学习方法

多边形内角的求解技巧

时间:2022-10-26 07:10:27 学习方法 我要投稿
  • 相关推荐

多边形内角的求解技巧

  1、多边形的每个内角与和它相邻的外角互为补角。这个条件在题目中一般不会作为已知条件给出,因此,在解题时应根据需要加以利用。

  例1 一个正多边形的每个内角都比与它相邻的外角的3倍还多20°,求此正多边形的边数。

  分析:由于这个正多边形的每个外角与和它相邻的内角互为邻补角,根据题意,可先求出外角的大小,再求边数。

  解:设每个外角的大小为x°,则与它相邻的内角的大小为(3x+20)度。根据题意,得

解得

,即每个外角都等于40°。所以

,即这个正多边形的边数为9。

  2、利用多边形内角和公式求多边形的边数时,经常设边数为n,然后列出方程或不等式,利用代数方法解决几何问题。

  例2 已知一个多边形的每个内角都等于135°,求这个多边形的边数。

  解法1:设多边形的边数为n,依题意,得

  解得n=8,即这个多边形的边数为8。

  解法2:依题意知,这个多边形的每个外角是180°-135°=45°。

所以,多边形的边数

,即这个多边形的边数为8。

  3、正多边形各内角相等,因此各外角也相等。有时利用这种隐含关系求多边形的边数,比直接利用内角和求边数简捷(如上题解法2)。解题时要注意这种逆向思维的运用。

  例3 一个多边形除去一个内角后,其余内角之和是2570°,求这个多边形的边数。

  分析:从已知条件可知这是一个与多边形内角和有关的问题。由于除去一个内角后,其余内角之和为2570°,故该多边形的内角和比2570°大。又由相邻内、外角间的关系可知,内角和比2570°+180°小。可列出关于边数n的不等式,先确定边数n的范围,再求边数。

  解:设这个多边形的边数为n,则内角和为(n-2)·180°。依题意,得

解这个不等式,得

  所以n=17,即这个多边形的边数为17。

  说明:这类题都隐含着边数为正整数这个条件。

  4、把不规则图形转化为规则图形是研究不规则图形的常用方法,其解题关键是构造合适的图形。

  例4 如图1,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的大小。

  图1

  分析:解题关键是把该图形与凸多边形联系起来,从而利用多边形内角和定理来解决,因此可考虑连接CF。

  解:连接CF。

  ∵∠COF=∠DOE

  ∴∠1+∠2=∠OCF+∠OFC

  ∴∠1+∠2+∠3+∠4+∠5+∠6+∠7

  =∠OCF+∠OFC+∠3+∠4+∠5+∠6+∠7

  =(5-2)×180°

  =540°

【多边形内角的求解技巧】相关文章:

关于要求解决经费的报告范文(精选38篇)12-07

费曼技巧技巧11-10

学习技巧与考试技巧11-13

简历制作与面试技巧技巧篇11-15

《三角形内角和》数学教案08-04

学习技巧05-30

面试技巧11-15

营销的技巧05-20

化妆的技巧10-29

营销技巧11-13