教案

二次根式教案

时间:2022-10-30 17:22:13 教案 我要投稿

二次根式教案模板7篇

  作为一名为他人授业解惑的教育工作者,就有可能用到教案,借助教案可以有效提升自己的教学能力。那么优秀的教案是什么样的呢?下面是小编整理的二次根式教案7篇,欢迎阅读,希望大家能够喜欢。

二次根式教案模板7篇

二次根式教案 篇1

  教学目标

  1.使学生进一步理解二次根式的意义及基本性质,并能熟练 地化简含二次根式的式子;

  2.熟练地进行二次根式的加、减、乘、除混合运算.

  教学重点和难点

  重点:含二次根式的式子的混合运算.

  难点:综合运用二次根式的 性质及运算法则化简和计算含二次根式的式子.

  教学过程设计

  一、复习

  1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各 式成立的条件.

  指出:二次根式的这些基本性质都是在一定条件 下才成立的,主要应用于化简二次根式.

  2.二次根式 的乘法及除法的法则是什么?用式子表示出来.

  指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,

  计算结果要把分母有理化.

  3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:

  4.在含有二次根式的`式子的化简及求值等问题中,常运用三个可逆的式子:

  二、例题

  例1 x取什么值时,下列各式在实数范围内有意义:

  分析:

  (1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;

  (3)题是两个二次根式的和, x的取值必须使两个二次根式都有意义;

  (4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.

  x-2且x0.

  解因为n2-90, 9-n20,且n-30,所以n2=9且n3,所以

  例3

  分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3 -a0和1-a>0.

  解 因为1-a>0,3-a0,所以

  a<1,|a-2|=2-a.

  (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

  这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.

  问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?

  分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.

  注意:

  所以在化简过程中,

  例6

  分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.

  a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

  三、课堂练习

  1.选择题:

  A.a2B.a2

  C.a2D.a<2

  A .x+2 B.-x-2

  C.-x+2D.x-2

  A.2x B.2a

  C.-2x D.-2a

  2.填空题:

  4.计算:

  四、小结

  1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.

  2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.

  3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.

  4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.

  五、作业

  1.x是什么值时,下列各式在实数范围内有意义?

  2.把下列各式化成最简二次根式:

二次根式教案 篇2

  一、内容和内容解析

  1.内容

  二次根式的性质。

  2.内容解析

  本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.

  对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.

  二、目标和目标解析

  1.教学目标

  (1)经历探索二次根式的性质的过程,并理解其意义;

  (2)会运用二次根式的性质进行二次根式的化简;

  (3)了解代数式的概念.

  2.目标解析

  (1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;

  (2)学生能灵活运用二次根式的性质进行二次根式的化简;

  (3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.

  三、教学问题诊断分析

  二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.

  本节课的教学难点为:二次根式性质的灵活运用.

  四、教学过程设计

  1.探究性质1

  问题1 你能解释下列式子的含义吗?

  师生活动:教师引导学生说出每一个式子的含义.

  【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.

  问题2 根据算术平方根的.意义填空,并说出得到结论的依据.

  师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

  【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.

  问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

  师生活动:引导学生归纳得出二次根式的性质: ( ≥0).

  【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.

  例2 计算

  (1) ;(2) .

  师生活动:学生独立完成,集体订正.

  【设计意图】巩固二次根式的性质1,学会灵活运用.

  2.探究性质2

  问题4 你能解释下列式子的含义吗?

  师生活动:教师引导学生说出每一个式子的含义.

  【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.

  问题5 根据算术平方根的意义填空,并说出得到结论的依据.

  师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

  【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.

  问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

  师生活动:引导学生归纳得出二次根式的性质: ( ≥0)

  【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.

  例3 计算

  (1) ;(2) .

  师生活动:学生独立完成,集体订正.

  【设计意图】巩固二次根式的性质2,学会灵活运用.

  3.归纳代数式的概念

  问题7 回顾我们学过的式子,如, ( ≥0),这些式子有哪些共同特征?

  师生活动:学生概括式子的共同特征,得出代数式的概念.

  【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.

  4.综合运用

  (1)算一算:

  【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.

  (2)想一想: 中, 的取值范围是什么?当 ≥0时, 等于多少?当 时, 又等于多少?

  【设计意图】通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维.

  (3)谈一谈你对 与 的认识.

  【设计意图】加深学生对二次根式性质的理解.

  5.总结反思

  (1)你知道了二次根式的哪些性质?

  (2)运用二次根式性质进行化简需要注意什么?

  (3)请谈谈发现二次根式性质的思考过程?

  (4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.

  6.布置作业:教科书习题16.1第2,4题.

  五、目标检测设计

  1. ; ; .

  【设计意图】考查对二次根式性质的理解.

  2.下列运算正确的是( )

  A. B. C. D.

  【设计意图】考查学生运用二次根式的性质进行化简的能力.

  3.若 ,则 的取值范围是 .

  【设计意图】考查学生对一个数非负数的算术平方根的理解.

  4.计算: .

  【设计意图】考查二次根式性质的灵活运用.

二次根式教案 篇3

  教学设计思想

  新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。本节首先通过四个实际问题引出二次根式的概念,给出二次根式的意义。然后让学生通过二次根式的意义和算术平方根的意义找出二次根式的三个性质。本节通过学生所熟悉的实际问题建立二次根式的概念,使学生在经历将现实问题符号化的过程中,进一步体会二次根式的重要作用,发展学生的应用意识。

  教学目标

  知识与技能

  1.知道什么是二次根式,并会用二次根式的意义解题;

  2.熟记二次根式的.性质,并能灵活应用;

  过程与方法

  通过二次根式的概念和性质的学习,培养逻辑思维能力;

  情感态度价值观

  1.经历将现实问题符号化的过程,发展应用的意识;

  2.通过二次根式性质的介绍渗透对称性、规律性的数学美。

  教学重点和难点

  重点:(1)二次根式的意义;(2)二次根式中字母的取值范围;

  难点:确定二次根式中字母的取值范围。

  教学方法

  启发式、讲练结合

  教学媒体

  多媒体

  课时安排

  1课时

二次根式教案 篇4

  【1】二次根式的加减教案

  教材分析:

  本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。

  学生分析:

  本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。

  设计理念:

  新课程有效课堂教学明确倡导,学生是学习的主人,在学生自学文本的基础上动手实践、自主探究、合作交流,来倡导新的学习观,让他们完成二次根式加减知识研究。教师从过去知识的传授者转变为学生的自主性、探究性、合作性学习活动的设计者和组织者,与学生零距离接触共同探究。在教学过程中教师设置开放的、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的.能力,把“要我学”变成“我要学”,通过开放式命题,尝试从不同角度寻求解决问题的方法,养成良好的学习习惯,掌握学习策略,并根据活动中示范和指导培养学生大胆阐述并讨论观点,说明所获讨论的有效性,并对推论进行评价。从而营造一个接纳的、支持的、宽容的良好氛围进行学习。

  教学目标知识与技能目标:

  会化简二次根式,了解同类二次根式的概念,会进行简单的二次根式的加减法;通过加减运算解决生活的实际问题。

  过程与方法目标:

  通过类比整式加减法运算体验二次根式加减法运算的过程;学生经历由实际问题引入数学问题的过程,发展学生的抽象概括能力。

  情感态度与价值观:

  通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.

  重点、难点:重点:

  合并被开放数相同的同类二次根式,会进行简单的二次根式的加减法。

  难点:

  二次根式加减法的实际应用。

  关键问题 :

  了解同类二次根式的概念,合并同类二次根式,会进行二次根式的加减法。

  教学方法:.

  1. 引导发现法:在教师的启发引导下,鼓励学生积极参与,与实际问题相结合,采用“问题—探索—发现”的研究模式,让学生自主探索,合作学习,归纳结论,掌握规律。

  2. 类比法:由实际问题导入二次根式加减运算;类比合并同类项合并同类二次根式。

  3.尝试训练法:通过学生尝试,教师针对个别问题进行点拨指导,实现全优的教育效果。

  【2】二次根式的加减教案

  教学目标:

  1.知识目标:二次根式的加减法运算

  2.能力目标:能熟练进行二次根式的加减运算,能通过二次根式的加减法运算解决实际问题。

  3.情感态度:培养学生善于思考,一丝不苟的科学精神。

  重难点分析:

  重点:能熟练进行二次根式的加减运算。

  难点:正确合并被开方数相同的二次根式,二次根式加减法的实际应用。

  教学关键:通过复习旧知识,运用类比思想方法,达到温故知新的目的;运用创设问题激发学生求知欲;通过学生全面参与学习(分层次要求),达到每个学生在学习数学上有不同的发展。

  运用教具:小黑板等。

  教学过程:

问题与情景

师生活动

设计目的

活动一:

情景引入,导学展示

1.把下列二次根式化为最简二次根式: , ; , , 。上述两组二次根式,有什么特点?

2.现有一块长7.5dm、宽5dm的木板,能否采用如教科书图21.3-所示的方式,在这块木板上截出两个面积分别是8dm 和18dm 的正方形木板?

这道题是旧知识的回顾,老师可以找同学直接回答。对于问题,老师要关注:学生是否能熟练得到正确答案。 教师倾听学生的交流,指导学生探究。

问:什么样的二次根式能进行加减运算,运算到那一步为止。

由此也可以看到二次根式的加减只有通过找出被开方数相同的二次根式的途径,才能进行加减。

加强新旧知识的联系。通过观察,初步认识同类二次根式。

引出二次根式加减法则。

3. A、B层同学自主学习15页例1、例2、例3,C层同学至少完成例1、例2的学习。

例1.计算:

(1) ;

(2) - ;

例2. 计算:

1)

2)

例3.要焊接一个如教科书图21.3—2所示的钢架,大约需要多少米钢材(精确到0.1米)?

活动二:分层练习,合作互助

1.下列计算是否正确?为什么?

(1)

(2) ;

(3) 。

2.计算:

(1) ;

(2)

(3)

(4)

3.(见课本16页)

补充:

活动三:分层检测,反馈小结

教材17页习题:

A层、 B层:2、3.

C层1、2.

小结:

这节课你学到了什么知识?你有什么收获?

作业:课堂练习册第5、6页。

自学的同时抽查部分同学在黑板上板书计算过程。抽2名C层同学在黑板上完成例1板书过程,学生在计算时若出现错误,抽2名B层同学订正。抽2名B层同学在黑板上完成例2板书过程,若出现错误,再抽2名A层同学订正。抽1名A层同学在黑板上完成例3板书过程,并做适当的分析讲解。

此题是联系实际的题目,需要学生先列式,再计算。并将结果精确到0.1 m, 学生考虑问题要全面,不能漏掉任何一段钢材。

老师提示:

1)解决问题的方案是否得当;2)考虑的问题是否全面。3)计算是否准确。

A层同学完成16页练习1、2、3;B层同学完成练习1、2,可选做第3题;C层同学尽量完成练习1、2。多数同学完成后,让学生在小组内互相检查,有问题时共同分析矫正或请教老师。也可以抽查部分同学。例如:抽3名C层同学口答练习1;抽4名B层或C层同学在黑板上板书练习第2题;抽1名A层或B层同学在黑板上板书练习第3题后再分析讲解。

点拨:1)对 的化简是否正确;2)当根式中出现小数、分数、字母时,是否能正确处理;

3)运算法则的运用是否正确

先测试,再小组内互批,查找问题。学生反思本节课学到的知识,谈自己的感受。

小结时教师要关注:

1)学生是否抓住本课的重点;

2)对于常见错误的认识。

把学习目标由高到低分为A、B、C三个层次,教学中做到分层要求。

学生学习经历由浅到深的过程,可以提高学生能力,同时有利于激发学生的探索知识的`欲望。

二次根式的加减运算融入实际问题中去,提高了学生的学习兴趣和对数学知识的应用意识和能力。

小组成员互相检查学生对于新的知识掌握的情况,巩固学生刚掌握的知识能力。达到共同把关、合作互助的目的。

培养学生的计算的准确性,以培养学生科学的精神。

对课堂的问题及时反馈,使学生熟练掌握新知识。

每个学生对于知识的理解程度不同,学生回答时教师要多鼓励学生。

二次根式教案 篇5

  一、复习引入

  学生活动:请同学们完成下列各题:

  1.计算

  (1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

  二、探索新知

  如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.

  整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.

  例1.计算:

  (1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的'运算规律,所以直接可用整式的运算规律.

  解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算

  (1)(+6)(3-)(2)(+)(-)

  分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.

  解:(1)(+6)(3-)

  =3-()2+18-6=13-3(2)(+)(-)=()2-()2

  =10-7=3

  三、巩固练习

  课本P20练习1、2.

  四、应用拓展

  例3.已知=2-,其中a、b是实数,且a+b≠0,

  化简+,并求值.

  分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?

二次根式教案 篇6

  活动1、提出问题

  一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?

  问题:10+20是什么运算?

  活动2、探究活动

  下列3个小题怎样计算?

  问题:1)-还能继续往下合并吗?

  2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?

  二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的'进行合并。

  活动3

  练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)

  创设问题情景,引起学生思考。

  学生回答:这个运动场要准备(10+20)平方米的草皮。

  教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。

  我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。

  教师引导验证:

  ①设=,类比合并同类项或面积法;

  ②学生思考,得出先化简,再合并的解题思路

  ③先化简,再合并

  学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。

  教师巡视、指导,学生完成、交流,师生评价。

  提醒学生注意先化简成最简二次根式后再判断。

二次根式教案 篇7

  一、教学目标

  1.了解二次根式的意义;

  2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

  3. 掌握二次根式的性质 和 ,并能灵活应用;

  4.通过二次根式的计算培养学生的逻辑思维能力;

  5. 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美.

  二、教学重点和难点

  重点:(1)二次根的意义;(2)二次根式中字母的取值范围.

  难点:确定二次根式中字母的取值范围.

  三、教学方法

  启发式、讲练结合.

  四、教学过程

  (一)复习提问

  1.什么叫平方根、算术平方根?

  2.说出下列各式的意义,并计算:

  通过练习使学生进一步理解平方根、算术平方根的概念.

  观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中 ,

  表示的是算术平方根.

  (二)引入新课

  我们已遇到的这样的式子是我们这节课研究的内容,引出:

  新课:二次根式

  定义: 式子 叫做二次根式.

  对于 请同学们讨论论应注意的问题,引导学生总结:

  (1)式子 只有在条件a0时才叫二次根式, 是二次根式吗? 呢?

  若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

  (2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次

  根式指的是某种式子的外在形态.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.

  例1 当a为实数时,下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四个是二次根式. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a-10时,a+10又如当0

  例2 x是怎样的实数时,式子 在实数范围有意义?

  解:略.

  说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义.

  例3 当字母取何值时,下列各式为二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的`定义 ,被开方数必须是非负数,把问题转化为解不等式.

  解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时, 是二次根式.

  (2)-3x0,x0,即x0时, 是二次根式.

  (3) ,且x0,x0,当x0时, 是二次根式.

  (4) ,即 ,故x-20且x-20, x2.当x2时, 是二次根式.

  例4 下列各式是二次根式,求式子中的字母所满足的条件:

  (1) ; (2) ; (3) ; (4)

  分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即: 只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.

  解:(1)由2a+30,得 .

  (2)由 ,得3a-10,解得 .

  (3)由于x取任何实数时都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范围是全体实数.

  (4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

  (三)小结(引导学生做出本节课学习内容小结)

  1.式子 叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.

  2.式子中,被开方数(式)必须大于等于零.

  (四)练习和作业

  练习:

  1.判断下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义.

  2.a是怎样的实数时,下列各式在实数范围内有意义?

  五、作业

  教材P.172习题11.1;A组1;B组1.

  六、板书设计

【二次根式教案】相关文章:

二次根式教案11-10

二次根式教案优秀06-26

二次根式教案合集五篇04-08

《二次根式》教学教案(精选6篇)07-21

【热门】二次根式教案三篇10-24

有关二次根式教案三篇10-25

关于二次根式教案3篇10-20

二次根式教案范文十篇04-17

二次根式教案锦集10篇04-14