- 相关推荐
二次函数在高中阶段的应用高中数学论文
一、进一步深入理解函数概念
初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射?:AB,使得集合B中的元素y=ax2+bx+c(a0)与集合A的元素X对应,记为?(x)= ax2+ bx+c(a0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:
类型I:已知?(x)= 2x2+x+2,求?(x+1)
这里不能把?(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。
类型Ⅱ:设?(x+1)=x2-4x+1,求?(x)
这个问题理解为,已知对应法则?下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。
一般有两种方法:
(1)把所给表达式表示成x+1的多项式。
?(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得?(x)=x2-6x+6
(2) 变量代换:它的适应性强,对一般函数都可适用。
令t=x+1,则x=t-1 (t)=(t-1)2-4(t-1)+1=t2-6t+6从而?(x)= x2-6x+6
二、二次函数的单调性,最值与图象。
在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-,-b2a ]及[-b2a ,+) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。
类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。
(1)y=x2+2|x-1|-1
(2)y=|x2-1|
(3)= x2+2|x|-1
这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。
类型Ⅳ设?(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。
求:g(t)并画出 y=g(t)的图象
解:?(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2
当1[t,t+1]即01,g(t)=-2
当t1时,g(t)=?(t)=t2-2t-1
当t0时,g(t)=?(t+1)=t2-2
t2-2, (t0)
g(t)= -2,(01)
t2-2t-1, (t1)
首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。
如:y=3x2-5x+6(-3-1),求该函数的值域。
三、二次函数的知识,可以准确反映学生的数学思维:
类型Ⅴ:设二次函数?(x)=ax2+bx+c(a0)方程?(x)-x=0的两个根x1,x2满足0
(Ⅰ)当X(0,x1)时,证明X
(Ⅱ)设函数?(x)的图象关于直线x=x0对称,证明x0 x2 .
解题思路:
本题要证明的是x
(Ⅰ)先证明x
因为00,又a0,因此?(x) 0,即?(x)-x0.至此,证得x
(Ⅱ) ∵?(x)=ax2+bx+c=a(x+-b2a )2+(c- ),(a0)
函数?(x)的图象的对称轴为直线x=- b2a ,且是唯一的一条对称轴,因此,依题意,得x0=-b2a ,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-b-1a ,∵x2-1a 0,
x0=-b2a =12 (x1+x2-1a )
二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。
【二次函数在高中阶段的应用高中数学论文】相关文章:
二次函数的应用教学教案10-07
高中生数学论文10-08
《二次函数》教案10-13
应用数学与数学论文10-08
高中阶段的初等数论问题10-05
二次函数教学教案10-07
二次函数教学方案10-07
高中数学函数教学的方法10-06
高中数学函数的教学论文10-07
中学阶段数学论文10-08