- 相关推荐
微分方程数值解法双语教学模式
微分方程数值解法双语教学模式
摘 要:微分方程数值解是高等院校信息与计算科学专业的一门重要专业基础课。
本课程既有数学上的严密性、逻辑性,又有数值计算的科学性,在数值分析中占有极其重要的地位。
双语教学是教育部积极倡导的一种教学模式,主要采用汉语和英语相结合的方式进行授课。
本文主要探讨该课程的双语教学模式,并对教学过程中出现的一些问题进行了思考。
关键词:微分方程 数值解法 双语教学 有限差分法
微分方程数值解法就主要研究如何通过离散算法将连续形式的微分方程转化为有限维问题,如代数方程组,进而来求解其近似解[1]。
它以逼近论、数值代数等学科为基础,探讨有效的微分方程数值解法。
主要包括求解区域网格划分、离散方程的建立、方程性能分析、近似解收敛性分析等环节。
探索微分方程数值解法是有积极而重要的科学意义的,这是因为:(1)在实际应用中,我们只关心方程在某个范围内对应于某些特定的自变量的解的取值或近似值;(2)绝大多数情况下,无法找到方程的解析解,即使解析解存在也不一定能表示为显式解。
微分方程数值解法在计算物理、化学、流体力学航空航天等很多工程领域具有广泛的应用。
目前已发展成为一门计算技术学科,其核心理论内容也成为高校计算数学和应用数学等专业的核心基础专业课程之一[2]。
1 双语教学的必要性
现代社会的高素质专业人才不仅要具备扎实的专业知识,还须具备流利地应用英语进行沟通和交流的能力。
双语教学是教育部积极倡导的一种课堂教学模式,在2001年公布的《关于加强高等学校本科教学工作提高教学质量的若干意见》中指出要“积极推动使用英语等外语进行教学”[3],主要是在课堂教学过程中采用母语和以英文为代表的多种语言教学。
其目的就是为了跟上经济全球化的步伐和迎接科技革命的挑战。
对高新技术领域中的诸如信息技术、生物技术、金融、法律等专业,力争三年内,外语教学课程达到所开课程的5%~10%[3]。
2005年,在教育部颁布的《关于进一步加强高等学校本科教学工作的若干意见》中进一步要求高校要“以大学英语教学改革为突破口,提高大学生的国际交流与合作能力”,进一步明确了要“提高双语教学课程的质量并扩大双语教学的课堂数量”[4]。
可见,国家教育部门对高校采用双语教学给予了相当的重视和期望。
微分方程数值解法既有数学上严密的逻辑性、独特的理论结构体系,又在各种工程计算中有着重要的应用,因此是联系纯数学理论和工程应用的桥梁和纽带。
另一方面,很多数值计算软件开发平台和帮助文件都是用英文开发的,而数值微分各种理论算法又可以直接用伪代码表示,如何对数学专业英语很娴熟,那么应用这些数值计算软件就得心应手,亦可以熟练与国际同行交流。
再者,该课程一般在高年级开设,通过大学两年的英语教学积累,大部分同学已经达到了大学英语四级水平,可以较容易的阅读数学专业文献。
同时,高年级的同学对数学基础理论知识,如数学分析、高等代数、数值分析、常微分方程、偏微分方程等有了较好的掌握,继续接受方程的数值解的概念和理论是顺理成章的事情。
因此,无论是实际工程需要还是学生自身素质,对微分方程数值解进行双语教学都是可行的、必须的。
本文拟结合重庆理工大学信息与计算科学专业课程的设置,对微分方程数值解法的双语教学模式进行探讨,以寻求适合我校数学专业课程的双语教学模式。
2 课堂教学模式探讨和上机实验
课堂理论教学是学习《微分方程数值解法》的主要方式,务必引起足够重视。
大学教育离不开课堂教学,而课堂教学离不开讲授。
理论是科学的基础,理论是创新的基石,只有掌握了理论结果和相关概念,才能进一步有所创新。
在教材选取上面,我们选取了李荣华、刘播等主编的《微分方程数值解法》[1]作为主要参考教材。
选用Arieh Iserles主编的《A first course in the numerical analysis of differential equations》为主要辅助教材(网站下载)[5]。
该英文版教材作者英文功底深厚,相应的概念、定理、定义表达简洁容易理解,阅读该教材有种阅读英文科技小品的感受,对提高学生的英文水平非常有帮助。
授课采用计算机多媒体辅助教学。
首先让学生阅读中文教材以熟悉所学概念定理等内容,同时对所学的算法知识、理论知识也有一定的了解。
上课PPT采用全英文书写,采用中文授课。
当用英文表示所学概念时,老师给出其相应的中文含义,由于学生先期对该概念有了一定的预习,那么接受英文概念则不是太困难。
只要教师及时对这个英文专业词汇进行解释,学习过程中则不会存在太大的困难。
英文概念词汇有助于学生获悉如何用英语表达我们常见的数学概念和定义定理等内容。
同时也有助于学生进一步理解数学概念内涵和激发学生学习英语的热情。
例如,第一章中对于常微分方程的向量场的概念,如果采用英文Vector field则更容易理解。
对于Euler 法的重要基础地位,英文教材描述颇有味道:In a deep and profound sense, all the fancy multi-step and Runge-Kutta schemes are nothing but a generalization of the basic paradigm (yn+1=yn+hf(tn,yn),n=0,1,…)[5]。
这句话既强调了Euler迭代公式的基础地位,进一步说明多步法(multi-step)和龙格-库塔法(Runge-Kutta)的新奇性和实用性。
虽然Runge-Kutta法是Euler法的推广,但是其理论推导在短时间内不容易弄清楚,主要困难在于需要学生了解数值积分的代数精度概念、误差收敛阶,多元函数的Taylor展开,即如何灵活应用未知函数y(t)的各阶导数与右端函数f(t,y)的偏导数之间关系来对参数ki进行Taylor级数展开。
在实践教学方面,教育部对高校本科教学工作的若干意见中重点强调了要进一步加强实践教学,注重学生创新精神和实践能力的培养,切实提高大学生的实践能力,切实加强实验等实践教学环节[3~4]。
所以,微分方程数值解法的计算式实验环节也需引起足够重视。
通过计算机编程,有助于学生更好的理清各种算法的运算步骤,深入理解算法内涵,对掌握微分方程数值解法的学习方法能起到重要的作用。
3 存在的问题和总结
在教学伊始,学生的学习积极性并不高涨。
主要是因为同学们接受新鲜事物有一个过程,心底里认为使用英语教学没有必要,课前预习不充分,不愿意花精力去记忆消化英文概念和理解英文句法。
为达到较理想的教学效果,还需要学生在思想上高度重视。
国外原版英文教材价格太贵,并且教材内容比我们教学大纲要多,我们必须有针对性地选择重点章节讲解,并不能面面俱到。
受师资水平和学生英文水平限制,我们目前上课还无法使用英语口语教学。
一是授课教师没有在国外高校进行过改门课程的讲授,口语不纯正;二是学生的专业数学概念词汇少和听力理解。
这就要求在平时教学过程中,师生都要有目的的加强练习,及时发现问题并提出可行的解决方案并不断积累经验。
参考文献
[1] 黄振侃.数值计算-微分方程数值解[M].北京工业大学出版社,2006.
[2] 李荣华,刘播.微分方程数值解法[M]. 高等教育出版社,2009.
[3] 教育部.关于加强高等学校本科教学工作提高教学质量的若干意见[Z].2001.
[4] 教育部.关于进一步加强高等学校本科教学工作的若干意见[Z].2005.
[5] Arieh Iserles, A first course in the numerical analysis of differential equations[M].Cambridge University Press,2008.
【微分方程数值解法双语教学模式】相关文章:
蒙汉双语古代文学教学模式论文10-08
双语教学心得06-27
分式方程的解法教学教案10-07
三角函数值公式表教学教案10-07
基于CDIO模式的管理会计(双语)课程教学改革与实践论文10-10
医学检验专业双语教学初探10-26
信息安全技术双语教学论文10-08
摘选双语小学教育教学方案10-08
双语教学下的医学检验论文10-08