- 相关推荐
高分子材料科学的发展进程
高分子材料科学作为一种前沿学科,在当前保持了一种持续发展的态势。
高分子材料科学的发展进程【1】
摘 要 高分子材料科学作为一种前沿学科,在当前保持了一种持续发展的态势。
本文从基本概念以及发展的过程向大家介绍这一门科学。
关键词 高分子材料 现状 可持续发展
1高分子材料的相关概念
1.1高分子材料的基本概念及来源
高分子材料(macromolecular material),以高分子化合物为基础的材料。
高分子材料是由相对分子质量较高的化合物构成的材料。
按来源可分为分为天然、半合成(改性天然高分子材料)和合成高分子材料。
天然高分子是生命起源和进化的基础。
人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。
如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等
1.2高分子材料的分类
高分子材料按照特性分为橡胶、纤维、塑料、胶粘剂、涂料和高分子基复合材料等,其中前三种被称为高分子的三大材料。
橡胶是一类线型柔性高分子聚合物。
其分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。
有天然橡胶和合成橡胶两种。
纤维分为天然纤维和化学纤维。
前者指蚕丝、棉、麻、毛等。
后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。
纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。
塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。
其分子间次价力、模量和形变量等介于橡胶和纤维之间。
2高分子材料科学的发展进程
2.1高分子材料科学的发展历史
高分子学科的建立,至今不到80年。
从远古时期开始,人类就已经学会使用天然高分子材料,比如天然的树脂、橡胶、棉花、木材等。
20世纪20年代,才出现高分子科学的概念。
到了20世纪30年代,高分子材料工业才步入发展阶段,而到了20世纪50年代配位聚合的出现极大地推动了高分子材料的发展。
进入20世纪下半叶,高分子取得了一系列突破性的进展,比如聚烯烃的多元聚合,设计合成嵌段,超支化等聚合物等。
2.2高分子材料科学的发展现状
进入21世纪,单单从一个大方向来描述高分子材料的发展现状是不可取的也是不全面的,所以将简单分为几个领域分别介绍目前的发展现状。
在电气工业领域,高分子材料也有杰出的表现。
随着时代的发展,高分子材料在电子、家电和通信领域。
我国电气生产大国,全行业对高分子材料需求量较大用量。
高分子材料轻质、绝缘、耐腐蚀、表面质量高和易于成型加工的特点正是生产各种家用电器的最佳材料,而家用电器是人们的必须生活用品,所以高分子材料在电气工业的发展是会一直进行下去的。
在机械制造领域更加少不了高分子材料。
比如,目前世界不少轿车的塑料用量已经超过 120千克/辆,德国高级轿车用量已经达到300 千克/辆。
可见在汽车制造方面,高分子的发展还是比较成熟,系统的。
并且可以预见,随着汽车轻量化进程的加速,塑料在汽车中的应用将更加广泛
高分子材料还在航空航天,建筑工程,医疗,包装行业等众多领域发展已经比较成熟,并且正在朝着一个更加规范,更加科学,更加和谐的方向稳定发展
2.3高分子材料科学的发展前景
高分子材料科学代表的是一种前沿技术,其发展趋势也必然要适应社会发展的潮流和最先进工业发展的需求。
2.3.1精细化
随着时代的发展,精细化必然成为材料的主流趋势,未来将纳米技术融入其中也是势在必行的。
高分子材料的纳米化可以依赖于高分子的纳米合成,这既包括分子层次上的化学方法,也包括分子以上层次的物理方法。
利用外场包括电场、磁场、力场等的作用,采用自组装或自合成等方法,靠分子间的相互作用,构建具有特殊结构形态的分子聚集体。
2.3.2绿色友好化
在强调可持续发展的21世纪,任何事物都在渐渐转型,高分子材料也不例外。
实现绿色友好化,需要在材料的合成,生产,运用三方面全方位实现。
现在的高分子合成材料对石油的依赖性特别强,寻找可以替代石油的其它资源,则成为21 世纪的高分子化学研究中的一个迫切需要解决的问题。
调节原子和分子在物质中的组合配置,控制物质的微观性质、宏观性质和表面性质,就可能使某种物质满足某种使用要求,这种物质就能作为材料来使用。
2.3.3智能化
在这个智能材料的时代,高分子化学同样承担着不可替代的作用。
智能材料是材料的作用和功能可随外界条件的变化而有意识的调节、修饰和修复,如若实现,也必然会对人类发展发挥巨大的作用。
3结语
本文通过比较浅层次的语言向大家介绍了高分子这门前沿科学,相信在今后的生活中,随着科技的发展,技术的进步,越来越多的人会认识高分子材料,并投入到这门与人类生活息息相关的科学研究中去。
参考文献
[1] 富彦珍,王雅珍,李青山,马立群,高分子化学实验微型化的研究与实践[J].高等工程教育研究,2004(03).
[2] 杨利庭,赵敏,高俊刚.改进实验教学培养应用性理科高分子人才[J].高等理科教育,2007(02).
[3] 何平笙,杨小震.“分子的性质“软件用于高分子科学教学实验[J].高分子通报,2000(01).
[4] 王亚男,李婷婷,徐聪.浅析目前我国高分子化工材料的发展现状[J].人力资源管理,2012(5).
[5] 汪焕心.我国高分子材料未来发展的方向[J].广州化工,2012(2).
[6] 乔金��.高分子材料发展热点展望[J].新材料产业,2011(2).
高分子材料的发展前景【2】
摘要:随着生产和科技的发展,以及人们对知识的追求,对高分子材料的性能提出了各种各样新的要求。
现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。
本文主要分析了高分子材料的发展前景和发展趋势。
关键词:高分子材料;发展;前景
一 高分子材料的发展现状与趋势
高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。
从高分子材料与国民经济、高技术和现代生活密切相关的角度说, 人类已进人了高分子时代。
高分子材料工业不仅要为工农业生产和人们的衣食住行用等不断提供许多量大面广、日新月异的新产品和新材料又要为发展高技术提供更多更有效的高性能结构材料和功能性材料。
鉴于此, 我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上重点发展五个方向:工程塑料,复合材料,液晶高分子材料,高分子分离材料,生物医用高分子材料。
近年来,随着电气、电子、信息、汽车、航空、航天、海洋开发等尖端技术领域的发展和为了适应这一发展的需要并健进其进? 步的发展, 高分子材料在不断向高功能化高性能化转变方面日趋活跃,并取得了重大突破。
二 高分子材料各领域的应用
1高分子材料在机械工业中的应用
高分子材料在机械工业中的应用越来越广泛, “ 以塑代钢” ,“ 塑代铁” 成为目前材料科学研究的热门和重点。
这类研究拓宽了材料选用范围,使机械产品从传统的安全笨重、高消耗向安全轻便、耐用和经济转变。
如聚氨酉旨弹性体,聚氨醋弹性体的耐磨性尤为突出, 在某些有机溶剂 如煤油、砂浆混合液中, 其磨耗低于其它材料。
聚氨醋弹性体可制成浮选机叶轮、盖板, 广泛使用在工况条件为磨粒磨损的浮选机械上。
又如聚甲醛材料聚甲醛具有突出的耐磨性, 对金属的同比磨耗量比尼龙小, 用聚四氟乙烯、机油、二硫化钥、化学润滑等改性, 其摩擦系数和磨耗量更小, 由于其良好的机械性能和耐磨性, 聚甲醛大量用于制造各种齿轮、轴承、凸轮、螺母、各种泵体以及导轨等机械设备的结构零部件。
在汽车行业大量代替锌、铜、铝等有色金属, 还能取代铸铁和钢冲压件。
2 高分子材料在燃料电池中的应用
高分子电解质膜的厚度会对电池性能产生很大的影响, 减薄膜的厚度可大幅度降低电池内阻, 获得大的功率输出。
全氟磺酸质子交换 膜的大分子主链骨架结构有很好的机械强度和化学耐久性, 氟素化合物具有僧水特性, 水容易排出, 但是电池运转时保水率降低, 又要影响电解质膜的导电性, 所以要对反应气体进行增湿处理。
高分子电解质膜的加湿技术, 保证了膜的优良导电性, 也带来电池尺寸变大增大左右、系统复杂化以及低温环境下水的管理等问题。
现在一批新的高分子材料如增强型全氟磺酸型高分子质子交换膜耐高温芳杂环磺酸基高分子电解质膜纳米级碳纤维材料新的一导电高分子材料等等, 已经得到研究工作者的关注。
3 高分子材料在现代农业种子处理中的应用及发展
高分子材料在现代农业种子处理中的应用:新一代种子化学处理一般可分为物理包裹利用干型和湿形高分子成膜剂, 包裹种子。
种子表面包膜利用高分子成膜剂将农用药物和其他成分涂膜在种子表面。
种子物理造粒将种子和其他高分子材料混和造粒, 以改善种子外观和形状, 便于机械播种。
高分子材料在现代农业种子处理中研究开发进展:种子处理用高分子材料已经从石油型高分子材料逐步向天然型以及功能型高分子材料的方向发展。
其中较为常见和重要的高分子材料类型包括多糖类天然高分子材料, 具有在低温情况下维持较好膜性能的高分子材料, 高吸水性材料, 温敏材料, 以及综合利用天然生物资源开发的天然高分子材料等, 其中利用可持续生物资源并发的种衣剂尤为引人关注。
4 高分子材料在智能隐身技术中的应用
智能隐身材料是伴随着智能材料的发展和装备隐身需求而发展起来的一种功能材料,它是一种对外界信号具有感知功能、信息处理功能。
自动调节自身电磁特性功能、自我指令并对信号作出最佳响应功能的材料/系统。
区别于传统的外加式隐身和内在式雷达波隐身思路设计,为隐身材料的发展和设计提供了崭新的思路,是隐身技术发展的必然趋势 ,高分子聚合物材料以其可在微观体系即分子水平上对材料进行设计、通过化学键、氢键等组装而成具有多种智能特性而成为智能隐身领域的一个重要发展方向。
三 高分子材料的发展前景
1高性能化
进一步提高耐高温,耐磨性,耐老化,耐腐蚀性及高的机械强度等方面是高分子材料发展的重要方向,这对于航空、航天、电子信息技术、汽车工业、家用电器领域都有极其重要的作用。
高分子材料高性能化的发展趋势主要有创造新的高分子聚合物,通过改变催化剂和催化体系,合成工艺及共聚,共混及交联等对高分子进行改性,通过新的加工方法改变聚合物的聚集态结构,通过微观复合方法,对高分子材料进行改性。
2高功能化
功能高分子材料是材料领域最具活力的新领域,目前已研究出了各种各样新功能的高分子材料,如可以像金属一样导热导电的高聚物,能吸收自重几千倍的高吸水性树脂,可以作为人造器官的医用高分子材料等。
鉴于以上发展,高分子吸水性材料、光致抗蚀性材料、高分子分离膜、高分子催化剂等都是功能高分子的研究方向。
3复合化
复合材料可克服单一材料的缺点和不足,发挥不同材料的优点,扩大高分子材料的应用范围,提高经济效益。
高性能的结构复合材料是新材料革命的一个重要方向,目前主要用于航空航天、造船、海洋工程等方面,今后复合材料的研究方向主要有高性能、高模量的纤维增强材料的研究与开发,合成具有高强度,优良成型加工性能和优良耐热性的基体树脂,界面性能,粘结性能的提高及评价技术的改进等方面。
4智能化
高分子材料的智能化是一项具有挑战性的重大课题,智能材料是使材料本身带有生物所具有的高级智能,例如预知预告性,自我诊断,自我修复,自我识别能力等特性,对环境的变化可以做出合乎要求的解答;根根据人体的状态,控制和调节药剂释放的微胶囊材料,根据生物体生长或愈合的情况或继续生长或发生分解的人造血管人工骨等医用材料。
由功能材料到智能材料是材料科学的又一次飞跃,它是新材料,分子原子级工程技术、生物技术和人 工智能诸多学科相互融合的一个产物。
5绿色化
虽然高分子材料对我们的日常生活起了很大的促进作用,但是高分子材料带来的污染我们仍然不能小视。
那些从生产到使用能节约能源与资源,废弃物排放少,对环境污染小,又能循环利用的高分子材料备受关注,即要求高分子材料生产的绿色化。
主要有以下几个研究方向,开发原子经济的聚合反应,选用无毒无害的原料,利用可再生资源合成高分子材料,高分子材料的再循环利用。
四 结束语
高分子材料为我国的经济建设做出了重要的贡献,我国已建立了较完善的高分子材料的研究、开发和生产体系,我国虽然在高分在材料的开发和综合利用方面起步较晚,但目前来看也取得了不错的进步,我们应提高其整体技术水平,致力于创新的高分在聚合反应和方法,开发出多种绿色功能材料和智能材料,以提高人类的生活质量,并满足各项工业和新技术的需求。
参考文献:
[1]金关泰.《高分子化学的理论和应用》,中国石化出版社,1997
[2]李善君 纪才圭等.《高分子光化学原理及应用》复旦大学出版社2003 6.
[3]李克友, 张菊华, 向福如. 《高分子合成原理及工艺学》,科学出版社,1999
液晶高分子材料的发展与应用【3】
摘要:液晶高分子材料兼具有晶态和液体两方面的性质,是一种新兴的功能高分子材料,近年来,液晶高分子材料的应用获得了迅速的发展,例如其在液晶显示、光储存和液晶纺丝等方面的应用,相信在不久的将来会有更多性能更优异的液晶高分子材料应用于日常生活中。
关键词:液晶 液晶高分子 应用
1 引言
液晶高分子材料是在一定条件下可以液晶态存在的高分子所加工制成的材料,较高分子量和液晶有序的有机结合使液晶高分子材料具有一些优异的特性。
例如,液晶高分子材料具有非常高的强度和模量,或具有很小的热膨胀系数,或具有优良的电光性质等等。
研究和开发液晶高分子材料,不仅可以提供新的高性能材料从而促使技术的进步和新技术的产生,同时可以促进高分子化学、高分子物理学、高分子加工以及高分子应用等领域的发展。
因此,研究液晶高分子材料具有重要意义。
2 液晶高分子材料的发展
液晶高分子存在于自然界很多物质中,像是生物体中的纤维素、多肽、核酸、蛋白质、细胞及细胞膜等都存在液晶态。
液晶的原理首先在1888年由奥地利植物学家F Reinitzer(F.Reinitzer,Monatsh,Chem,9,421,1888)提出,之后,德国科学家O,Lehamann验证了液晶的各向异性,他建议将其命名为Fliess,endekrystalle,在英语中也就是液晶(Liquid Crystal或简化为LC)。
19世纪60年代,人们发现聚对苯甲酰胺溶解在二甲基乙酰胺LiCI中,和聚对苯二甲酰对本二胺溶解在浓硫酸中,都可以形成向列型液晶(根据分子排列的形式和有序性不同,液晶有三种不同的结构类型:近晶型、向列型和胆甾型。
向列型液晶只保留着固体的一维有序性,具有较好的流动性)。
刚性分子链在溶液中伸展,当其浓度达到临界浓度时由于部分刚性分子聚集在一起形成有序排列的微区结构,使溶液由各向同性向各向异性转变,由此形成了液晶。
随即,美国杜邦公司(DuPont’s)先后推出了PSA(聚苯甲酰胺)及Kevelar纤维PPTA(聚对苯二甲酰对苯二胺),标志着液晶高分子研究工业化发展的开始。
到70~80年代,出现了诸如Xydar(美国Dartin公司,1984年),Vectra(美国Calanese公司,1985年)等一系列商用型热致液晶,液晶高分子材料逐渐开始推广。
发展至今,液晶这一形态已经成为一个相当大的物质家族,其商业用途多达几百种,例如日常生活中所用的液晶显示手表、计算器、笔记本电脑和高清晰的彩色电视等都已商品化,使得显示技术领域发生重大的革命性变化。
液晶高分子的一系列不同寻常的性质已经得到了广泛的实际应用,其中大家最为熟悉的就是上面说到的液晶显示技术,它是应用向列型液晶的灵敏的电响应特性和优秀的光学特性的典型例子。
把透明的向列型液晶薄膜夹在两块导电的玻璃板之间,在施加适当电压的点上变得不透明,因此当电压以某种图形的形式加到液晶薄膜上就产生了图像。
这一原理等同于学生日常学习使用的计算器,在通电时液晶分子排列变得有秩序,使光线容易通过;不通电时分子排列混乱,阻止光线通过,因而显示出所要计算的数字。
液晶显示器件最大的优点在于耗电低,可以实现微型化和超薄化。
与小分子液晶材料相比,液晶高分子在图形显示方面的应用前景在于利用其优点开发大面积、平面、超薄型、直接沉积在控制电极表面的显示器,具有相当大的优势。
液晶高分子还可以利用其热,光效应来实现光存储。
首先将存储介质制成透光的液晶态晶体,这时测试的光完全透过,证明没有信息记录;当用一束激光照射存储介质时,局部温度升高而使液晶高分子熔融成各向同性熔体,分子失去有序性:激光消失后,液晶高分子凝结成不透光的固体,信号被记录下来。
此时如果再照射测试光,将仅有部分光透过,记录的信息在室温下永久保存。
这同目前常用的存储介质――光盘相比,其对信息的存储依靠记忆材料内部的特性变化使得液晶高分子存储材料的可靠性更高,而且不用担心灰尘和表面的划伤对存储数据的影响,更适合于重要数据的长期保存。
此外,将刚性高分子溶液的液晶体系所具有的流变学特性应用于纤维加工过程中,已创造出一种新的纺丝技术――液晶纺丝,这种新技术使纤维的力学性能提高了两倍以上,获得了高强度、高模量、综合性能优越的纤维。
由于刚性高分子溶液形成的液晶体系具有高浓度、低粘度和低切变速率下高度取向的流变学特性,因此采用液晶纺丝便顺利地解决了高浓度溶液必然伴随着高粘度的问题。
同时,由于液晶分子的取向,纺丝时可以在较低的牵伸条件下就获得较高的取向度,避免纤维在高倍拉伸时产生应力和受到损伤。
这样所得的高性能纤维可用于制造防弹衣、缆�和特种复合材料等。
3 液晶高分子材料的应用
液晶高分子材料不仅在化学、物理方面得到了广泛的应用,其在生物医学方面的应用也是不可小视的。
由于在电、磁、光、热、力等条件变化时,液晶高分子将发生显著的变化,使得液晶高分子膜比一般的膜材料具有更高的透过量和选择性。
因此,利用溶致性液晶(根据液晶形成条件的不同液晶态物质又可分为“热致型液晶”和“溶致型液晶”)高分子的成型过程,如形成层状结构,再进行交联固化成膜,可以制备具有部分类似功能的膜材料。
脂质体是液晶高分子在溶液中形成的一种聚集态,这种微胶囊最重要的应用就是作为定点释放和缓释药物的使用。
微胶囊中包裹的药物随体液到达病变点后被酶作用破裂释放出药物,达到定点释放药物的目的。
如前所述,作为新兴的功能材料,液晶高分子材料具有很多突出的优点。
随着人们对它不断的研究,液晶高分子材料会逐步代替目前使用的部分金属和非金属材料。
液晶高分子材料作为一种较新的高分子材料,人们对它的认识还不充分,但在不远的将来,液晶高分子材料的应用一定会越来越广泛。
对人类的生存和发展做出新的贡献。
参考文献:
[1]罗祥林.功能高分子材料[M].京:化学工业出版社,2010.
[2]何曼君,张红东等.高分子物理[M].上海:复旦大学出版社,2007.
[3]何天白,胡汉杰.功能高分子与新技术[M].北京:化学工业出版社,2000.
[4]柯锦玲.液晶高分子及其应用[Z].1001-9456(2004)03-0086-04.
【高分子材料科学的发展进程】相关文章:
电磁学的发展进程探索10-26
谈中国戏曲艺术的发展进程论文10-09
液晶高分子材料的发展与应用10-05
高分子材料科学专业个人求职信范文10-08
高分子化学的发展情况与方向10-05
生物化学的发展进程和应用领域研究论文10-08
统筹城乡协调发展加快推进农业现代化进程10-05
加快发展湖南省商务服务业产业化进程的研究10-26