教案

分数的意义教案

时间:2023-01-02 14:37:58 教案 我要投稿

分数的意义教案15篇

  在教学工作者实际的教学活动中,时常要开展教案准备工作,教案是教学蓝图,可以有效提高教学效率。那么写教案需要注意哪些问题呢?以下是小编精心整理的分数的意义教案,希望能够帮助到大家。

分数的意义教案15篇

分数的意义教案1

  一、复习导入

  1、根据分数与除法的关系填空。

  被除数÷除数说说:分数与除法的关系。

  2、提问:80÷20的商是多少?

  被除数、除数都扩大5倍,商是多少?被除数和除数都缩小10倍呢?

  回忆商不变性质(被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。)

  (商不变的性质是学习分数基本性质的基础,所以这里的复习很有必要。)

  二、新课

  1、动手做数学。

  (1)把4张相同的纸条分别平均分成2、4、6、8份,表示出1/2、2/4、3/6、4/8。

  (涂上阴影)

  (2)提问:比较它们的长度、有什么发现?能根据分数的意义加以说明吗?

  (3)结论:几个分数虽然分母、分子都不相同,但大小是相等的。

  2、设疑:为什么分子、分母都不同的几个分数可以相等,它们之间有什么规律呢?

  (1)观察并研究分子、分母是按什么规律变化的?

  1/2 =2/4 = 3/6 = 4/8学生观察的顺序可以自选。

  (2)学生发现并归纳得出的规律(揭示:分数的基本性质):

  分数的分子和分母同时乘以或者除以相同的数分数的大小不变。

  (3)理解意义。

  提问:刚才我们根据分数的`意义来说明分数的基本性质的。能不能根据分数与除法的关系和商不变的规律来说明呢?

  先回忆商不变规律,然后想分数与除法的关系。突出关键点:零除外。(因为分数的分子和分母同时乘上0,则分数成为0/0,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母不能同时除以0,因此要“0除外”。)

  将分数的基本性质补充完整。

  3、应用性质、解决问题。

  (1)指出:应用分数的基本性质可以把一个分数化成分母不同而大小相等的分数。

  (2)把3/4和15/24化成分母是8而大小不变的分数。

  要求:独立思考解答、交流方法

  (3)师生一起总结方法:

  看分母(分子)乘或除以几、分子(分母)也同时乘或除以几。

  (4)独立完成练一练。

  重点是:学生要能自觉根据分数的基本性质观察分母或分子是怎样变化的,相应地分子或分母就怎样变化。

  变化的依据是分数的基本性质

  (5)口答练习十八第2题并说明判断的依据。

  4、全课总结:你能将这节课的内容及重点归纳概括一下吗?

  5、作业:完成练习十四

  理解并掌握分数的基本性质,同桌互相说分数并指定分母或分子让另一个同学化。

  三、难点点拨

  在运用分数的基本性质时,会出现以下几种错误:

  ①忽略了“同时”。举例说明= =是错误的,只是分子乘2,分母不变,正确答案应是= = 。

  ②忽略了“乘上或者除以”。举例说明,= =是错误的,因为分子和分母同时加上或者同时减去相同的数,分数的大小变了。在分数的基本性质中只限于“乘上或者除以”。

  在理解分数的基本性质时要注意三点:必须强调“同时”;必须强调“乘上或除以相同的数”;必须强调“0除外”。

  ③忽略了“相同的数”。举例说明,= =是错误的,因为分子和分母应同时除以相同的

分数的意义教案2

  教学内容:

  人教版课程标准实验教材小学数学五年级下册

  教学目标:

  1、让学生在分一分、画一画、写一写、折一折、涂一涂体验中理解单位”1”,感受什么是分数,进而理解分数的意义,培养学生实际操作能力和抽象概括能力。

  2、让学生在轻松和谐的氛围中主动参与、积极合作、充分体验,感受数学与生活的密切联系,激发学生学习数学的兴趣和树立学好数学的信心。

  教学重点:单位“1”和分数的意义的教学。

  教学难点:突破一个整体的教学。

  教学具:多媒体课件、纸片、一分米、方块、小棒、小刀、水彩笔。 教学过程:

  一、 激趣引入:

  师:板书数字1。这是几?表示什么?能具体说说可以表示1个什么吗? 学生回答(1个苹果、一张白纸、一根绳子、一个学校的全体学生??) 师:老师想问大家一个非常简单的问题,1+1=?(点击课件)可能等于1吗?(点击课件)

  师:一吨煤+一吨煤=一堆煤 (点击课件)

  7个苹果+8个苹果=? (点击课件)

  师:这个简单而又神奇的1有如此丰富的意义,老师可以给它加上引号,起名叫作单位“1”。

  师:取出学具袋,倒出其中的学具,分一分、说一说,哪些能用单位“1”表示?

  【设计意图:开门见山教学单位“1”,突出“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”,单刀直入式的导入无疑是本课亮点之一,不仅大大提高了教学效率,有效突破了教学难点,其分一分、说一说的教学设计为学生提供了丰富的体验,激发了学生的求知欲。】

  二、课题揭示

  师:板书“分”字,问这是什么字?

  师:分过东西吗?你是怎样分的,能举例说明吗?

  生:??

  师:他这样分叫做什么分?板书:平均分

  师:以前学过的数学知识中,什么和平均分有关?

  生:分数(板书)。

  师:你对分数了解有多少?

  生:??

  师:这节课我们进一步学习分数。板书课题:分数的意义

  让读课题后,问学生意义指什么?

  分数起源于分,分数在我们的生活中应用非常广泛。(点击课件介绍分数的产生)

  三、探索新知:

  (一)回顾旧知:

  师:用以前所学的分数的知识,分你手中的单位“1”,你能得到哪些分数?

  学生操作,组内交流,各组推荐汇报。以1/4为例说明。

  教师提醒学生注意倾听别人的意见,对不准确的地方要加以修正,尤其要强调“平均分”,尽量做到不要重复别人的发言内容。

  【设计意图:把学习的主动权真正交给了学生,教师将几种学具材料交给学生,让学生通过小组合作的方式操作用分数表示,既尊重了学生的已有知识储备,又在不知不觉中为新知的构建架设桥梁。】

  (二)、研究几分之一

  师:你们想研究别的分数吗?教师出示1/○

  师:这是分数吗?你会读吗?它有什么特别之处?

  师:请大家拿出12根小棒,分一分、说一说,看看可以有多少种不同

  方法来表示1/○ ?

  学生操作,小组讨论、交流,教师巡视,引导学生用不同的方式表示。 学生汇报,教师板书1/2 →6根、1/3 →4根、1/4 →3根、1/6 →2根、1/12 →1根。

  师:你又发现了什么?

  师:同学们真了不起,发现了这么多知识!

  【设计意图:富有挑战性的问题犹如一枚枚石子投进蓄势已久的湖里,激起了层层涟漪,让学生在足够自主的空间、足够活动的机会中自主探究、积极合作,足以让学生获得积极的、深层次的体验。】

  (三)、研究几分之几

  1、教师出示○/○

  师:猜猜看,老师想让你干什么?

  教师出示要求:

  分一分(选择合适的学具表示这个分数)

  画一画(用简单的图形来表示这个分数)

  折一折、涂一涂(选择合适的学具,用折叠、涂色的方法表示这个分数) 说一说(组内互相说说这个分数)

  学生动手操作、组内交流,教师巡视指导。

  2、各组推荐学生汇报??

  【设计意图:遵循小学生数学学习的心理规律,问题设计得精且极具开放性、挑战性,以丰富的操作实践刺激学生的多种感官,注重学生感性认识,学生真正在“做数学”。】

  四:阅读教材:

  1、师:关于分数的知识,以前我们学习过一些,在课前我们也通过自学课本、查阅资料、请教别人,你现在知道多少分数的知识,能告诉老师吗?

  学生回答??

  2、师:让我们看看数学书上专家是怎样说的?

  学生看书、圈划、摘读,组内交流。

  3、师:什么是分数单位?我们刚才研究了吗?3/5 的分数单位是什么?有几个? 7/12 、11/20 呢?

  【设计意图:注重对学生学习方法的熏陶。在设计时,注意到学生自我获取信息能力以及良好学习习惯的培养,让学生课前自学课本、查阅资料、请教别人,了解分数的有关知识,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为学生的终身发展打下坚实的基础。】

  五、 综合应用

  1、完成课本第62页做一做。

  2、填一填:

  (1)把一堆苹果平均分成5份,一份是这堆苹果的( )两份是这堆苹果的( )。

  (2)这两位同学是( )人数的几分之几?

  3、糖块游戏。

  拿走9块糖的.1/3,拿走几块?为什么?再拿走剩下的1/3,拿走几块?为什么?再拿剩下糖的1/4,拿走几块?

  4、写分数游戏

  师:下面请同学们练习写分数,比一比谁写得规范好看?任务是8个。 学生在写分数的过程中教师突然叫停。

  师:数一数,你写了几个分数?你能用刚学的分数说一句话,让大家猜一猜你完成的情况吗?

  生:我写了??

  【设计意图:学以致用,在应用中赋予数学活力与灵性,让学生在生动活泼的数学学习活动感受到数学与生活的紧密联系。所谓“人人学有价值的数学”、“不同的人在数学上得到不同的发展。”】

  六、全课小结:

  师:对于分数的意义你还有什么不懂的可以提问。

  学生质疑,学生解答,教师补充。

  师:关于分数的知识你掌握的情况如何,你能用今天学习的分数的知识

  说一说吗?

  生:??

  本课设计特色:

  1、淡化形式,注重实质

  分数的意义对于小学生来讲是一个比较抽象的概念,本课设计淡化形式,注重实质,一切以学生的发展为本,以解决问题为中心,以引导学生发现问题、分析问题、解决问题的逻辑性来体现教学的严谨性。整节课教师都没有将“把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数”这句严密、枯燥、抽象的话语塞给学生,但是整节课彻头彻尾都紧扣“分数的意义”教学的重点和难点,苦心经营,匠心运作。

  2、源于生活,回归生活。

  小学生学习的数学应是生活中的数学,是学生“自己的数学”,同时数学又必须回归于生活,数学只有在生活中才能赋予活力与灵性。本课设计注意到数学的教与学紧密联系生活,帮助学生在生活中发现意义,注重现实体验,力避传统的“书本中学数学”,体现生活中教学相长的互动关系,大胆改革教材的例题呈现方式,“跳出教材教数学”。

  3、强调合作,知识增殖。

  本课设计做到把学习的主动权交给学生,多给学生思考和表现的机会,多些成功的体验,突出每个个体的作用,使每一个学生不仅对自己的学习负责,形成人人教我,我教人人,让学生在主动参与合作中完成任务,实现知识在交流中增殖,思维在交流中碰撞,情感在交流中融通。

  4、注重体验,培植兴趣。

  学生学习的不只是“文本课程”,而更是“体验课程”,“学生的数学学习内容应当是现实的、有趣的、富有挑战性的”。本课教学中的说一说、分一分、画一画、写一写、折一折、涂一涂为学生提供了高频率、多维度、深层面的体验,我们的学生在学习时感到了乐趣,体验到了成就感,激励他们进行更深入的学习与研究。

分数的意义教案3

  教学目标:

  1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,理解单位“1”知道分子、分母和分数单位的含义。

  2、经历认识分数意义的过程,培养学生的抽象、概括能力。

  3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力。

  教学重点:

  理解和掌握分数的意义,理解单位“1”的含义。

  教学难点:

  对单位“1”的理解。

  教具和学具:

  米尺、长方形白纸、圆形纸片、一米长的绳子、操作练习纸。

  教学过程:

  一、创设情景,温故引新。

  1、出示1/4

  师:认识吗?关于1/4你都知道些什么?

  生:把一个物体平均分成4份,取其中的1份就用1/4表示。

  生:4是分母,1是分子

  生:它是一个分数。

  师:同学们说的很好,那你们知道分数是怎样产生的吗?

  二、教学分数的产生。

  1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

  2、在古代,人们就已经遇到了这样的问题。(师讲解古人测量的情况)。课件呈现情境图,

  3、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平均分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

  4、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示—这就产生了分数。(板书:分数的产生)

  三、教学分数的意义。

  1、动手操作,探索新知。

  (1)操作。

  师:看来同学们对分数已经有了一些初步的了解,课前老师给每一个小组都提供了四种材料,一张正方形纸、1分米长的线段、4个苹果、8只熊猫。

  下面以小组为单位,根据这几种材料,通过折一折、画一画、分一分等方法,表示出1/4 学生动手操作,教师巡视。

  (2)交流

  师:老师看到每个小组都根据这几种材料表示出了1/4谁愿意来展示一下?

  让学生在实物投影仪前向大家展示自己的操作方法及成果

  生:把一个正方形平均分成4份取其中的一份就是这个正方形的。

  把1分米长的线段平均分成4份取其中的一份就是这条线段的。

  把4个苹果平均分成4份取其中的一份就是这些苹果的。 把8只熊猫平均分成4份取其中的一份就是这8只熊猫的。

  (3)认识单位“1”。

  师:同学们,我们利用那么多方式表示出来了1/4,那请大家回忆一下,在表示的过程中,有没有相同的地方?

  生:都是把物体平均分成4份,表示其中的一份,就是1/4

  (师板书:平均分成4份,表示其中的一份就是1/4)

  师:在表示的过程中,有什么不同的地方吗?

  生:分的东西不一样。

  师:我们刚才是把哪些东西平均分的?

  生:一张正方形纸、1分米长的线段、4个苹果、8只熊猫

  师:象把一个正方形平均分,我们可以称之为把一个物体平均分

  (课件显示:一个物体)

  把一分米长的线段平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

  把4个苹果、8只熊猫平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

  师:同学们请看,象这样的一个物体、一个计量单位、一些物体都可以看作一个整体,这个整体我们可以用自然数“1”来表示,通常把它叫做单位“1”,(因为它可以表示一个整体,而不是一个具体的数,和自然数1不同,所以要加引号)

  师:单位“1”到底指哪些?

  生:一个物体,一个计量单位,一些物体。

  师:很好,那么一个物体除了一个正方形外,还可以是什么?

  生:一个苹果,一个面包......

  师:一个计量单位还可以是什么?

  生:xxx

  师:一些物体还可以是什么?

  生:3只老虎、4个面包、8个人......

  单位“1”很奇妙,它可以表示我们班的一个同学,也可以表示全校同学,还可以……。它可以表示很大很大,大到宇宙万物;也可以表示很小很小,小到一粒微尘。

  (4)、揭示分数的概念

  1、师:一个物体,一个计量单位,一些物体可以用单位“1”表示,那么刚才在表示1/4的.时候,我们实际上是把谁平均分成4份,表示其中的一份。

  生:把单位“1” 平均分成4份,表示其中的一份,用1/4表示。

  师:剩下的部分,用哪个数表示呢?

  生:3/4

  师:3/4表示什么呢?

  生:把单位“1” 平均分成4份,表示其中的3份,用3/4表示.师:如果老师把单位“1”平均分成12份,表示其中的7份,用哪个分数表示?

  生:7/12

  师:像这样的分数,你还能说出来吗?

  学生说:2/63/5…..并说出表示什么?

  师:刚才我们说了那么多分数,那么到底什么是分数,你能用一句话概括一下吗?

  小组交流。

  指名说(多找几个学生说)。

  揭示概念(板书:把单位“1”平均分成若干份,表示这样的一份或几份都可以用分数来表示。)

  5、强化理解概念

  ①、齐读概念

  ②谁能说说下面分数的含义?(课件出示练习)

  6、理解分子分母的意义。

  师:通过刚才的学习,大家知道了分数的意义,请同学们观察这些分数的分母,有的是4、有的是12、有的是6等,分母表示什么呢?

  生:分母表示把单位“1”平均分的份数。

  师:分子表示什么?(分子,表示取的份数)

  四、教学分数单位。

  师:整数中有计数单位个、

  十、百、千、万??分数是否也有计数单位呢?它的计数单位又是怎样规定的?请同学们打开课本自学。

  显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

  师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,请任意说出一个分数考考你的同桌,说出这个分数的意义和分数单位。)

  五、巩固练习、深化提高。

  1、师:刚才同学们积极动脑,认真思考,学习了分数的有关知识。下面我们一起做个小游戏,看谁最善于动脑思考。老师手中有九个糖果,现在我要把这些糖果分给我们班的同学,谁想要?有要求:我说分数,你来拿糖,说对了才能把糖果拿走,谁想来?(学生上台拿,并及时鼓励)

  师:请拿走这些糖果的三分之一,说一说你是怎样拿的?她拿的对不对?还剩几颗?(六颗),再请一个同学,请你拿走剩下糖果的三分之一,(两颗),咦,为什么都是三分之一 ,而俩人拿的糖果不一样多呢?(生:因为总数不一样。)

  师:虽然取的份数相同,但单位“1”不同,得到的数量也不相同。

  师:还剩4颗,谁还想要?请你拿走二分之一,她拿走了几颗?(2颗),为什么他拿走的是三分之一,而他拿走的是二分之一,却都是2颗呢?(生:单位“1”不同)师:也就是说单位“1”不同,分成的份数不同,得到的数量也可能是相同的。

  师:最后还剩下2颗,老师这里不仅仅只有两颗,还有很多,老师要请同学们来猜一猜,这两颗糖果是老师现在所有糖果的九分之一,请问,老师现在一共有多少颗糖果?

  师:同学们玩完了这个游戏,是不是轻松多了,下面老师要考考你们了,有没有信心全部通过?出示题目。

  2、练习十一的第1、2、3、4题

  六、课堂总结。

  今天这节课我们学习了什么?你有哪些收获?

分数的意义教案4

  一、教学目标

  1、知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。

  2、认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。

  3、理解和掌握分数的基本性质,会比较分数的大小。

  4、理解公因数与公因数、公倍数与最小公倍数,能找出两个数的公因数与最小公倍数,能比较熟练地进行约分和通分。

  5、会进行分数与小数的互化。

  二、教材说明和教学建议

  教材说明

  1、本单元内容的结构及其地位作用。

  本单元是学生系统学习分数的开始。内容包括:分数的意义、分数与除法的关系,真分数与假分数,分数的基本性质,公因数与约分,最小公倍数与通分以及分数与小数的互化。

  学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数(基本是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。在本学期,又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征。这些,都是本单元学习的重要基础。

  通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,比较完整地从分数的产生,从分数与除法的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分以及分数与小数互化的技能。

  这些知识在后面系统学习分数四则运算及其应用时都要用到。因此,学好本单元的内容是顺利掌握分数四则运算并学会应用分数知识解决一系列实际问题的必要基础。

  例:分数的意义和性质

  首先,第1节分数的意义和第3节分数的基本性质,是整个单元教学内容的主干,也是本单元教学的重点。第2节真分数与假分数是分数意义即分数概念的引申;第4节约分、第5节通分则是分数基本性质的运用。最后一节沟通了分数与小数在表现形式上的相互联系,得出了分数与小数的互化方法。整个单元的内容,大体上显现出由概念到性质,再到方法、技能的递进发展关系。

  其次,在第1节里,分数的意义是学习的重点。在前面学习的基础上,这里引入了两个新的概念,即单位“1”与分数单位。至于分数的产生、分数与除法的关系,则是从分数的现实来源和数学内部来源两方面来帮助学生深化对分数的认识。

  在第2节里,先通过三道例题,引入真分数、假分数、带分数三个概念,再通过例4,解决把假分数化成带分数或整数的问题。

  在第3节里,先通过例1,得出分数基本性质,然后通过例2,在运用的过程中加以巩固。

  在第4、5节里,先引入公因数与公因数,公倍数与最小公倍数的概念,再讨论求公因数、最小公倍数的方法,然后在此基础上,引入约分、通分的概念和方法。

  显然,在第2、3、4、5节内部,同样显现出由概念到方法的逻辑关系。

  2、本单元教材的编写特点。

  与原教材相比,本单元教材的主要改进有以下几点。

  (1)多侧面地展现了分数的来源。

  在小学数学里,认识分数是小学生数概念的一次重要扩展。考虑到分数概念比较重要,又比较抽象,有必要通过揭示产生分数的现实背景,来帮助学生形成分数概念,理解它的含义。

  从现实的角度来看,数是用来表示量的。5只兔、5个人,这些量的共同特征,可以用自然数5来表示。也就是说自然数是一个量(兔、人)与另一个作为单位的量(1只兔、1个人)的比。

  现实世界中存在的量,除了上面例举的,由一些单位量合成的,可以用自然数表示多少的量之外,还存在着许多可以分割的,无法用自然数表示的量。例如,用一根作为单位长的木棒(米尺)去量一条线段AB的长,量了3次还有一段PB剩余。

  (2)五下分数的意义和性质

  这时,运用自然数就只能粗略地说,这条线段长3米多一点。要更精确一些,就必须把度量单位等分成更小的单位,来度量余下的那条线段。比如把1米一分为四,则每等份叫做“四分之一”米,记做1/4米。这就引入了形如1/n(n为大于1的自然数)的分数。假如使用度量单位14米去量图中剩下的一条线段PB,量了3次恰巧量尽,那么PB的长就是“3个1/4”,记作3/4米,这样就又引入了形如m/n(n为大于1的自然数,m为自然数)的分数。历,分数正是为了比较精确地测量这类可以分割的量而引入的。

  从数学的角度来看,分数的引入是为了解决在整数集合里除法不是总能实施的矛盾。比如,2÷3在整数范围内不能计算,引入分数就能记作2÷3=2/3。当然,这种抽象的表示方法也有它的实际意义。例如把2块饼平均分给3个人,每人分得2/3块饼。

  在本单元的第1节里,教材首先从历史的角度,从现实生活中等分量的需要出发,生动形象地展示了分数的现实来源。

  在引出分数概念之后,教材又通过分蛋糕、分月饼的实例,抽象出分数与除法的关系,使学生初步感悟,有了分数,就能解决整数除法除不尽的矛盾。这实际上是从数学内部发展的角度,揭示了分数的来源。

  这就为拓宽学生的认识,加深对分数的理解,提供了较为丰富的教学素材。

  (3)约数、倍数的有关知识与分数的相关知识结合起来教学。

  我们知道,在小学数学中,约数、倍数的有关知识的`学习,主要是为学习分数服务的。但在以往的教材中,两者各自独立成章,学完后,学生还不知道学了公因数、公倍数与公因数、最小公倍数有什么用,只能对一组组整数单纯地练习求它们的公因数或最小公倍数。而且,这些知识集中在一个单元里,概念多,而且抽象,不利于分散难点,逐步消化,也不利于认识的螺旋上升。

  现在,把公因数、公因数的内容安排在讨论约分之前教学;把公倍数、最小公倍数的内容安排在引进通分之前学习。从而将两部分知识紧密结合起来,学了就用,既能减少单纯的枯燥练习,节省教学时间,又有利于整除性知识的教学改革。为了配合这一改革,约分与通分不再合成一节,而是公因数、公因数与约分编为一节,公倍数、最小公倍数与通分编为一节。

  (4)关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。

  在本单元中,无论是公因数与公因数、公倍数与最小公倍数的引入,还是约分、通分的给出,教材都创设了适当的现实问题情境,进而在解决实际问题中,抽象出数学的概念,得出数学的方法。这些数学知识,还有利于培养学生的数学应用意识和解决实际问题的能力。

  (5)部分内容作了适当的精简处理或编排调整。

  本单元中,比较重要的内容精简处理与编排调整,在前面揭示单元内容结构与联系的图示中,已有所显示。这里,再择要作些说明。

  其一,分数大小比较,不在第1节中单列一段,而是充分利用前面学习分数初步认识时打下的基础,把有关内容与通分结合在一起学习。这样既进一步简化了第1节的内容,也有利于发挥学习的正向迁移作用。

  其二,删去了原来第2节中把整数或带分数化成假分数的内容。这是因为根据课程标准,今后的分数运算中将不含带分数,所以无须再掌握把整数或带分数化成假分数的技能。考虑到把假分数化成带分数,容易看出这个假分数的大小在哪两个整数之间,从而有利于数感的形成;把能化成整数的假分数化成整数,是化简某些计算结果的需要。所以,把假分数化成带分数或整数的内容,仍然保留,但也作了简化,合在一个例题中予以解决。

  教学建议

  1、充分利用教材资源,用好直观手段。

  如前介绍,本单元教材在加强数学与现实世界的联系上作了不少努力,同时,教材还运用了多种形式的直观图示,数形集合,展现了数学概念的几何意义。从而为教师与学生提供了较为丰富的学习资源。教学时,应充分利用这些资源,以发挥形象思维和生活体验对于抽象思维的支持作用。

  本单元的特点之一就是概念较多,且比较抽象。而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,适当加大思维的形象性,化抽象为具体、为直观,对于顺利开展教学来说,是十分必要的。所谓化抽象为具体,就是通过具体的现实情境,调动学生相关生活经验来帮助理解。所谓化抽象为直观,就是运用适当的图形、图示来说明数学概念的含义,这是小学数学最常用的也是最主要的直观教学手段。

  2、及时抽象,在适当的抽象水平上,建构数学概念的意义。

  为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。例如:比较1/3与1/2的大小,有学生回答,不一定谁大谁小,要看他们分的那个圆,哪个大,由此得出1/3可能比1/2大,也可能比1/2小,还可能和1/2相等。造成这种错误认识的主要原因,就在于过分依赖直观,而没有及时抽象。因此,在充分展开直观教学,让学生获得足够的感性认识基础上,要不失时机地引导学生由实例、图示加以概括,建构概念的意义。

  3、揭示知识与方法的内在联系,在理解的基础上掌握方法。

  在本单元中,约分与通分、假分数化为带分数或整数、分数与小数的互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。尽管约分时分子、分母同除以一个适当的数,通分时分子、分母同乘一个适当的数,但它们都是依据分数的基本性质,使分数的大小保持不变。因此,教学时不宜就方法论方法,而应凸显得出方法的过程,使学生明白操作方法背后的算理。这样就能依靠理解掌握方法,而不是依赖记忆学会操作。

  4、这部分内容可以用20课时进行教学。

分数的意义教案5

  【教材分析】

  苏教版国标本小学数学第十册第36例1、“试一试”、“练一练”和练习六相关习题。这部分内容是在学生初步认识分数的基础上教学的,在三年级上册,学生已经学习把一个物体、一个图形平均分成几份,用几分之一、几分之几表示其中的一份或几份;在三年级下册,学生有学习了把由若干个物体组成的一个整体平均分成几份,用几分之一、几分之几表示其中的一份或几份。本堂课主要引导学生抽象出单位“1”的概念,概括分数的意义,认识分数单位。例1中首先让学生看图写分数,激活学生对分数的已有认识。然后分两个层次:1、让学生认识到这里分别是把一个物体、一个图形、一个计量单位、一些物体组成的整体平均分的,抽象出单位“1”的概念;2、再让学生认识到分数是把单位“1”平均分成了几份,表示这样的几份?完整的概括出分数的意义。最后让学生认识分数单位的含义。

  【教学目标】

  1、 使学生初步理解单位“1”和分数单位的含义,经历分数意义的.概括过程,进

  一步理解分数的意义。

  2、 使学生在学习分数的意义的过程中进一步培养分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。

  【教学重点】理解分数的意义,认识分数单位。

  【教学难点】理解、抽象出单位“1”。

  【教学准备】课件

  【教学过程】

  一、导入:

  谈话:在三年级,我们曾经分两次认识分数。你能举例说说什么是分数吗?

  二、新课

  1、教学例1

  (1)出示例1组图

  提问:你能用分数表示各图中的涂色部分?

  (学生独立完成在书上)

  追问:你能说说每个分数各表示什么?

  (同桌交流后班内汇报)

  教师根据学生回答,用课件逐渐展示板书。

  提问:第四个图与前三个图有什么不同吗?

  引导学生明确:一个饼可以称为一个物体、一个长方形是一个图形、1米是一个计量单位,而第四幅图是把6个圆看作一个整体。

  出示2/3

  提问:把( )平均分成3份,表示这样2份的数?

  学生讨论交流,班内汇报。

  猜测:可能是一个物体、一个图形、一个计量单位或许多物体组成的一个整体。

  说明:一个物体、一个图形、一个计量单位或许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

  追问:在这几个图里,分别是把什么看作单位“1”,平均分成了几份?表示这样的几份?

  提问:你能试着说说什么是分数吗?

  教师引导概括分数意义。

  (2)操作:铅笔、硬币、钟面、桃子图案

  提问:你能用手中的物品表示2/3吗?你是怎样想的?

  学生小组合作用提供的物品表示并交流想法。

  【设计意图】学生在概括单位“1”后,通过操作丰富单位“1”的表象,理解单位“1”不同,所表示的意义、数量都不同。

  (3)出示练习六(3)

  学生先按书上的说法,说说第1题中是把哪个数量看作单位“1”平均分成了几份,三好生有这样的几份;再参照第1题说说后两题中分数的意义。

  (4)出示练习六(4)

  先引导学生明确单位“1”,再依次出现平均分的点,让学生用分数表示并说说想法。

  (5)出示练习六(5)

  学生独立完成后交流所填分数有什么不同。

  2认识分数单位

  (1)谈话:整数、小数都有计数单位,例如:整数9的计数单位是1,9里面有9个1,0.9的计数单位是0.1,0.9里面有9个0.1。分数也有分数单位。例如:5/8里有5个1/8,5/8的分数单位是1/8,3/7、1/5、1/2呢?

  提问:你能说说什么是分数单位吗?

  学生讨论交流,教师引导揭示。

  【设计意图】联系整数、小数的计数单位,有助于学生正确理解分数单位。

  (2)完成“试一试”

  学生独立思考,同桌互说后班内交流。

  (3)完成“练一练”

  学生独立完成,班内交流订正。

  (4)完成练习六(1)

  同桌读一读,并说说每个分数的分数单位。

  提问:每个分数的分母与分数单位有什么关系?

  课堂小结:

  这节课,我们认识了是什么?生活还有哪些事物能用分数来表示,她们又是分别把谁看作单位“1”。找一找,和同学说一说。

分数的意义教案6

  教学内容:

  百分数的意义和写法(小学数学九年制义务教材第十一册).

  教学目标:

  通过教学,使学生正确理解百分数的意义,了解百分数与分数的异同,正确读写百分数.

  教学重点:

  百分数的意义.

  教学难点:

  百分数与分数的异同.

  教学过程:

  一、复习引入:

  教师小结:分数既可以表示数量,也可以表示关系.

  2.下面各句中的分数表示什么意思?(学生回答,教师在黑板上画出线段图.)

  提问:单位一是谁?分数表示谁与谁的关系?

  二、新课:

  1.意义:上面这些表示关系的分率和倍数都可以用一种新的数来表示,这种数叫百分数.

  (板书课题,并把上面句中和图中的分数改成百分数,指导读法.)

  (1)参加课外小组的人数占全年级的70%.(读作:百分之七十)

  (2)已经修了一条路的25%.(读作:百分之二十五)

  (3)今年的钢产量是去年的120%.(读作:百分之一百二十)

  提问:这些百分数在各句中分别表示谁与谁的关系?谁表示100份?

  像这样表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比.(补充板书)

  追问:百分数是一种什么数?

  2.指导写法:

  写百分数时,先写分子,再写百分号(70%),百分号先写左上角的圆圈,再写斜线,最后写右下角的圆圈,两个圆圈写的要比分子小.

  读百分数时,与分数的读法一样.(示范读法)

  练一练:用手指在桌上写一写,然后读一读.

  在本上写:25% 16.7% 1.25% 100% 131%

  3.比较百分数与分数的异同:(小组讨论后指名发言,教师出示投影)

  同:都是数,读法相同.

  异:(1)意义不同:分数是表示把单位一平均分成若干份,表示这样的一份或几份的数,既可以表示数量,也可以表示关系.百分数是表示一个数是另一个数的百分之几的数,只能表示关系,不能表示数量.

  (2)写法不同:写分数时,先写分数线,再写分母,最后写分子,分子、分母分别写在分数线的上下.写百分数时,先写分子,后面写上百分号.

  (3)使用范围不同:分数的分子只能比分母小,分子大于分母的要化成带分数或整数,不是最简分数的要化成最简分数,分子必须是整数.而百分数的分子可以比分母小,也可以比分母大,还可以和分母相等,可以是整数,也可以是小数.

  三、练习:

  1.读百分数:(互相读)

  1% 5% 99% 100% 300% 0.6% 38.3% 233.3%

  2.写百分数:(两组互相看)

  百分之七 百分之四十六

  百分之五点三 百分之三百一十点六

  百分之五十五 百分之四百

  百分之零点一 百分之百

  3.把下图中的阴影部分用百分数表示,说说阴影部分、空白部分各占整体的百分之几.

  4.用阴影表示下面的百分数,说说百分数表示谁占谁的百分之几.

  5.判断:(用手势表示)

  (1)一本书,已经看了它的.75%,还有25%没有看. ( )

  (2)一根绳子长50%米. ( )

  (3)分母是100的分数叫百分数. ( )

  (4)火车的速度比汽车快25%,火车的速度是汽车速度的125%. ( )

  6.看图填空:

  把( )看做单位一,( )占( )的60%,没走的路程占( )的( )%.

  把( )看做单位一,( )相当于( )的32%,苹果树是( )的( )%.

  把( )看作单位一,( )相当于( )的27%,现在用电是原来的( )%.

  四、总结:

  看着黑板概括一下今天的学习内容,你学会了什么?什么是百分数?怎样写?与分数有什么不同?

  四、布置作业:

  1.读书,复习今天的学习内容.

  2.书第68页5~8.

  五、板书设计:

分数的意义教案7

  教学内容:

  教科书第45,46页内容。

  教学目标:

  1、了解分数的产生,理解分数的意义。

  2 、理解单位“1”的含义,认识分数单位,能说明一个分数当中有几个分数单位。

  3、在理解分数含义的过程中,渗透比较,数形结合等数学思考方法,培养学生的抽象概括能力。

  教学重点:

  理解分数的意义。

  教学难点:

  理解单位“1”,认识分数单位。

  教学准备:

  学具:圆形,正方形,长方形,绳子等。

  教具:课件,磁扣。

  教学过程:

  一、复习导入

  1出示四分之一

  老师提问:同学们,你们认识这个数吗?那你们会读这个数吗?它的各个部分(用手指一指分数个部分)分别叫什么名字?

  学生思考回答、

  2老师小结:看来同学们对于以前学过的知识记得还挺清楚,今天我们将要继续学习有关分数的知识。请和老师一起半数课题。板书课题:分数的意义。

  二、探究、理解分数的意义。

  1、操作探究

  老师:请拿出你们准备的学具,认真阅读屏幕上的活动要求,开始操作。

  学生动手操作,老师巡视。

  2、反馈交流

  老师:现在谁来说一说你是怎样表示四分之一的?

  3、归纳小结,认识单位“1”

  老师:同学们说的都很好。现在请同学们再次观察你们刚刚完成的这些作品,看看他们有什么相同的地方,有什么不同的地方?先自己想一想,在和同桌说一说。

  学生:相同点都是平均分成了四份,取其中的一份。不同点是分得东西的总体和东西的数量不同。

  老师:我们再来回顾一下我们都平均分了什么?对了,我们平均分的可以是一个物体,也可以是一些物体(板书)我们在平均分时,把这一个物体或者一些物体都看做了一个整体(板书)把这一个整体平均分成四份,其中的一份用四分之一表示。这个整体我们也可以用自然数1来表示,我们通常把它叫做单位“1”(板书)

  老师:以前我们认识分数时知道:把一个物体平均分成若干份,表示其中一份或几份的数叫做分数。通过今天的学习,你想怎样更新分数的定义呢?学生自己归纳,并找几位学生说一说。

  老师:现在请同学们想一想,我们还可以把哪些东西看做单位一?

  4、再次研究四分之一,四分之三。

  老师;同学们,老师这里也有一幅图,可以用来表示四分之一,课件出示

  现在大家能看到的正是这幅图的.四分之一,你能猜到这幅图的整体是什么样子吗?

  老师:这里的四分之一是把什么看做了单位一?用纸盖住的部分该用哪个分数表示呢?为什么?

  5、研究几分之几。

  老师:看来你们都理解了四分之一和四分之三的含义了,接下来就请你们任意写一个人数,再和你的同桌说一说这个分数表示的意义。哪位同学愿意和大家分享一下你写的分数?(用分数的意义说)

  三、认识分数单位

  老师:同学们都说的很不错,下面同学们打开课本46页完成做一做。

  课件出示统一订正并出示分数单位的含义。

  出示几个分数,让学生或说他的分数单位。

  四、练习

  1、48页6,7题。

  2、课件拓展练习。

  五、看课件了解分数的产生。

  六、总结。

分数的意义教案8

  教学目标:

  1、使学生理解分数的意义及分子分母的含义。

  2、在操作、观察、思考、辨析等活动中,体会部分与整体的关系,感受分数的相对性。

  3、让学生亲身体验知识的形成过程,激发学生探索知识的强烈愿望和数学学习的兴趣。

  教学重点:通过具体的操作活动,使学生理解分数的意义,发展学生的数感。

  教学难点:在比较辨析中体会部分与整体的关系,感受分数的相对性。

  教学过程:

  一、导入

  出示:数

  1、你们都学过哪些数?(整数、小数、分数)

  把你知道的分数知识说出来,让我们大家分享一下好吗?

  预设:(1)分数有分母、分子、分数线

  (2)把一个苹果平均分成两份,取一份就是1/2

  (3)分数的比较大小

  2、关于分数,你还想知道什么呢?

  预设:(1)分数加减法

  (2)约分、通分

  看来大家的求知欲很强,今天咱们就继续研究分数

  二、实践操作,研究新知

  (一)认识单位1

  出示:1/4

  1、你能举例说明1/4的含义吗?把它画下来

  2、学生活动,教师巡视

  先完成的同学再举举其他的例子

  3、汇报交流

  学生边汇报,教师边板书

  预设:

  (1)我把一块蛋糕平均分成四份,这样的一份就是这块蛋糕的1/4

  板书:平均分

  强调:是谁的1/4

  (2)我把一个长方形平均分成四份,这样的一份就是这个长方形的1/4

  (3)我把一米平均分成四份,这样的一份就是一米的1/4

  (4)我把四根小棒平均分成四份,这样的'一份就是(这四根小棒的)1/4

  这一份是谁的1/4啊?(这四根小棒的)

  也就是说把这四根小棒看成了一个整体平均分成四份,这一份就是这个整体的1/4

  你们知道这个整体可以用什么来表示吗?(用自然数1来表示,通常把它叫做单位1。)这一份就是(单位1)的1/4

  上面这些图中,把谁看做单位1?分别说一说

  4、你还能把多少图形平均分,也能用1/4表示其中的一份?

  (5)我把八根小棒平均分成了四份,这样的一份就是这八根小棒的1/4

  这是把谁看成一个整体?(八根小棒),那么八根小棒就是(单位1)这样的一份就是(单位1)的1/4

  (6)我把12根小棒看做单位1,平均分成四份,这样的一份就是单位1的1/4

  5、请同学们观察我们操作的结果,有什么相同点和不同点?

  相同:都是平均分成四份,表示其中的一份,也就是意义相同

  不同:单位1不同,有的是把一个物体进行平均分,有的是把多个物体看成一个整体进行平均分

  分多个物体时,1/4一会表示1根,一会表示2根,一会表示3根

  6、通过观察你现在认为1/4与它们所分的物体的(个数)无关,也就是与(单位1无关)。无论物体的个数是多少,1/4的分母4,始终表示把它们平均分成四份,分子1始终表示其中的一份。只要把单位1平均分成四份,其中的一份就可以用1/4表示

  7、每一份出现数量不同是因为(单位1不同)

  8、如果把他们平均分成四份,表示其中的两份呢?(2/4)

  你能说说它表示的含义吗?三份呢?四份呢?

  1、刚刚通过大家的努力,我们用不同数量的物体找到了1/4,下面以小组合作的方式

  (1)、把12个图形平均分一分,你可以得到哪些分数?

  (2)、要求:以小组为单位操作,思考有几种分法。

  根据操作过程填写记录单。

  说清每个分数的含义。

  把()看做单位1,平均分成()份,表示这样的()份是()的(),是()个图形。

  记录单:

  方法一

  方法二

  方法三

  方法四

  画图表示

  用分数表示

  ()

  ()

  ()

  ()

  ()

  ()

  ()

  ()

  与分数对应的个数

  2、小组汇报,根据汇报情况,学生质疑、解答。

  结合表格或图说一说,每个分数中,分母表示的是什么?分子表示什么?这个分数表示什么含义?

  2、教师:这样的2份、3份是单位1的几分之几?是几个图形

  那也就说既可以平均分成若干份,又可以表示其中的一份或几份

  3、归纳概念:

  刚才大家开动脑筋,得出了这么多的分数,你能结合刚才的学习活动,结合表格试着总结出什么叫分数吗?

  师在学生回答的基础上概括小结:把单位1平均分成若干份,它的一份或几份就可以用分数来表示。这就是我们今天探究的内容分数的意义。(板书课题)

  三、简单应用,生活中解释意义

  1、分数不仅在我们的课堂中,而且还出现在我们的生活中。

  中国是一个干旱缺水严重的国家。淡水资源占全球水资源的6/100,我国人均占有水量是世界人均占有量的1/4,北京市的人均占有水量是全国人均占有量的1/8。

  学生自主阅读,结合具体情境说说每个分数的意义。

  谈谈你读后有什么感受。(感受分数与生活的联系,增强节约用水的意识)

  2、用分数表示下面个图中的涂色部分。

  3、判断并说明理由。

  四、总结

  通过这节课的学习,你对分数又有了哪些新的认识?有哪些收获?

分数的意义教案9

  学习内容:

  课本第76页例2及“做一做”第2题。

  学习目标:

  1.我能通过学习归纳概括出分数的基本性质,并能理解分数基本性质,运用分数基本性质解题。

  2.我能体会到数学知识间的内在联系,感受学习数学知识的价值。

  学习重难点:

  我能应用分数的基本性质解决简单的实际问题。

  学习过程:

  一、导入新课

  二、合作探究、检查独学

  1.自学教科书76页例2: 把和化成分母是12而大小不变的分数。

  (1)思考:① 要把2/3化成分母是12的`分数,我们就要把分母( )乘( )才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母3乘了个4,所以要使分数大小不变,就应该( )。最后分子分母都乘了个( ),就把2/3化成了分母是12的分数( )。

  ② 要把10/24化成分母是12的分数,我们就要把分母( )除以( )才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母24除以了个2,所以要使分数大小不变,就应该( )。最后分子分母都除以了个( ),就把10/24化成了分母是12的分数( )。

  (2)结合我们上面的思考,把教科书75页例2中的几个方框填完整。

  2.小组代表展示、汇报

  3.总结升华

  4.我能行: 完成课本第76页“做一做”第2题。

分数的意义教案10

  教学目标

  (一)使学生理解。

  (二)使学生知道分数各部分的名称和含义,知道一个分数的单位。

  (三)培养学生抽象概括能力。

  教学重点和难点

  (一)、分数单位的意义。

  (二)单位“1”的理解。

  教学用具

  投影片,教学图片。

  教学过程设计

  (一)复习准备

  1.口答下面各题:(2~4题用投影片)

  (1)把一块月饼平均分给两位小朋友,每位小朋友得到这块月饼的多少?

  (2)用分数表示下面各图中阴影部分。

  (3)哪个分数表示图中“( )”部分?

  2.教师:观察上面(1)~(3)题的答案,都不是整数。人们在进行测量和计算的时候,往往得不到整数结果,这时就需要同一种新的数,即分数来表示。以前我们已经初步认识了分数,今天继续研究分数。板书课题:。

  (二)学习新课

  1.。

  (1)依次出示教材84页第一组图中的三幅图。

  ①把糕点图贴在黑板上,用彩条把它平均分成两份。

  教师:请观察这幅图,是什么意思?

  说一说把谁拿来分?怎样分?分几份?每份是多少?

  ②把正方形图纸贴在黑板上。

  教师:请说一说这幅图是什么意思?

  (学生口答后补充板书)

  引导学生说出:把正方形纸平均分4份,空白部分占1份,阴影部

  ③贴出线段图。

  教师:我们把上面各题中平均分的一块糕点,一张正方形纸,一米长的线段,都叫做单位“1”。

  (2)投影出图。教师:有4个苹果,把它平均分4份,图上如何表示?(学生在投影图上用虚线表示。)

  教师:①图上表示把谁平均分?谁是单位“1”?②1个苹果是这堆苹果的多少?③3个苹果是这堆苹果的多少?(投影出题,学生讨论。)

  (因为苹果的总数是单位“1”,把它平均分4份,1个苹果是1份,是

  投影出图。

  教师:有6只熊猫玩具,要平均分,可以怎样分?谁做单位“1”?每份是多少?几份是多少?

  学生小组讨论,然后汇报。教师根据学生口答,板书出:

  教师:从上面这两个例子可以看出,单位“1”不仅可以是一个物体,一个计量单位,也可以是若干物体组成的一个整体,如一堆苹果,一批货物,一个班的同学等等。总之,把谁平均分,谁就是单位“1”。

  教师:单位“1”与自然数1有没有区别?

  学生讨论后老师小结:自然数1是一个数,它只表示某一个具体事物,如一本书,一位同学,一支笔,一道数学题等,它是自然数的.计数单位。而单位“1”不仅可以表示某一个具体的事物,还可以表示一堆,一群,一批等事物,它表示谁平均分的整体。

  (3)教师:请同学们看看板书的这些分数,谁能说一说究竟什么叫分数?

  学生讨论概括后老师板书:(或贴小黑板条)

  把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。

  (4)口答练习:(投影片)

  什么?各以什么为单位“1”?

  位“1”?

  2.认识分子,分母和分数单位。

  (1)请学生在板书的分数中任意选一个分数,指出它的分子、分母,并说明它们各表示什么?

  (2)教师板书分数,请学生说一说分子、分母,及各表示什么?学生口答后教师板书:

  教师:表示其中1份的数?

  小黑板条:分数单位。)

  练习:请说出下列分数的分数单位,并说出它含有几个分数单位。

  (三)巩固教案反馈

  1.课本86页做一做1,2,请两位同学填投影片,其余同学填在书上。集体订正。

  2.课本86页做一做(下)1,2,请两位同学填投影片,其余同学填在书上。集体订正。

  3.口答填空:(投影片)

  4.教师分别取出2根,4根,10根粉笔,请同学分别说出它们的

  教师汇总:单位“1”的数量不同,平均分成同样多的份数后,其中每份数的多少就不相同。

  (四)课堂总结与课后

  1.,分数单位的意义。

  2.分子、分母各表示什么。

  3.作业:课本87页练习十八,1,2,3,4,5。

  课堂教学设计说明

  本节内容是在学生已经对分数有了初步认识,会读会写简单分数的基础上进行的。分数意义的学习,充分利用直观图形和学生的活动来突破“平均分”这个关键。第一组中三幅图的设问,引导学生逐层深入地认识一个单位的几分之一和几分之几,同时也为概括作了铺垫。在认识多个物体组成的整体时,要求学生按自己的设想去分,这样给学生留有更多的思维活动空间,便于调动他们的学习热情。在学生已掌握了平均分谁,谁就是单位“1”的基础上,安排学生讨论单位“1”和自然数1的区别,这样既加深了对单位“1”的认识,也为学生概括分数意义作铺垫。学生准确地把握了后,认识分子,分母及分数单位,即水到渠成,练习中安排了较多形式的题目,进行巩固和加深。

  新课内容分为两部分。

  第一部分学习。分为四层:认识单位“1”是一个事物、一个计量单位的分数;认识单位“ 1”是一个整体的分数;概括分数意义;巩固概念。

  第二部分认识分子、分母和分数单位。分两层。了解分子,分母的含义;认识分数的单位。

分数的意义教案11

  教材分析:

  《分数的意义》是在学生初步认识分数的基础上系统学习的,也是把分数的概念由感性上升到理性的开始。分数的意义是今后学习分数四则运算和分数应用题的重要前提,对发展学生的思维能力有着重要作用。学生已经知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份可以用分数来表示。本节课重点是让学生理解不仅一个物体一个计量单位可用自然数1 来表示,许多物体看作的一个整体也可用自然数1 来表示,进而总结概括出分数的意义。

  教学目标:

  知识与技能:初步建立单位的概念,理解分数的意义以及分数单位的意义。

  能力与方法:通过主动学习探究,理解并形成分数的概念,培养学生的科学探究和实践能力。

  情感态度价值观:借助为分数配图,发展学生对美的体验与欣赏;揭示分数的产生,丰富学生的数学文化;通过同学间的合作,养成学生倾听、质疑等良好学习习惯。

  教学重点和难点:

  教学重点:建立单位的概念,能从具体实例中理解分数的意义。

  教学难点:准确理解单位.

  教学方法:

  本课坚持以学生为主体,教师为主导的原则。采用启发诱导、探究等教学法。通过动手操作直观演示 让学生充分感知,整堂课层层推进、步步深入。课堂中教师力求教给学生探索知识的方法,在引导学生在获取知识的同时,让他们归纳总结。

  教学用具准备:

  多媒体课件,准备圆形纸,正方形纸、练习纸、小木棒等多种学具。

  教学过程:

  一、理解单位

  1、谈话交流引入

  教师板书,同学们老师在黑板上写的是几?今天我们就从这个小小的来开始展开学习这节课的内容。

  老师往这一站就可以用几来表示?除了可以表示一个人,还可以表示什么?(生答:一台电脑、一块黑板、一张桌子等等)

  这个问题太简单了,一年级的孩子都知道,但现在我们是五年级的同学了。除了可以表示一个人、一台电脑、一块黑板等等,还可以有其它的表示方法吗?(引导学生说出还可以表示一群人、一堆物品、一排桌子等等)

  演示:课件出示生活中的物体,深入理解一个物体和一些物体都可以用来表示,加深对整体单位的理解。

  比较:现在的和以前的还是一样的意思吗?(现在的不但可以表示一个个物体,还可以表示一堆物体、一群物体等等。)

  结论:通过我们刚才的谈话和观察我们发现一个物体或是一些物体都可以看做一个整体,都可以用来表示。在数学中我们通常把这个广义的叫做单位。

  2、深入理解单位

  课件出示: 三个西瓜你会用几来表示?如果我想用单位来表示应该怎么办?(用集合圈把它圈起来)。六个西瓜还能用一来表示吗?那应该用几来表示呢?为什么?12 个西瓜呢?为什么?(因为这里有四圈也就是4个)

  总结:原来我们发现有一个单位就可以用1来表示。有几个单位就可以用几来表示。

  导入新课:这些都是我们了解的整数,可要是不足单位那还能用整数来表示吗?那你会想到什么数?揭示课题:分数的意义

  二、理解分数的意义

  课件出示四分之一,看到这个分数你想到了什么?(让学生自由回答,回忆三年级学过的内容。)

  1、理解一个物体的四分之一

  同学们刚才说的很好,课前老师给同学们准备了一些学具圆片、正方形纸、和练习册等等,利用这些材料折一折、分一分、画一画,找出四分之一。

  可引导学生想想:你是把什么看做一个整体单位的?分成了几份?其中的几份就是四分之一?

  学生可能会有以下的想法:

  生:把一个圆片平均分成4份,取其中的一份就是这个圆片的四分之一。

  生:把一张正方形平均分成4份,其中一份就是这张正方形纸的四分之一。

  生:把一条线段平均分成4份,其中的一份就是这张圆片的四分之一。

  ……强调:你在分时应该怎样分才合理?你找到的四分之一是把什么看作单位?是谁的四分之一?。

  2、理解一个整体的四分之一

  课件出示下面一些物体:你能不能从下面这些物体中找到出四分之一呢? 我想让同学们先交流交流,在练习纸上分一分,画一画找出四分之一,小组交流后汇报。

  在学生找的同时,引导他们思考:你是把什么看作单位的?平均分成了几份?取其中的几份就是单位的的四分之一?

  生:把这四个苹果平均分成4份,一份就是这4个苹果的四分之一。

  生:把八个正方体看做单位平均分成4份,1份就是这八个正方体的四分之一?

  生:把十二个五角星看作单位平均分成4份,1份就是这十二个五角星的四分之一。

  这个四分之一是把谁看做单位一呢?怎样才能把这四个苹果看做单位呢?课件展示四分之一的形成过程。

  操作:你们的学具袋中也有一些像老师这样许多物体组成的单位,拿出来画一画、分一分,从单位中找出四分之一,并和同学们交流交流。

  生:我把8个圆圈看做单位,平均分成4份,其中的1份就是这8个圆圈的四分之一。

  ……强调:你在分时是把谁看作单位。

  3、对比总结

  我们找到了这么多的四分之一,这些四分之一的单位相同吗?各是把谁看作单位?可为什么都用四分之一来表示呢?

  引导学生理解:虽然它们的单位不相同,但它们都是把单位平均分成四份,取了其中的`1份。

  4、寻找分母是四的其他分数

  课件出示刚刚同学们的操作材料想:除了四分之一你还能找到其他分母是4的分数吗?说说你是怎么找到的?

  5、创造分数

  拿出学具中的12根小棒,利用这些小棒摆一摆、分一分,看看你能从小棒中发现哪些分数。思考:你把这些小棒分成了几份其中的几份就是这12根小棒的几分之几?

  生:我把这些小棒分成了6份,我找到了六分之一,六分之二等等。

  生:我把这些小棒分成了3份,我找到了三分之一,三分之二等等。

  ……教师顺势板书学生找到的分数。

  6、总结分数的意义

  在前面观察、操作、交流的基础上我们可以总结出分数的意义:把单位平均分成若干份,其中的一份或几份都可以用分数来表示。

  三、认识分数单位

  告诉学生:分数和整数一样也有它的分数单位。在分数中把单位平均分成若干份,表示其中一份的数就是分数单位。如:四分之一、六分之一、三分之一、十二分之一都是分数单位。并让学生说说都是哪些分数的分数单位。如六分之一是六分之五的分数单位等等。

  练习:老师报数学生说出这个分数的分数单位,并说说有几个这样的分数单位。

  四、深化练习

  1、读读下面有关分数的资料,说说每个分数的具体含义,并谈谈你的感受。

  (1)我国小学生的近视人数约占总数的五分之一。

  (2)小学生睡眠不足的人数大约占总人数的三分之二,小学生每天的睡眠时间应占一天(24小时)的八分之三。

  (3)死海的表层的海水中含盐量达到了十分之三。

  2、用分数表示下面各图的涂色部分(见课件)

  3、下面各图中用分数表示的阴影部分对吗?说说理由。(见课件)

  4、图形中找分数

  图中蓝色部分是由一个长方形和一个正方形重叠后得到的,根据图形填空。

  图形中的蓝色部分面积各占大正方形面积的( ),占大长方形面积的( )、占整个图形面积的( )。

  5、数学智慧

  这里有三盒巧克力,老师要求只能拿走每盒巧克力的1/5,可是小玲却从第一盒中拿走了1颗,从第二盒中拿走了2颗,从第三盒中拿走了3颗,这是为什么?

分数的意义教案12

  教学目标

  1、使学生在已初步认识分数的基础上,进一步理解分数的意义。

  2、弄清分子、分母、分数单位的含义。

  3、掌握分数的读、写方法,培养学生的抽象、概括能力。

  教学重点

  理解和掌握分数的意义。

  教学难点

  抽象概括出分数的意义。

  教学过程

  一、讲授新课。

  (一)分数的'产生。

  1、请一位同学用米尺测量黑板的长,说一说,用“米”作单位,其结果能不能用整数表示?

  2、把一个苹果平均分给两个小朋友,每个小朋友分得的苹果数是不是整数?

  (板书课题:分数的意义)

  (二)分数的意义。

  1、以前我们已学过分数的初步认识,现在请大家仔细观察:下面把一个物体或一个计量单位平均分成了几份?想一想:其中的一份或几份怎样用分数来表示?

  (依次出现糕点图、正方形图、1米长的线段图)

  2、我们也可以把许多物体看作一个整体,如一堆苹果、一批玩具、一班学生等。

  出示图片“苹果图”

  教师提问:这幅图把什么看作一个整体?

  把它平均分成了几份?

  每份是几个苹果?

  每份苹果是这个整体的几分之几?

  (边讨论边板书)

  出示图片“熊猫图”

  教师提问:这幅图把什么看作一个整体?

  把它平均分成了几份?

  每份是几只熊猫玩具?每份是这个整体的几分之几?

  4只熊猫玩具是其中的几份?是这个整体的几分之几?

  (边讨论边板书)

  3、将下面的两幅图与上面的三幅图进行比较,它们有什么不同点与相同点?

  明确:一个物体、一个单位或是一些物体都可以看成整体1,都可以用自然数1来表示,通常我们把它叫做单位“1”,它们的相同点在于都是把各自的单位“1”平均分成若干份,取其中的一份或者几份。

  (板书:单位“1” 若干份 一份或者几份 分数)

  4、总结、归纳分数的意义。

  根据上面的例子,谁能说一说,什么样的数叫做分数?

分数的意义教案13

  教学目标:

  使学生理解当一个数为整数时,整数除以分数的计算方法,并能正确地进行计算。

  教学重点:

  整数除以分数的计算方法的推导。

  教学难点:

  理解“÷”转化为“×”的转化过程。

  教学过程:

  一、复习

  1、说一说÷18的意义。

  2、一辆汔车2小时行驶90千米,1小时行驶多少千米?

  (1)口述算式和结果。

  (2)板书:数量关系:速度=路程×时间

  二、新授

  今天,我们学习一个数除以分数,当这个数是整数时,怎样计算整数除以分数?

  板书课题:一个数除以分数

  (1)教学例2:出示例2,弄清题意后,由学生根据“速度=路程÷时间”列出算式?

  教师板书:18÷ (出示线段图)

  (2)推导18÷的计算方法。

  引导学生分两步进行计算

  第一部分:求小时行多少千米。

  提问

  1)、小时里面有几个小时?

  2)、2个小时行驶多少千米?

  3)、1个小时行驶多少千米?即小时行驶多少千米?

  明确:因为2个小时行18千米,所以要算18÷2,也就是18×(千米)。第二步:求1小时行多少千米。

  提问

  1)、1小时里面有几个小时?

  2)、1个小时行驶18×(千米),那么要求5个小时行驶多少千米,算式应该怎样写?

  明确

  1) 为1小时5个小时,所以,要算18××5,也就是18×。

  2) 18××5用18×代替,因为18××5=18×。(这里实际上是运用了乘法结合律)。

  根据上面的推想,板书:18÷=18×,=45千米

  答汔车1小时行驶45千米。

  强调

  1)18÷不便于直接除,把它转化乘法。

  2)18÷=18×,“÷”转化为“×”,被除数不变,除数发生了变化。

  3)是的倒数,即的`倒数是。

  2、小结:引导学生归纳整数除以分数的计算方法。

  板书:整数除以分数可以转化为乘以这个数的倒数。

  三、巩固练习

  1、在( )里填上适当的分数,使等式成立。

  15÷=15×( )10÷ =10×( )

  8÷=8×( ) ÷9=×( )

  2、列式计算。

  (1)一堆煤,每次用去 ,多少次才能用完?

  (2)王晶小时做15朵花,1小时做多少朵花?

  3、教科书第29页的“做一做”

  四、作业 练习八第1——4题。

分数的意义教案14

  教学目标

  1、使学生比较熟练地把低级单位的名数聚成高级单位的名数,正确地解答“求一个数是另一个数的几分之几”的应用题。

  2、能比较熟练地比较分数的大小。

  3、培养学生有序思考解决实际问题的能力。

  教学重点、难点

  重点、难点:比较分数的大小;解答“求一个数是另一个数的几分之几”的`应用题。

  教具、学具准备

  教学过程

  备 注

  一、单位换算的练习

  1、口答:

  1分米是1米的()/();1平方分米的()/();

  1分是1小时的()/();1克是1千克的()/()。

  你是怎样想的?把低级单位名数的方法怎样?

  出示:低级单位的数值÷进率=高级单位的数值(用分数表示)。

  2、学生独立作业:第80页练习十第1题。(做后同桌互查订正)

  二、分数大小比较的练习

  1、师:比较两个分数大小时一般会遇到哪几种情况?在比较时各采用了什么方法?为什么/你能举例来说一说吗?

  请举实例说明同分母分数与同分子分数是怎样进行大小比较的,并说说思考的方法。

  2、学生独立作业:第81页练习十第2题。

  直接做在书上,做后全班交并对其中的7/11和5/11;7/30和7/24说说比较时的思考过程。

  3、结合下列三题说说你是怎样比较三个分数的大小的?

  5/14、3/14和9/1411/13、11/12和11/143/5、3/4和2/5

  归纳:比较几个分数的大小,先根据比较大小的方法,认真进行比较,(要注意认真审题,题中是要求从大到小,还是从小到大排列,是用“〉”号连接,还是用“〈”号连接,再根据题意进行解答。

  思考下面问题:小明、小红和小华进行100米赛跑,三人的成绩分别是5/19分、6/18分和6/19分,谁跑得最快?谁跑的最慢?

  让学生先独立思考,然后小组讨论,在全班交流。主要让学生说说是怎样想的。

  4、学生独立作业。

  (1)比较下面每组数的大小,并用“〈”连接起来。

  6/17、1/23和6/1912/35、16/35和9/354/15、11/15和11/12

  教学过程

  备 注

  (2)第81页练习十第6题。

  5、一辆汽车从甲地开往乙地,一行了445千米,离乙地还有52千米。

  (1)已行的是剩下的几分之几?(2)剩下的是全程的几分之几?

  学生讨论列式解答并归纳:求一个数是另一个数的几分之几的关键是什么?方法怎么样?

  6、学生独立作业:课本第81页第4--5题。

  三、课堂

  通过这节课的练习你又有什么新的收获?你认为在练习中要注意些什么?还有什么问题需要讨论?

  四、作业《作业本》

  学生有序思考问题的能力还不够,要加强培养。

分数的意义教案15

  学习内容:

  教材第69页例1、例2,以及70页“做一做”。

  学习目标:

  1.我能理解真分数和假分数的意义。

  2.我能掌握真分数和假分数的特点。

  学习重点:

  理解真分数和假分数的意义。

  学习难点:

  掌握真分数和假分数的特点,掌握假分数与整数的互化。

  学习过程:

  一、导入新课

  二、合作探究、检查独学

  1.小组内检查独学部分的'题目完成情况,质疑探讨。

  2.思考:(1)理解真分数和假分数的意义,说一说自己的思维过程。

  我的想法:________________________________。

  (2)哪些假分数可以化成整数?哪些假分数不能化成整数?

  我的想法:________________________________。

  3.小组代表展示、汇报

  4.总结升华:

  我认识了________________的特征,真分数的分子比分母________,真分数____1;假分数的分子比分母________或分子和分数________,假分数____1。

  5.我能行:完成课本第70页“做一做”。

  (1)下列分数哪些是真分数,哪些是假分数?

  真分数:( );

  假分数:( )。

  (2)完成第70页“做一做”第2题。(做在书上)

【分数的意义教案】相关文章:

分数的意义教案 分数的意义公开课教案05-29

分数的意义教案01-02

《分数的意义》教案02-11

《分数的意义》教案模板10-12

分数的意义教案模板10-14

人教版分数的意义教案12-16

分数的意义教案优秀02-27

《分数的意义》教案14篇02-28

《分数的意义》教案(15篇)02-27