- 相关推荐
按比例分配的教学方案
教学目标
1.使学生理解的意义.
2.掌握应用题的特征及解题方法.
3.培养学生应用所学知识解决实际问题的能力.
教学重点
掌握应用题的特征及解题方法.
教学难点
应用题的实际应用.
教学过程
一、复习引入
(一)填空
已知六年级1班男生人数和女生人数的比是3∶2.
1.男生人数是女生人数的
2.女生人数是男生人数的,女生人数和男生人数的比是.
3.男生人数占全班人数的,男生人数和全班人数的比是.
4.全班人数是男生人数的,全班人数和男生人数的比是.
5.女生人数占全班人数的,女生人数和全班人数的比是.
6.全班人数是女生人数的,全班人数和女生人数的比是.
(二)口答应用题
六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?
1.学生口答:1002=50(平方米)
2.教师提问
这是一道分配问题,分谁?(100平方米)怎么分?(平均分)
六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?
这样分还是平均分吗?
3.谈话引入
在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题.(板书:分配)
二、讲授新课
(一)把复习题2增加条件如果按3∶2分配,两个班的保洁区各是多少平方米?
(二)教师提问
1.分谁?(100平方米)
2.怎么分?(按3∶2分)
3.求的是什么?(两个班的保洁区各是多少平方米?)
(三)思考:由如果按3∶2分配这句话你可以联想到什么?
1.六年级的保洁区面积是二年级的 倍
2.二年级的保洁区面积是六年级的
3.六年级的保洁区面积占总面积的
4.二年级的保洁区面积占总面积的
(四)尝试解答:用你学过的知识解答例题,并说一说怎么想的?
方法一:
3+2=5 1005=20(平方米) 203=60(平方米) 202=40(平方米)
方法二:
3+2=5 100 =60(平方米)100 =40(平方米)
方法三:
100(1+ )=60(平方米) 60 =40(平方米)或100-60=40(平方米)
方法四:
100(1+ )=40(平方米) 40 =60(平方米)或100-40=60(平方米)
(五)比较思路:这几种方法中,你认为哪种方法好?为什么?
(第二种,思路简捷,计算简便)
副标题#e#
1.说说第二种方法的思路?
(1)求出总份数
(2)各部分数量占总量的几分之几?
(3)按照求一个数的几分之几是多少的方法解答.
(六)这道题做得对不对呢?我们怎么检验?
1.两个班级的面积相加,是否等于原来的总面积.
2.把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3∶2.
(七)练习
一个农场计划在100公顷的地里播种大豆和玉米.播种面积的比是3∶2.两种作物各播种多少公顷?
(八)教学例3
学校把栽280棵树的任务,按照六年级三个班的人数,分配给各班.一班有47人,二班有45人,三班有48人.三个班各应栽树多少棵?
1.讨论:这道题与前面所做的题有什么区别?
分配什么?按照什么来分?
怎样计算各班栽的棵数占总棵数的几分之几?
2.学生独立解题
(1)三个班的总人数:47+45+48=140(人)
(2)一班应栽的棵数:280 =94(棵)
(3)二班应栽的棵数:280 =90(棵)
(4)三班应栽的棵数:280 =96(棵)
答:一班、二班、三班各应栽94棵、90棵、96棵.
(九)小结
1.观察我们今天学习的两个例题有什么共同特点?
已知总数量和各部分量的比,求各部分量.
2.怎么解答?
先求总份数,各部分量占总数量的几分之几,最后求各部分量.
3.我们把具备上述特点,用这种特定方法解答的分配问题叫做应用题.
板书(补充课题):按比例
4.教师提问:分谁?怎么分?
板书:把一个数量按照一定的比来进行分配.
三、巩固练习
(一)六年级(2)班共有42人,男、女生人数的比是3∶4,男、女生各有多少人?
(二)一个三角形三条边的长度比是3∶5∶4.这个三角形的周长是36厘米,三条边的长度分别是多少厘米?
1.还是问题吗?
2.如果是四个数的连比你还会解答吗?
(三)判断
一个长方形周长是20厘米,长与宽的比是7∶3,求长与宽各是多少厘米?
7+3=10 20 =14(厘米) 20 =6(厘米) 【错,要分的不是20厘米】
(四)思考:平均分是不是的应用题?按照几比几分配的?
四、课堂小结
今天我们学习了什么新知识?这种应用题有什么特点?应该怎样解答?
五、课后作业
(一)一个乡共有拖拉机180台,其中大型拖拉机和手扶拖拉机台数的比是2∶7.这两种拖拉机各有多少台?
(二)建筑工人用2份水泥、3份沙子和5份石子配置一种混凝土.配置6000千克这种混凝土,需要水泥、沙子和石子各多少千克?
(三)用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3∶4∶5.这个三角形三条边各是多少厘米?
(四)一种药水是把药粉和水按照1∶100的比例配成的.要配成这种药水4040千克,需要药粉多少千克?
六、板书设计
【按比例分配的教学方案】相关文章:
数学比例的教学方案10-08
关于比例尺的数学教学方案10-08
沈阳市按比例安置残疾人就业办法05-19
昆明市按比例安排残疾人就业规定06-14
比例尺教学设计方案模板10-23
分配奖金的方案11-20
沈阳市按比例安置残疾人就业办法全文06-29
《比例的意义》教学教案02-25
房屋份额分配比例协议书01-31
绩效的分配方案03-10