数学毕业论文

从微积分的发展,看微积分的教学

时间:2022-09-30 01:34:08 数学毕业论文 我要投稿
  • 相关推荐

从微积分的发展,看微积分的教学

  高等教育院校作为我国的最高学府,每年都会吸纳很多人才,也会向社会输送很多人才.这些学生毕业后大多会从事科技研究工作,所以怎样让学生接受并学会枯燥无味的微积分知识,是摆在教育工作者面前的大难题.本文首先分析微积分的发展历史,进而从微积分发展的角度,针对高等数学的微积分教学提出几点教学建议.

从微积分的发展,看微积分的教学

  摘要:微积分作为高等数学的必修课程,历来是高等院校的必开课程.微积分与实际生活密不可分,它应用于天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中,在科学技术飞速发展的今天,微积分更是有了越来越广泛的应用.

  关键词:微积分;发展;高等数学

  微积分对于高等数学的意义非常重大.一方面,微积分是所有高等数学知识的基础,如学习线性代数和概率,学生都要掌握微积分知识.另一方面,微积分是前人为了解决实际生活中的难题而发明的,所以微积分与实际生活密不可分.对于科技的发展,知识是前提,微积分涉及生活中的各个学科领域,所以,高等学校的学生要想更好地适应科技发展,就必须学习和掌握微积分知识.

  一、微积分的发展

  微积分主要包括极限、微分学、积分学.早在古希腊时期,学者阿基米德在研究有关球的问题时就已经涉及了积分学.至于极限学,作为微积分研究的基础,早在我国古代就已经开始应用,只不过那时人们没有将它单独规范为一门学科.

  微积分的发展历史就是一部人类对自然认知的过程史.17世纪,人类的知识体系还不是很完善,对于一些计算问题束手无策,这就要求人类找到一种科学方法来解决这些疑问,于是科学家们开始研究微积分.困扰当时人类的难题主要为四类,第一类问题出现在物体运动中,即速度问题.第二类问题出现在曲线中,即曲线的切线问题.第三类问题出现在函数中,即函数的极值问题.第四类问题出现在力学中,即两个物体之间的作用力问题.人类的求知欲引导着科学家进行漫长的探索.

  17世纪,各个领域的科学家在微积分领域开始了研究,他们的国度不同,语言不通,信仰不同,但对于研究的目标是一致的,那就是解决问题,虽然没有最终总结出完整的理论,但他们的探索为后世的研究奠定了道路,也为微积分学说的提出作出了不小的贡献.

  17世纪中叶,英国科学家牛顿和德国数学家莱布尼茨经过总结前人成果和自己的不断探索终于提出了微积分学说,但还只是初步.直到1671年牛顿写了《流数法和无穷级数》,提出了微积分的主要思想.1684年莱布尼茨发表了《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》,这本书提出了精确的数学符号,也规范了微积分学说.

  19世纪初,以柯西为首的法国科学家,开始整理前人的微积分理论,并建立了极限理论.后来维尔斯特拉斯又经过深入研究,最后终于完善了微积分理论.

  从微积分漫长的发展史可以看出,微积分的发展过程就是人类对自然认知的过程,人类解决任何问题都是从直观的认识开始的,运用抽象思维,最终将问题由感性认识成功转化为理性结论.其实,高等数学的教学也是这样,下面从微积分发展的角度,针对高等数学的微积分教学提出几点教学建议.

  二、从微积分发展的角度,针对高等数学的微积分教学提出几点建议

  (一)教导学生认识微积分的重要性

  微积分是高等数学教育的基础,是每个大学都会开设的一门基础学科.然而,学生们学习微积分,往往是为了应付考试,根本就无法将其应用到实际生活中.针对这一点,微积分教学时,教师首先应该帮助学生端正自己的学习态度,只有持有一个端正明确的学习态度,学生们才能真正用心地去学习微积分.微积分课程一般被安排在大学一年级,而一年级正是学生们刚刚步入大学的时期,对于微积分这类复杂的数学知识学生们还没有太合理的数学思维去适应并掌握它,且微积分理论不仅难于理解还很枯燥乏味,对于学生们和老师来说都感觉“食之无味,弃之可惜”,最后的结果就是为了应对考试而只能硬着头皮死记硬背.教师应该让学生明白微积分并不仅仅是一个数学知识,它还是解决很多实际问题的金钥匙,学生们要想做一个对社会有用的人,就要端正学习态度,绝对不能知难而退,要打好高等数学的基础,就要认真学习微积分.

  (二)理论联系实际,具体地教授学生微积分知识

  抽象的理论很难被学生接受,尤其是微积分这种生涩的知识,更是不易掌握.针对这一点,应该多借鉴微积分的发展史,科学家开始也只是借鉴了生活中的实例,高等教学也可以这样做,可以引进一些恰当的教学模型,如讲解极限时,可以借助球体.这样不仅让学生听到讲解,也要学生看到讲解的过程,便于学生全

  面的掌握知识.如在高等数学微积分的教学中曾出现这样一个问题:已知圆柱体的侧面和底面的厚度相同,而顶部厚度为侧面厚度的2倍,容积为V=3π,求这个圆柱体的高和底面的直径的比?传统的教学中,教师直接运用公式解答,最后学生们听得一头雾水;而按照本文所说的教学模式,教师可以先找一个易拉罐来当模型,然后让学生们实际接触并加以研究,理论结合实际,一定会有助于学生建立良好的数学模型.

  结束语

  人们总是善于从生活中发现并提取知识,并从感性认知成功地过渡到总结并提出理性观念,微积分学说的成功提出正是验证了这一点,我们在做任何事时都是重复着这一过程.高等数学微积分教学是一个艰巨的任务,不仅考验学生的认知能力,也考验教师的传授方式,只有提高学生对微积分的认识,再将理论与实际有机地结合起来,才能帮助学生掌握微积分理论.

  参考文献:

  [1]曹桃云.微积分中蕴含的数学美[J].成都大学学报,2007(87).

  [2]段君丽.学点数学史教好微积分[J].长春教育学院学报,2008(93).

【从微积分的发展,看微积分的教学】相关文章:

微积分教学的体会论文10-09

建构微积分新教学体系10-01

微积分中的反例论文10-09

初等微积分与中学数学10-01

微积分在经济学中的应用10-05

微积分在经济学中的应用论文10-09

市场发展趋势电子商务教学发展论文10-11

初中物理教学发展趋势10-01

《可持续发展》教学方案10-07

学校艺术教育教学发展方案10-07