- 相关推荐
关于数学平行四边形的性质及判定的教学方案
平行四边形的性质及判定
j.Co M 平行四边形的性质及判定(复习课)
教学目的:
1、深入了解平行四边形的不稳定性;
2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)
3、熟练掌握平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;
4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊--一般--特殊”的辨证唯物主义观点。
教学重点:平行四边形的性质和判定。
教学难点:性质、判定定理的运用。
教学程序:
一、复习创情导入
平行四边形的性质:
边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。
角:对角相等(定理1);邻角互补。
平行四边形的判定:
边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)
二、授新
1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:
2、自学质疑:自学课本P79-82页,并提出疑难问题。
3、分组讨论:讨论自学中不能解决的问题及学生提出问题。
4、反馈归纳:根据预习和讨论的效果,进行点拨指导。
5、尝试练习:完成习题,解答疑难。
6、深化创新:平行四边形的性质:
边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。
角:对角相等(定理1);邻角互补。
平行四边形的判定:
边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)
7、推荐作业
1、熟记“归纳整理的内容”;
2、完成《练习卷》;
3、预习:(1)矩形的定义?
(2)矩形的性质定理1、2及其推论的内容是什么?
(3)怎样证明?
(4)例1的解答过程中,运用哪些性质?
思考题
1、平行四边形的性质定理3的逆命题是否是真命题?根据题设和结论写出已 知求证; 2、如何证明性质定理3的逆命题? 3、有几种方法可以证明? 4、例2的证明中,运用了哪些性质及判定?是否有其他方法? 5、例3的证明中,运用了哪些性质及判定?是否有其他方法?
跟踪练习
1、在四边形ABCD中,AC交BD于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形。( )
2、在四边形ABCD中,AC交BD于点O,若OC= 且 ,则四边形ABCD是平行四边形。
3、下列条件中,能够判断一个四边形是平行四边形的是( )
(A)一组对角相等; (B)对角线相等;
(C)两条邻边相等; (D)对角线互相平分。
创新练习
已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法)
达标练习
1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是平行四边形。
2、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN 。
综合应用练习
1、下列条件中,能做出平行四边形的是( )
(A)两边分别是4和5,一对角线为10;
(B)一边为4,两条对角线分别为2和5;
(C)一角为600,过此角的对角线为3,一边为4;
(D)两条对角线分别为3和5,他们所夹的锐角为450。
推荐作业
1、熟记“判定定理3”; 2、完成《练习卷》; 3、预习:
【数学平行四边形的性质及判定的教学方案】相关文章:
相似三角形的判定数学教学教案01-17
数学教学方案04-12
平行四边形教学方案04-02
相似三角形的判定数学教学教案5篇01-17
相似三角形的判定数学教学教案(5篇)01-17
数学小数的意义和性质教案11-29
幼儿数学教学方案02-09
小学数学教学方案03-28
数学教学活动方案03-10
小学数学教学活动方案04-07