桃》花果山风景秀丽气候宜人,那儿住着一群猴子,猴王今天要给小猴子分桃子。猴王说:我给你6个桃子,你们3只小猴去分吧,小猴一算就说:这也太少了吧,能不能多分点?猴王说:可以,那给你60个桃子,你去分给30只小猴,怎么样?小猴挠挠头说:大王,能不能再多给点?大王一拍桌子显出慷慨大方的样子说:那好吧,给你600个桃子,你分给300个小猴,你总该满意了吧?

  小猴笑了,猴王也笑了,谁的笑是聪明的一笑,为什么?

  2.根据故事情境列出算式

  (二)自主探究,发现规律。

  1.初步观察,引出课题

  师:无论怎么分,每个小猴得到几个桃?2在算式里是什么?商一直都没变谁一直在变呢?被除数和除数一直都在变商却一直不变,这是为什么呢?这里面隐藏着什么秘密呢?今天就让我们来一场探秘之旅共同寻找“商不变的规律”。(板书课题)

  2.补充素材,渗透函数

  【设计意图:为学生建立商不变规律的模型提供素材,并通过观察图渗透函数思想,感受两种变化量的正比例关系。】

  (1)师:要想研究出一个规律,仅靠一组算式不充分不科学,老师给你们提供一幅图你们观察下图中讲了件什么事?(出示图片)

  (2)观察图片你有什么发现?(引导学生感受到随着支数越来越多需要的钱数也越来越多)(3)列式感受商不变:不管怎么变,什么一直没变?你能列出算式吗?

  3.比较算式,深入观察

  【设计意图:分组自主选择研究素材观察节约教学时间,把时间用在全班交流上,通过交流发现大量不同的研究素材呈现出共同的规律,在探讨比较去除无关因素后建立商不变规律的模型。】

  (1)任选一组算式观察:

  第一组: 第二组:

  6 ÷ 3 = 2 10 ÷ 2 = 5

  60 ÷ 30 = 2 20 ÷ 4 = 5

  600 ÷ 300 = 2 30 ÷ 6 = 5

  40 ÷ 8 = 5

  ①从上往下观察,被除数怎样变化?同时除数怎样变化?商呢?

  再从下往上看一看或在同一组算式中任选两道观察比较。

  ②把你的发现和同伴交流一下。

  (2)全班交流,互相补充发言

  4.归纳商不变的规律

  (1)根据发现到的规律写一组符合这样规律的算式。

  (2)总结归纳规律,教师板书:被除数和除数都乘或除以一个相同的数(0除外),商不变。

  (四)巩固练习,深化理解

  1.口算应用,加深理解

  根据每组题中第1题的商,写出下面两题的商。

  72÷9= 36÷3= 80÷4=

  720÷90= 360÷30= 800÷40=

  7200÷900= 3600÷300= 8000÷400=

  2.简便计算,灵活运用

  (1)出示:900÷25让学生快速口答。

  (2)播放微课进行学法指导

  【设计意图:通过学生借助微课自学,运用商不变规律进行简便计算。学会观察算式数据自身特点灵活用规律解决问题的基本方法。】

  (3)简便计算

  (五)回顾反思,建构模型。

  师:同学们,我们一起来回顾一下今天的探究过程。我们是怎么发现这个规律的?首先我们从故事开始,引发我们的思考。然后我们观察算式,发现规律。然后我们举些例子,验证规律。最后我们归纳概括,总结规律。

  师:请同学们看大屏幕上的这两组算式,他们之间也存在着变化规律,课下请同学们用学到的这个方法探究他们的规律,好吗?

  师:同学们,我们在前面学习了积的变化规律,今天又学习了商不变的规律,你还有什么新的猜想吗?(学生大胆猜想)既然是猜想,就免不了会有错误。但是猜想的过程,就是追求真理的过程。同学们在学习过程中,要敢于猜想,善于猜想,这样才能有所发现,有所创造!下课!

  【板书设计】

  商不变的规律

  6 ÷ 3 = 2 10 ÷ 2 = 5

  60 ÷ 30 = 2 20 ÷ 4 = 5

  600 ÷ 300 = 2 30 ÷ 6 = 5

  40 ÷ 8 = 5

  被除数和除数都乘或除以一个相同的数(0除外),商不变。

  【教学反思】

  在小学阶段,商不变的规律是一个很重要的内容,给今后分数和比的性质打下了坚实的基础。但新教材却把商不变的规律及商的变化规律都放在一个例题中,大大增加了学习内容和理解难度,我将内容进行了分化,将商不变的规律单独作为一个完整的课时来讲,大胆创新,重点突出了商不变的规律,通过交流发现大量不同的研究素材呈现出共同的规律,在探讨比较去除无关因素后建立商不变规律的模型。

  上完本节课有几点收获:

  1、由学生感兴趣的故事引入新课,能激发学生探究新知的欲望,引出故事中蕴含的`算式,通过童话故事初步的直观感受到商不变的规律。

  2、通过具体情境设计提供研究素材,让学生感受商不变的规律,通过观察比较分析探索商不变的规律并建立该数学模型,进程中合理渗透函数思想,培养学生提升观察、比较归纳的能力。出示了关于数量和总价的关系图,让学生通过观察图渗透函数思想,感受两种变化量的正比例关系,并以此图中单价不变的规律为学生研究商不变规律丰富了研究素材,体会探究一个数学规律的严谨科学的精神。

  3、在探究商不变的规律时,重视学生的自主探究、合作交流的培养,体现主导与主体间的关系,让学生分组自主选择研究素材观察节约教学时间,把时间用在全班交流上,通过交流发现大量不同的研究素材呈现出共同的规律,揭示规律并非一步到位,而是分解揭示,首先让学生发现被除数和除数同时扩大相同的倍数,商不变,然后,再让学生发现被除数和除数同时缩小相同的数,商不变,最后引导学生发现的规律是不是适用于任何数,解决0除外的问题,在探讨比较去除无关因素后最终建立商不变规律的模型。

  4、播放微课进行学法指导,通过学生借助微课自学,运用商不变规律进行简便计算。学会观察算式数据自身特点灵活用规律解决问题的基本方法。

  不足之处:

  1.0除外的问题解决比较片面,不仅因为 0不能当做除数,还因为0乘任何数都得0,所以0才要除外的;

  2.练习题ppt中答案有错,课前检查不到位。在发动学生回答问题上不到位,以至于课堂气氛不够活跃,学生明明会的问题不敢回答,需要老师再三提示。在以后的教学工作中,我要扬长避短,精益求精,争取做到更好!

  《商不变的规律》教学教案设计 篇5

  教学目标:

  知识技能:理解和掌握商不变的规律,并能运用这一规律口算有关除法;培养学生观察、概括以及提出问题、分析问题、解决问题的能力。

  情感态度:学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功,同时渗透初步的辩证唯物主义思想启蒙教育。

  教学重点:

  使学生理解并归纳出商不变的规律.

  教学难点:

  使学生会初步运用商不变的规律进行一些简便计算.

  预设过程:

  一、创设情景,感悟变与不变

  (课件投影,创设情景)

  电脑演示孙悟空大闹海龙宫夺金箍棒的情节,从金箍棒的变化帮助学生理解“变与不变”、“扩大”、“缩小”的概念,作好铺垫。提出揭示课题,今天就研究相关问题。

  二、 探究规律

  1. 创新情境,提出问题

  孙悟空大闹天宫,如来佛祖要收服他,让他在手掌上翻筋斗逃跑。

  (1)孙先跨出一步1米,如来的手掌长1米,请问如来手掌长是孙步长的几倍?(让学生说出算式:1÷1=1,师板书)

  (2)孙生气了,跨出一大步5米,谁知如来的手掌长长5米,请问这次如来手掌长长的长度是孙这一步长的几倍?(让学生说出算式:5÷5=1,师板书)

  (3)孙更生气了,跨出了更一大步10米,小朋友猜,如来的`手掌长会长长几米,(10米),小朋友真聪明,猜对了,请问这次如来手掌长长的长度是孙这一步长的几倍?(让学生说出算式:10÷10=1,师板书)

  (4)孙更气到脸都紫了,小跺了一小步1/2米,小朋友不用猜,肯定知道如来的手掌长也长了1/2米,谁能说说这次如来手掌长长的长度是孙这一步长的几倍?(让学生说出算式:1/2÷1/2=1,师板书在1÷1=1上面)

  (5)孙气疯了,打了一个筋斗云,小朋友知道是多少吗,(108000里),如来的手掌长也疯长,也长到同样长的108000里,请问这次如来手掌长长的长度是孙这一步长的几倍?(让学生说出算式:108000÷108000=1,师板书)

  指算式提问:请同学们观察这组算式,你能发现什么?

  2、探索与发现:

  (让学生以个人观察算式分析思考后,小组、全班交流活动形式组织学生探索和发现商不变规律。)

  1、引导学生先独立思考,再小组交流,最后全班交流。

  学生可能会汇报:

  a、在同一个算式中的被除数和除数都相同,商都是1。(师表扬这位同学观察很仔细,肯定学生回答后,指着算式中所有得数回应:从算式中我们看出,确实这几个除法算式中,商是相等的。还有哪位同学结合算式说得具体一些?)

  b、这几道都是用除法计算的,被除数和除数虽然不同,但商是相同的。(师表扬这位同学分析很到位,数理很清楚,肯定学生回答后,再次指着算式回应:从算式中我们看出,商是相等的,被除数和除数确实不同。现在请同学们再联系算式,看看它们之间有关系吗,你还能再发现什么?大家先独立思考1分钟,再小组交流。)

  2、引导小结:谁能用一句完整的话概括一下我们刚才发现的规律,汇报小结后板书:被除数和除数同时乘相同的数,商不变。

  3、质疑:被除数和除数同时乘0,商还不变吗?引导强调零除外。

  4、试一试,验证规律。

  刚才看的神话故事,现实生活中这样的例子有吗?

  (1)师拿了一瓶矿泉水,说:老师去买了2瓶矿泉水,付给售货员4元,请帮老师算算一瓶多少钱?指名生板书:4÷2=2

  (2)同学算得真好,售货员确实告诉我每瓶2元,写算式2÷1=2

  (3)假如我现在还想再10瓶,谁愿意来算算要多少钱?写算式20÷10=2

  (4)如果老师有100元,谁能很快地算出能买多少瓶?写算式100÷(50)=2,为什么?

  指着4个算式让学生讨论验证商不变规律

  5、引导学生归纳:被除数和除数同时除以相同的数(零除外),商不变。

  6、让学生给我们的发现的规律起个名字。揭示课题:商不变规律。

  三、应用规律。

  1、让学生提出问题:(指着课题)看到这规律你想了解什么?

  鼓励学生大胆思考,积极发言,最后集中解决规律应用方面的问题。

  2、谁愿意举例说说你发现商不变规律在哪些地方很好用。(让学生先说,不够老师结合例子补充)

  (1)除法的简便计算。如950÷50可变成95÷5来计算,注意强调要整除的情况下使用才方便。

  练习:p75第1、2小题、观察与思考。

  (2)生活运用,物品的合理估算。

  练习:p75第3小题。

  (3)除法的小数计算和比例的应用等,在此暂不作介绍,以后五、六年级将会学习到,如果有兴趣的同学可自己找资料学习。

  四、深化、拓展。(游戏:救孙悟空)

  孙犯错了,最终被如来压在五指山下,但是如来说,我们小朋友要是能动脑筋,过四关,答对四组问题就可救了孙来,小朋友你敢迎接挑战吗?

  第一关:运用规律,解决问题。

  4500÷500= 4800÷400=

  要求学生口算,并说说是怎么想的?调动学生已有的经验,并引导学生用商不变的规律解释以前的算法。

  第二关:从上到下,先算出每组题中第一题的商,然后很快地写出下面两题的商。让学生独立做在书上,集体订正。

  72÷9= 36÷3=80÷4=

  720÷90= 360÷30= 800÷40=

  7200÷900=3600÷300=8000÷400=

  第三关:我当小裁判。(投影出示题目)

  (1)让学生判断“下面的计算对吗?”

  小结:在计算被除数和除数末尾有0的除法,商不变的规律能让我们的计算变得既简单又快捷,但在计算时要注意被除数和除数要同时缩小相同的倍数。

  (2)(14×2)÷(2÷2)=7( ),(14×5)÷(2×3)=7( )

  第四关:填空:在□中填数,在○中填运算符号:

  200÷40=5

  (200×4)÷(40×□)=5(200÷2)÷(40÷□)=5

  (200×3)÷(40○□)=5(200÷4)÷(40○□)=5

  (200×□)÷(40○□)=5

  师:□里可以填“0”吗?为什么?

  四、课堂总结:谁能用一句话说说这节课你的感受或收获。(思考半分钟后作答)

  五、布置课外作业:(三题中选做其中一份)

  1、举例说说商不变规律。

  2、说说你发现生活中的商不变规律在哪应用了,如何用,好处在哪里?

  3、写一篇关于你探索商不变规律的数学日记。

  《商不变的规律》教学教案设计 篇6

  课题名称:第五单元《商不变的规律》

  教学目标

  1、我能发现商的变化规律。

  2、我能运用商的变化规律进行除法计算。

  3、我会用商的变化规律解决问题(重、难点)。

  教学重点:我会用商的变化规律解决问题(重、难点)。

  教学难点:我会用商的变化规律解决问题(重、难点)。

  教学准备:导学案。

  教学流程:

  创设情境,提出问题。

  先填表再回答问题。

  (1)观察第一个表格,从上往下看我发现:( )不变,除数依次扩大( )倍、( )倍,商( ),从下往上看,除数依次缩小( )倍、( )倍,商( )。

  (2)观察第二个表格,从上往下看我发现:( )不变,被除数依次扩大( )倍、( )倍,商( ),从下往上看,被除数依次缩小( )倍、( )倍,商( )。

  小组交流

  合作探究

  1、填写课本72页相关链接统计表。

  2、通过填表我发现,( )和( )都有变化,但是( )却没有变化,从左往右看,第三列和第二列比较被除数扩大( ),除数也( ),商( );第四列和第二列比较被除数扩大( ),除数也( ),商( );第五列和第二列比较被除数扩大( ),除数也( ),商( )。

  从右往左看,第五列和第四列比较,被除数缩小( ),除数也( ),商( );第四列和第三列比较,被除数缩小( ),除数也( ),商( )。

  3、我能总结出商的变化规律:

  _________________________________________________________

  __________________________________________________

  4、这是不是一条普遍规律呢,让我们一起来验证一下:填写课本72页图表并交流。

  5、讨论:这条规律的使用有什么条件?

  我们发现:

  展示交流、精讲释疑

  1、组长做好分工,将探究成果向全班同学汇报。

  2、汇报时,要回答其他小组的提问。

  后检反馈

  当堂达标

  1、根据第一题的商写出下面两题的商。

  72÷9=36÷3=80÷4=

  720÷90= 360÷30= 800÷40=

  7200÷900=3600÷300=8000÷400=

  2、判断(对的打“√”,错的打“×”)。

  48÷12=(48×5)÷(12×5) ( )

  45÷15=(45×3)÷(15×4) ( )

  80÷16=(80×4)÷(16÷4) ( )

  75÷25=(75÷5)÷(25÷5) ( )

  3、看算式填空。

  (4×2)÷(2×______)=2

  (3×2)÷(1×______)=3

  (90÷10) ÷(30÷______)=3

  (28÷______)÷(7÷______)=4

  4、根据商的`变化规律直接写出下列各题的答案。

  420÷35=12(420×3)÷35=

  (420×5)÷(35×5)= (420÷5)÷(35÷5)=

  420÷(35×4)= 420÷(35×6)=

  5、菜市场运来西红柿240千克,是黄瓜的16倍,两种蔬菜共多少千克?

  拓展交流、总结提升

  说一说这节课你有什么收获?

  《商不变的规律》教学教案设计 篇7

  教学内容

  人教版九义六年制小学数学第七册P84

  教学目标

  1、使学生理解和掌握商不变的规律,并能运用这一规律口算有关除法。

  2、培养学生观察、概括以及发现规律、探索新知的能力。

  教学具准备

  多媒体课件一套,每生一只计算器。

  教学过程

  一、始动阶段,设疑激趣

  以卡片先出示右三题,指名口算;再出左三题,同桌两人比赛,左边的用计算器逄,右边的用口算。

  (36×2)÷(12×2)= (36÷2)÷(12÷2)=

  (36×4)÷(12×4)= (36÷3)÷(12÷3)=

  (36×8)÷(12×8)= (36÷12)÷(12÷12)=

  教师用黄色粉笔写出商后,问比赛的胜负如何?

  师:好多用计算器算的同学赢了!哎哟,用口算的小嘴翘起来了。这个比赛不公平,是吧?那交换一下,再赛一道题怎样?教师板书:(36×100…0)÷(12×100…0)=

  10个 10个

  学生皆面有难色。稍后——

  生1:等于2。

  生2:等于3。

  师:请你说说这一题为什么等于3呢?

  生2:36÷12=3。

  师:他的知识面真宽!(在两组口答题上方板书:36÷12=3)那么这一题究竟等于多少呢?是不是与36÷12有联系?(用红粉笔在“(36×100…0)÷(12×100…0)=”之后板书:?)这节课我们就一起来研究这个问题。

  二、新授阶段,观察概括

  师:现在我们回过头来看这两组题。你发现这两组题的商有什么特点?

  生:都等于3。

  师:对!这两组题的商与36÷12的商一样,都是3,没有发生变化。下面我们进行一项公平的比赛,请同桌左边同学观察与思考左边一组题,右边同学观察思考右边一组题,(用绿色粉笔板书:)看谁抢先回答出这个问题:(出示)这些题与36÷12=3比,被除数36和除数12怎样变化,商才不变的呢?

  在有学生举手欲回答“观察与思考”时——

  师:请同桌两位同学交流一下各人的发现。

  同桌交流后集中发言。

  师:观察左边一组题,你发现了什么?

  生1:通过观察,我发现被除数、除数都乘以相同的数,商不变。

  师:请用上“扩大”这个词,把你发现的规律再说一下。

  生1:通过观察,我发现被除数、除数都扩大相同的倍数,商不变。

  师:观察右边的一组题呢?

  生:通过观察,我发现被除数和除数都缩小相同的倍数,商不变。

  师:哪位同学能把这两种情况用一句话概括出来?

  生:在除法中,被除数和除数都扩大或缩小相同的倍数,商不变。

  师:说得真好!谁能再说一说。

  生:在除法中,被除数和除数同时扩大或缩小相同的倍数,商不变。

  用小黑板出示“商不变的规律“,组织学生齐读一遍。

  师:同学们发现的这个规律是否具有普遍性呢?请你们接下来再举几个例子(手指两组口答题),看被除数和除数同时扩大或缩小相同的倍数,商变不变?

  生:(36×3)÷(12×3)=108÷36=3

  师:[板书:(36×3)÷(12×3)=3]他举了个被除数、除数同时扩大3倍,商不变的例子。谁能举个被除数、除数同时缩小的例子?

  生:(36÷9)÷(12÷9)=4÷……

  师:12÷9等于多少?

  生齐:12÷9等于1余3。

  师:噢,有余数。这个例子究竟怎么算呢?同学们暂时还不会,哪位能重举个例子?

  生:(36÷4)÷(12÷4)=9÷3=3

  师:他举了个被除数、除数同时缩小4倍的例子,商还是不变。

  刚才,同学们通过观察、思考、讨论、验证,证实了:在除法中,被除数和除数同时扩大或缩小相同的倍数,商不变。谁能给我们发现的规律取个名字?这个规律人们通常叫“商不变的规律”。(板书:商不变的规律)

  出示:

  (36×2)÷(12÷2)=

  (36×5)÷(12×3)=

  (36÷6)÷(12÷2)=

  (36+12)÷(12+12)=

  师:这几题的商也都是3吗?

  多数学生肯定,少数学生否定,双方争执不下。

  师:现在同学们有两种意见,争执不下,大家商量一下:怎么办呢?

  不少学生认为:“算,算!”

  师:好,那我们按照运算顺序算一下,看究竟等于多少?能口算的就口算,不能口算的用计算器算。

  学生回答后,教师板书得数。刚算出第一题答案是12,少数派学生就欢呼起来。

  师:与36÷12=3比,这几题的商为什么变了呢?请前后桌四人一组讨论讨论。

  学生讨论之后,推举代表发言。

  生1:我看第一题,因为被除数和除数不是同时扩大或缩小,尽管倍数相同,所以商还是变化了。

  生2:第二题和第三题,虽然被除数和除数同时扩大或同时缩小,由于倍数不相同,所以商发生了变化。

  生3:第四题,被除数和除数不是同时扩大,而是同时增加相同的数,所以商也变了。

  师:三个小组代表的回答太棒了!看来,对商不变的规律我们要全面地理解哦。只有当被除数和除数同时扩大或缩小相同的倍数,商才不变。

  那现在你看看“商不变的规律”,你认为哪几个词特别重要?

  学生说出“同时”、“相同”、“商”三个词,教师用红笔加圈后,请学生再自由地读一遍。

  师:请同学们阅读课本第84页,同桌两人交流交流怎样回答课文中的五个问题。

  学生看书、填表、交流。

  师:同学们有什么问题要提吗?

  生齐:没有。

  师:那你知道学习商不变的规律有什么用吗?

  生:可以运用商不变的规律,来做整十、整百数的除法口算。

  当教师问:“你会了吗?”绝大部分学生响亮地回答:“会!”少数学生有些迟疑。

  师:谁会举几个例子,教教几个还没有完全会的同学?

  生1:500÷100=500÷100=5。(教师随之板书。)

  生2:600÷200=600÷200=3。(教师随之板书。)

  三、调节阶段,放松愉悦

  师:刚才同学们的表现好极了!现在我们来轻松一下,听个故事。(播放配乐故事,出示相应画面)

  “故事的名字叫‘猴王分桃子’。

  “花果山风景秀丽,鸟语花香。桃树上挂满了桃子,桃树下坐着一群猴子,它们在等猴王来分桃子。猴王准时来到。猴王说:‘给你6个桃子,平均分给3只小猴吧。’小猴子听了,连连摇头:‘太少了,太少了!’猴王就说:‘那好吧,给你60个桃子,平均分给30只小猴,怎么样?’小猴子得寸进尺,挠挠头皮,试探地说:‘大王,请您开开恩,再多给点行不行啊?’猴王一拍胸脯,显示出慷慨大度的样子:‘那好吧,给你600个桃,平均分给300个小猴,你总该满意了吧?!’这时,小猴子笑了,猴王也笑了。

  “同学们,谁的笑是聪明的一笑,为什么?”

  教师相机板书: 6 3

  60 30

  600 300

  生1:小猴子的笑是聪明的一笑,因为越来越多的.小猴子分到桃子了。

  师:想得有道理!

  生1:猴王的笑是一聪明的一笑。因为猴王利用商不变的规律把小猴子给骗了,每只小猴子还是分的2个桃子。

  师:对!数学变了,但桃子个数与小猴只数之间的倍数关系没有变。我们可不能被表面现象所迷惑,要透过现象看本质。

  四、反馈阶段,深化认知

  (1)800÷25=(800×4)÷(25×4) ( )

  (2)48÷24=(48÷4)÷(24÷2) ( )

  (3)32800÷400=328÷4 ( )

  (4)30×4=(30÷2)×(4÷2) ( )

  要求学生认为对的话,则举手;错的话,则举拳。第(1)、(4)题要说明理由。

  师:第(1)题为什么说是错的呢?

  生:800×4=3200,25×4=100,3200÷100=32,而800÷25=……

  有几个学生在座位上帮忙:“800÷25也等于32。”

  师:那这道题对不对?

  生齐:对!

  师:可为什么有同学那么快就能很快判断它是对的,他有没有计算呢?

  生:根据商不变的规律,被除数和除数同时扩大4倍,商不变,所以这道题是对的。

  师:真会动脑子!一学就会用了!

  第(4)题大多数学生很快判断出是对的,少数学生判断出是错的。

  师:哦,有判对的,也有判错的。请不同意见的双方各出一名代表,到前面辩论。

  正方:请说说商不变的规律。

  反方:在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变。

  正方:这道题中是同时缩小的吗?

  反方:是同时缩小。

  正方:再请看看缩小的倍数相同吗?

  反方:缩小的倍数相同。

  正方:那么这道题符合商不变的规律吗?

  反方:不符合。

  正方:为什么?

  反方:这道题中的30和4是被除数和除数吗?

  正方:……嗯!

  反方:请你再说说商不变的规律。

  正方:(略)

  反方:请把前4个字再说一遍。

  正方:在除法里。

  反方:这道题可是在乘法里啊!

  正方:噢!可是……这是“积不变的规律”……

  反方:积不变的规律?那我们一起算一算:30×4=120,30÷2=15,4÷2=2,15×2=30,120=30?

  学生们笑出声来:“120怎么等于30?”

  正方:我们只看到“同时缩小”和“相同的倍数”,忽视了“在除法里”这个前提条件,错了。

  学生们和教师都热烈鼓掌。

  师:谁能再说一说这道题为什么错?

  生:它错误地把商不变的规律运用到乘法算式中了。

  师:一针见血!刚才判断出这道题是错的同学请笑一笑。希望以后笑的人能更多一些啊!

  出示课本第85页上一个“做一做”,让学生在课本上完成。

  逐条出示口算题:

  2800÷400 3000÷50

  7200÷800 4500÷900

  4000÷200 96000÷6000

  4000÷200、96000÷6000两题请学生说说想法。强调被除数、除数末尾要划去同样多个“0”。

  师:想一想,现在再出类似的题比赛,一个用计算器算,一个用口算,谁会赢?那现在我们换个形式再赛一场,一场公平的比赛,怎样?

  出示竞赛题:

  在□中填数,在空白中填运算符号:

  200÷40=5

  (200×4)÷(40×□)=5 (200÷2)÷(40÷□)=5

  (200×3)÷(40 □)=5 (200÷4)÷(40 □)=5

  (200×□)÷(40 □)=5 (200÷□)÷(40 □)=5

  师:□里可以填“0”吗?为什么?

  师:今天这节课学习了什么?谁能不看黑板说一说商不变的规律。同学们在被除数和除数的变化中,看到了商不变的规律。如果能经常这样观察思考问题,同学们就会越来越聪明。还有什么问题吗?

  现在我们来看(36×100…0)÷(12×100…0)等于多少呢?

  生:等于3。 10个 10个

  师:同意等于3的请举手。(全班皆举手。)哪位能说一说为什么等于3?

  生:36和12同时缩小了相同的倍数,其实这道题就可以算36÷12,所以等于3。

  师:课的开始大部分同学不会解答这道题,通过同学们的努力发现了商不变的规律,现在运用这个规律就可以口算这道用计算器都算不出的题啦!

  课后有兴趣的同学请思考:(在“竞赛题”下方出示)

  (200+200)÷(40 □)=5

  《商不变的规律》教学教案设计 篇8

  一、教学内容:

  冀教2011课标版小学四年级数学上册第20—21页商不变的规律。

  二、教学目标

  1.经历探索的过程,发现商不变的规律。

  2.能运用商不变的规律,进行一些除法运算的简便计算。

  3.在探索规律的过程中,经历观察、比较、综合、归纳等思维活动,获得一些探索的经验,发展思维能力。

  4.进一步感受数学在实际生活中的应用。

  三、教学重点

  让学生在探索过程中发现规律。

  四、教学难点

  理解商不变的规律以及在实际中的应用。

  五、教学准备:课件

  六、教学过程

  (一)创设《和尚分面包》的故事情境,引入新课

  1.从这个故事中你发现了哪些数学信息?根据这些信息,你能提出什么数学问题?

  2.大家猜一猜,三种分法,每天吃到的面包数一样吗?

  3.你会用算式表示出小和尚们平均每天能吃到几个面包吗?

  (二)探索规律

  1.板书学生的算式

  8÷2=4(个)

  16÷4=4(个)

  32÷8=4(个)

  师:通过计算,我们发现三次分面包看起来分的面包数越来越多,分的天数也越来越多,其实平均每天能吃到的面包数是一样的。老和尚是运用了什么知识帮助教育了肥肥小和尚的,现在就让我们来探究这个问题。

  2.小组合作探究,发现规律。

  活动要求:

  从上往下仔细观察这组算式的被除数、除数、商,说一说它们是怎样变化的?

  (2)结合算式用准确的语言表述这一规律。

  (3) 举例验证商不变的规律。

  3.小组汇报学习成果。

  4.归纳小结。

  师:谁能将你的发现用自己的语言试着说一说。

  生:在除法里,被除数和除数同时乘相同的`数,商不变。

  生:在除法里,被除数和除数同时乘相同的数(0除外),商不变。(幻灯片出示规律)

  师:你能给同学们说说这里为什么0要除外?

  生:因为0不能作除数。

  5. 同桌讨论,发现规律。

  师:从下往上观察,相信同学们会有新的发现?

  生:汇报学习成果。

  师:你能像前面的发现一样,用你的语言表述一下你的发现吗?

  生:在除法里,被除数和除数同时除以相同的数(0除外),商不变。(幻灯片出示规律)

  6.总结规律。

  师:谁能把两次的发现合并在一起,用规范的语言表述出来。

  生:在除法里,被除数和除数同时乘(或除以)相同的数(0除外),商不变。(板书规律)

  师:板书课题《商不变的规律》(学生齐读课题一遍)。

  师:你认为商不变的规律中,哪些词语比较重要?(同时、相同、0除外)学生齐读商不变的规律。

  7.举例验证(再次小组合作完成)。

  师:你还能举出像这样的例子说明你的发现吗?

  8.让学生看书并齐读P20页商不变规律。

  9.前后照应(故事中的疑问得到解决)。

  (三)巩固规律

  1.试一试: 650 ÷ 40

  (1)让学生运用商不变的规律试着笔算650÷ 40(把被除数和除数同时除以10)。

  (2)余数是1还是10?

  2.学以致用。

  下面的计算对吗,说一说你判断的理由。

  740÷60=

  小结:利用商不变规律能使除法运算更简便。

  (四)尝试运用规律

  同学们,接下来我们利用所学的规律进行创关练习吧!

  第一关:填空我在行

  (1)在一道除法算式里,如果被除数除以5,除数也除以5,商( )。

  (2)在一道除法算式里,如果被除数乘10,要使商不变,除数( )。

  (3)在除法里,被除数和除数同时乘或除以( )的数(0除外),( )。

  第二关: 判断我神速(正确的拖进正确的蘑菇屋里,错误的拖进错误的蘑菇屋里)

  (1)甲乙两数的商是7,如果甲乙两数都乘100,商是700。

  (2)被除数乘3,除数也乘3,商不变。

  (3)48÷12=(48÷2)÷(12÷2)

  (4)80÷20=(80+2)÷(20+2)

  第三关: 规律运用我能行(帮小兔过河)

  48÷4=

  240÷20=

  480÷40=

  4800÷400=

  第四关: 解决问题我最棒

  聪聪和红红从同一天开始分别看两本故事书。聪聪看的故事书有70页,红红看的故事书有140页。聪聪每天看14页,5天看完。红红每天了28页。不计算,你能说出红红几天能看完吗?

  引导学生独立思考,指名回答,并说出理由。

  (五)总结、作业

  1.通过这节课的学习,你有什么收获?

  2.作业:课本21页练一练第1、3题。

【《商不变的规律》教学教案设计】相关文章:

数学商不变的规律教学方案10-07

商不变的规律教案10-07

商不变的规律的数学教案10-07

小学数学商的变化规律的教学教案设计10-09

《商不变的规律》六年级数学教案设计10-07

商不变的性质数学教案设计10-07

三年级数学商不变的规律教案03-26

四年级数学商不变的规律教案09-28

《商不变性质》的教学方案10-07