- 相关推荐
《同底数幂的除法》教学方案设计(精选5篇)
作为一名优秀的教育工作者,很有必要精心设计一份教学设计,教学设计是实现教学目标的计划性和决策性活动。写教学设计需要注意哪些格式呢?下面是小编精心整理的《同底数幂的除法》教学方案设计,仅供参考,希望能够帮助到大家。
《同底数幂的除法》教学方案设计 1
学习目标:
了解并会推导同底数幂的除法的运算性质,并会用其解决实际问题.
学习重点:
准确熟练地运用同底数幂的除法运算法则进行计算.
学习过程:
一、情境导入
问题1:叙述同底数幂的乘法运算法则.
问题2:一种数码照片的文件大小是28K,一个存储量为26M(1M=210K)的移动存储器能存储多少张这样的数码照片?你是如何计算的?(学生独立思考完成)
问题3:216、28是同底数幂,同底数幂相除如何计算呢?——同底数幂的除法
二、探索新知:
活动1:请同学们做如下运算:
(1)28×28
(2)52×53
(3)102×105
(4)a3·a3
活动2:填空:
(1)( )·28=216
(2)( )·53=55
(3)( )·105=107
(4)( )·a3=a6
活动3:除法与乘法两种运算互逆,要求空内所填数,其实是一种除法运算,?所以这四个小题等价于:
(1)216÷28=( )
(2)55÷53=( )
(3)107÷105=( )
(4)a6÷a3=( )
问题4:从上述运算能否发现商与除数、被除数有什么关系?
问题5:对于除法运算,有没有什么特殊要求呢?
归纳法则:一般地,我们有am÷an=am-n(a≠0,m,n都是正整数,m>n)
语言叙述:同底数的幂相除
三、范例学习:
例1:计算:
(1)x9÷x3;
(2)m7÷m;
(3)(xy)7÷(xy)2;
(4)(m-n)8÷(m-n)4.
例2:根据除法的意义填空,再利用am÷an=am-n的方法计算,你能得出什么结论?
(1)72÷72=( );
(2)103÷103=( )
(3)1005÷1005=( )
(4)an÷an=( )(a≠0)
归纳总结:规定
语言叙述:任何不等于0的'数的0次幂都等于1.
四、学以致用:
1、课本P160练习第1、2、3题.
2、下列计算是否正确?如果不正确,应如何改正?
(1)、x6÷x2=x
(2)、64÷64=6
(3)、a3÷a=a3
(4)、(-c)4÷(-c)2= -c2
(5)(-xy)6÷(-xy)2=-x4y4;
(6)62m+1÷6m=63=216;
(7)x10÷x2÷x=x10÷x=1010.
五、课堂小结:
1.同底数幂的除法法则?
2.a0=1(a≠0)意义?
3.到目前为止,我们学习了哪些幂的运算法则?谈谈它们的异同点.
《同底数幂的除法》教学方案设计 2
学习目标:
明确零指数幂、负整数指数幂的意义,并能与幂的运算法则一起进行运算.
学习重点:
公式a0=1,a-n= (a0,n为正整数)规定的合理性.
学习难点:
零指数幂、负整数指数幂的意义的`理解.
学习过程:
【预习交流】
1.预习课本P48到P49,有哪些疑惑?
2.计算:8n4n2n(n是正整数)= .
3.已知n是正整数,且83n162n=4.则n的值= .
4.若3m=a,3n=b,用a,b表示3m+n,3m-n.
5.已知:2x 5y=4,求4x32y的值.
【点评释疑】
1.课本P48做一做、想一想.
a0=1(a0)
任何不等于0的数的0次幂等于1.
2.课本P48议一议.
a-n= (a0,n是正整数)
任何不等于0的数的-n(n是正整数)次幂,等于这个数的n次幂的倒数.
3.课本P49例2.
4.应用探究
(1)计算:①( )-2 ②( )-3 ③(-a)6(-a)-1
(2)计算:① ② -
(3)如果等式 ,则 的值为 .
(4)要使(x-1)0-(x+1)-2有意义,x的取值范围是 .
5.巩固练习:课本P49练习1、2、3.
【达标检测】
1.若(x+2)0无意义,则x取值范围是 .
2.( ) -p= .
3.用小数表示 .
4.计算: 的结果是 .
5.如果 , ,那么 三数的大小为( )
A. B. C. D.
6.计算 的结果是 ( )A.1 B.-1 C.3 D.
7.下列各式计算正确的是 ( )
(A) .(B) (C) (D)
8.下列计算正确的是 ( )
A. B. C. D.
9.︱x︱﹦(x-1)0,则x= .
10.若 , , , ,则( )
11.计算:(1)4-(-2)-2-32(-3)0 (2)4-(-2)-2-32(3.14-)0
(3) (4) +(-3)0+0.2200352004
【总结评价】
零指数幂公式a0=1(a0),负整数指数幂公式a-n= (a0,n是正整数),理解公式规定的合理性,并能与幂的运算法则一起进行运算.
【课后作业】
课本P50到P51习题8.3 3、4、5.
《同底数幂的除法》教学方案设计 3
学习目标:
1、了解同底数幂的除法性质
2、能推导同底数幂的除法性质的过程,并会运用这一性质进行计算
学习重点:同底数幂的除法运算、零指数幂和负整指数幂
学习难点:零指数幂和负整指数幂
学习过程:
一、学习准备
1、同底数幂的乘法、幂的乘方、积的`乘方法则:
2、观察思考
积的乘方规律:(文字叙述)
(符号叙述)
规律条件:①②规律结果:①②
3、阅读课本第47页例1格式,完成下面练习:
①下面的计算对不对?如果不对,应怎样改正?
( )( )( )
( )( )( )
②计算
二、合作探究:
1、观察思考:同底数幂的除法运算中,当时,你得到什么结论?
算式运算过程
结果
零指数幂性质:(文字叙述)(符号叙述)
2、思考:同底数幂的除法运算中,当时,你又得到什么结论?
算式运算过程
结果
负整数指数幂性质:(文字叙述)(符号叙述)
3、阅读课本第52页例5,完成下面练习:
4、用分数或小数表示下列各数:
5、计算:
三、学习体会:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试:
1、计算的结果为( ).A.10 B.100 C.D.
2、计算的结果是( ).A.1 B.C.D.
3、A.B.C.D.
4、(1)(2)(3)
(4)(5)(6)
思维拓展:
1、(1)(2)
2、已知,求整数x的值。
《同底数幂的除法》教学方案设计 4
【教学目标】
1、通过探索同底数幂的除法的运算性质,进一步体会幂的意义,发展推理能力。
2、理解同底数幂除法运算法则,掌握应用运算法则进行计算。
【教学重点、难点】
重点是同底数幂的法则的推导过程和法则本身的理解。
难点是灵活应用同底数幂相除法则来解决问题。
【教学过程】
一、创设情景,引出课题
1、问题情景:课本节前图为经染色的洋葱细胞,细胞每分裂一次,1个细胞变成2个细胞。洋葱根尖细胞分裂的一个周期大约是12时,210个洋葱根类细胞经过分裂后,变成220个细胞大约需要多少时间?
2、分析导出本题的实际需要求220÷210=?
二、合作探究,建立模型
1、铺垫
填空:
( )×( )×( )×( )×( )×( )
(1)25÷23=——————————————=2 ( )
( )×( )×( )
=2( )-( )
( )×( )×( )
(1)a3÷a2=———————=a ( )=a( )-( ) (a≠0)
( )×( )
2、上升:am÷an== (a≠0)
3、小结:
am÷an==am-n(a≠0,m,n都是正整数,且m>n))
即同底数幂相除,底数不变,指数相减。
分析法则中的要素:(1)同底(2)除法转化为减法——底数不变,指数相减(3)除式不能为零。
三、应用新知,体验成功
1、试一试
例1:计算
(1)a9÷a3 (2)212÷27 (3)(-x)4÷(-x)
(4)(-3)11÷(-3)8 (5)10m÷10n (m>n)
(6)(-3)m÷(-3)n (m>n)
(师生共同研讨解决,始终抓住法则中的二个要素:判定同底,指数相减,并注意过程和运算结果的规范表示。)
2、想一想:
指数相等的同底数幂(不为0)的.幂相除,商是多少?你能举个例子说明吗?
3、练一练:
(1)下列计算对吗?为什么?错的请改正。
①a6÷a2=a3
②S2÷S=S3
③(-C)4÷(-C)2=-C2
④(-x)9÷(-x)9=-1
(2)课本P124课内练习1、2。
四、探究延伸,激发情智。
1、试一试:
例2计算
(1)a5÷a4·a2 (2)(-x)7÷x2 (3)(ab)5÷(ab)2
(4)(a+b)6÷(a+b)4
2、练一练:
(1)课本P124课内练习3、4(节前问题)
(2)金星是太阳系九大行星中距离地球最近的行星,也是人在地球上看到的天空中最亮的一颗星。金星离地球的距离为4.2×107千米时,从金星射出的光到达地球需要多少时间?
五、归纳小结,充实结构
1、今天学到了什么?
2、同底数幂相除法则:
同底数幂相除,底数不变,指数相减。
即am÷an==am-n(a≠0,m,n都是正整数,且m>n))
六、布置作业:作业本,一课一练。
七、教学反思:
备选提高练习题:
(1)已知ax=2 ay=3 则a2x-y=
(2)x4n+1÷x 2n-1·x2n+1=
(3)已知ax=2 ay=3 则ax-y=
(4)已知am=4 an=5 求a3m-2n的值。
(5)若10a=20 10b=1/5,试求9a÷32b的值。
(6)已知2x-5y-4=0,求4x÷32y的值。
《同底数幂的除法》教学方案设计 5
一、教学目标
1.理解并掌握零指数幂和负指数幂公式并能运用其进行熟练计算。
2.培养学生抽象的数学思维能力。
3.通过例题和习题,训练学生综合解题的能力和计算能力。
4.渗透公式自向运用与逆向运用的辩证统一的数学思维观点。
二、重点·难点
1.重点
理解和应用负整数指数幂的性质
2.难点
理解和应用负整数指数幂的性质及作用,用科学记数法表示绝对值小于1的数
三、 教学过程
1.创造情境、复习导入
(l)幂的运算性质是什么?请用式子表示
(2)用科学记数法表示:①69600 ②-5746
(3)计算:① ② ③
2.导向深入,揭示规律
由此我们规定
规律一:任何不等于0的数的0次幂都等于1
同底数幂扫除,若被除式的指数小于除式的指数,例如:
可仿照同底数幂的除法性质来计算,得
由此我们规定
一般我们规定
规律二:任何不等于0的数的-p(p是正整数)次幂等于这个数的p次幂的倒数
3.尝试反馈,理解新知
例1 计算:(1) (2)
(3) (4)
解:(1)原式
(2)原式
(3)原式
(4)原式
例2 用小数表示下列各数:(1) (2)
解:(1)
(2)
练习:P 141 1,2
例3 把100、1、0.1、0.01、0.0001写成10的幂的形式
由学生归纳得出:
①大于1的整数的位数减1等于10的幂的指数
②小于1的纯小数,连续零的个数(包括小数点前的0)等于10的幂的指数的绝对值
问:把0.000007写成只有一个整数位的数与10的幂的积的.形式
解:
像上面这样,我们也可以把绝对值小于1的数用科学记数法来表示
例4 用科学记数法表示下列各数:
0.008、0.000016、0.0000000125
解:
例5 地球的质量约是 吨,木星的质量约是地球质量的318倍,木星的质量约是多少吨?(保留2位有效数字)
解:
(吨)
答:木星的质量约是 吨。
练习:P142 1,2。
四 总结、扩展
1.负整数指数幂的性质:
2.用科学记数法表示数的规律:
(1)绝对值较大的数 ,n是非负整数,n=原数的整数部分位数减1。
(2)绝对值较小的数 ,n为一个负整数, 原数中第一个非零数字前面所有零的个数。(包括小数点前面的零)
五、布置作业
【《同底数幂的除法》教学方案设计】相关文章:
同底数幂的除法的教学方案10-08
同底数幂的除法教学教案10-07
同底数幂的乘法教学方案10-08
数学《除法的验算》教学方案设计10-07
幂的运算—幂的乘方教学方案10-08
数学《除法的意义和乘除法各部分间的关系》教学方案设计10-07
《鸡兔同笼》教学方案设计与课堂实录10-08