数学毕业论文

对数学认知结构的优化和发展的思考论文

时间:2022-10-08 21:01:14 数学毕业论文 我要投稿
  • 相关推荐

对数学认知结构的优化和发展的思考论文

  摘 要:认知结构对学生学习的效果和智能的发展有很大影响。具有不同认知结构的个体,学习同一知识结构的教材会产生不同的学习效果。

对数学认知结构的优化和发展的思考论文

  关键词:教学情境;知识结构;课堂结构

  一、创设教学情境,激发认知兴趣

  1.问题情境。

  问题是思维的出发点,有问题学生才会去思考,一个成功的教学过程,必须要有目的、有层次地步步设疑、导疑、释疑。如学习抛物线及其标准方程时,通过这样一个问题展开教学。“与一个定点的距离和一条定直线的距离的比是常数e的点的轨迹,当e<1时,是椭圆,当e>1时,是双曲线。那么当e=1时,它又是什么曲线?”“究竟是什么曲线呢?”学生急于要弄明白这个问题,已进入积极的思维状态,再通过教师画图演示,引出抛物线的定义。

  2.对比情境。

  不少数学知识在内容和形式上有类似之处,它们之间既有联系又有区别。对于这样的内容,在教学时首先引导学生对新旧知识进行比较,根据旧知识已有的性质,类比、猜想新知识是否也有同样的性质,从而使学生展开新知识的学习。如学习“相似三角形的性质”时,先复习全等三角形的性质(对应边相等,对应角相等,对应边上的高,对应边上的中线,对应角的平分线都相等),然后根据全等三角形与相似三角形之间的关系(全等三角形是相似比为1的相似三角形),类比提出相似三角形对应边上的高、对应边上的中线、对立角的平分线是否也有类似的性质,激发学生探求相似三角形性质的兴趣。

  3.故事情境。

  科学史实、科学故事、科学家小传,以及与教学内容有关的传说、寓言等都能成为学生学习新知识的航标,激发学生的学习兴趣。如在学习“数学归纳法的应用——归纳、猜想、证明”一课时,从歌德巴赫猜想说起,使学生认识到,归纳、猜想、证明是科学发现的基本途径,学生会以更加积极的态度展开新内容的学习。

  二、构建良好的知识结构,促进知识结构向认知结构的转化

  1.选择关键知识点,构建知识结构。

  关键知识点、关键问题、关键定理是学科知识的核心内容,它们对其他知识起着组合和解释作用,学好这些知识,有助于学生对其他知识的理解掌握。因此,在教学中应注意选择关键知识点、关键定理、关键问题,在学习运用这些知识的过程中,指导学生建立一个良好的知识结构。

  2.抓住知识之间的内在联系,构建知识结构。

  数学知识本身的内在联系是紧密的,是一个结构严密的整体。这就要求我们以整体观念为指导,注意挖掘各章节知识之间的内在联系,抓知识点之间的联结点和共同因素,使学生在头脑中形成一个经纬交织、融会贯通的知识网络,便于学生对所学知识的理解、记忆和运用。例如,学习平行四边形、矩形、菱形、正方形的概念、性质、判定时,除上述以平行四边形为核心建立知识结构外,还可根据它们之间的共同因素,建立以边、角、对角线、对称性为内在联系的知识结构,形成一个完整的知识体系,也为学生展示一个新的学习模式。

  3.概括思维模式,构建具有层次化、条理化的知识结构。

  认知心理学认为,有的学生学习好,对所学概念、定理、法则等理解运用能力强,不是他具备的知识更多,而是对已有知识组织得更好。他头脑中的知识是按层次排列的,有很强的条理性和逻辑性。所以,帮助学生重新梳理知识,形成一个有层次、有条理的知识结构,是教学的重要任务。例如,在复习数列部分的知识时,根据所要解决的问题的类型,安排一些专题:递推数列通项公式的求法、数列求和的方法……对各类问题的进行总结,归纳探索解决数列问题的思路和方法。以功能或作用为线索来重新构造知识结构,既使学生头脑中的知识变得更加系统、有条理,又丰富了学生的思维方式,提高了学生分析问题和解决问题的能力。

  三、优化课堂结构,完善和发展学生的认知结构

  1.教学的切入点要符合教材的结构特点和学生的认知规律。

  所谓教学的切入点是指提出什么样的问题或选择怎样的例子展开新知识的教学,既利于学生建立新旧知识之间的联系,又利于学生从实际事例或已有数学知识中发现概括出新的结论。新知识的教学,学生能否理解和掌握,关键在于我们所选择的教学切入点。一方面要看其是否符合教材的结构特点,使新知识的学习建立在已有知识的基础上,是已有知识的自然发展。另一方面要看其是否符合学生的认知规律,因为学生的认知总是从已知到未知、从易到难、由浅入深、循序渐进的,教学程序的安排必须遵循这一认知规律。也就是说教师的教路必须与学生的学路这一认知规律合拍,并想方设法为学生创造良好的认知条件。

  2.教学过程要体现知识的形成过程。

  根据认知心理学理论,学生接受知识必须通过自己的感知、理解、探究、运用等一系列的认识活动。为此,教学中必须坚持启发式教学,在教学方式上采用教师讲授和指导学生尝试探索相结合,设计符合学生认知特点的教学程序。引导学生认真观察、动脑思考、动手操作、动口表述,让学生发现问题,解决问题,积极主动地参与获取知识和运用知识的全过程,在获取和运用知识的实践过程中,学会观察、概括、归纳、论证等方法。其具体步骤:一是根据教材内容选择可供学生观察的实例或数、式、图形,或典型例题,为学生认真观察,探讨特征,概括规律打好基础。二是根据观察对象的本质特点确定研究的形式。数学教材中,大多数概念的获得,公式、性质、法则、定理的推导,都遵循从特殊到一般、从具体到抽象的规律,因而常采用归纳研究法。三是通过例证性训练、变式训练,进行知识的迁移运用。在应用知识的过程中,培养学生分析问题、解决问题的能力,促进学生认知结构的内化和认知水平的提高。

  3.教学小结要注重形成学生新的认知结构,学生不仅要参与知识的形成过程,而且要参与知识的归纳总结过程。

  教学中要适时地组织和指导学生归纳出知识和技能方面的一般结论,把新知识纳入到已有的知识结构中去。通过归纳总结,加深对知识的理解,形成新的认知结构。

【对数学认知结构的优化和发展的思考论文】相关文章:

走进实践活动实现数学的优化发展教育论文10-12

发展水利经济的思考论文10-09

现代化发展视域下企业成本管理的优化思考论文10-09

优化旅游企业财务会计的对策和思考论文10-09

初中数学优化课堂教学论文10-09

桂林旅游文化创意的产业发展思考论文10-09

正确发展幼儿艺术教育的几点思考论文10-09

关于对我国县域经济发展的思考论文10-12

关于优化纳税服务的思考10-26

初中数学高效课堂思考论文10-09