教案

三位数乘两位数教案

时间:2023-05-16 15:31:23 教案 我要投稿

【必备】三位数乘两位数教案三篇

  作为一位杰出的教职工,通常需要用到教案来辅助教学,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。教案应该怎么写才好呢?以下是小编为大家整理的三位数乘两位数教案3篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

【必备】三位数乘两位数教案三篇

三位数乘两位数教案 篇1

  教学目标:

  1、学生经历探索两位数乘两位数的计算方法的过程,初步掌握笔算方法,理解算理与方法。

  2、学生通过自主探索、合作交流,体验计算方法的多样化,并在相互比较中,自主掌握优化的方法。

  3、在探索算法与解决问题过程中,感受“借助旧知识,解决新问题”的策略意识,体验成功的喜悦,体会数学在生活中的应用价值。

  教学重点:在理解算理基础上掌握两位数乘两位数的笔算方法。

  教学难点:理解乘的'顺序以及第二部分积的书写方法

  教学准备:课件

  教学过程:

  环节一:情境引入

  1、师生谈话:

  老师准备买一些新书,在购书的过程中也隐含着很多的数学问题。

  2、引出新知:(课件出示:一本书23元)

  师:你想到了什么数学问题?生提问。

  老师如果买2本书要多少钱?买10本书呢?

  算式怎么列?会计算吗?

  这些算式同学们以前学过,是”旧”知识了.(板书旧)

  3、师提问题:如果要买12本这样的书,要多少元呢?(列式:23×12)

  这是一个两位数乘两位数的算式.(板书课题)

  环节二:算法探究

  1、估算:

  估一估,23×12大约是多少?比如

  A: 23估成20,12估成10,20×10=200。

  B: 23估成20,20×12=240。

  C: 12估成10,23×10=230。

  ……

  过渡:到底等于几?以前学过吗?这是个”新”问题(板书新),该怎么办啊?能不能把新问题转化成旧知识来解决呢?

  2、自主探索:

  学生独立在练习纸上计算23×12,教师进行巡视指导部分学困生。

  3、小组交流(学生组内交流)

  4、全班汇报:

  预计学生可能会出现下列当中的几类方法:

  (1)23+23+…+23=276(12个23相加)

  (2)23×2×6=276

  (3)23×10+23×2=276

  (4)竖式

  教学调控:每出现一种方法,应该让学生讲明算理与方法,并让下面的学生提出不明白的问题。(让学生借助图来说说算式的意思)

  5、优化口算的方法

  同学们真了不起。通过把12拆成两个数相加,或拆成两个数相乘。使这个新问题,变成了我们学过的知识来解决。

  ⑴你觉得把12怎么拆最简便呢?

  ⑵如果现在买13本,23×13你打算怎么算?

  ⑶探讨:为什么不用连乘法?

  ⑷教师指出:看来在计算时,连乘有局限性。拆成整十数和一位数不仅适用范围广,而且好算。

  6、研究笔算

  ⑴(生出现列竖式)刚才还有同学列竖式计算,勇敢的进行了尝试.现在谁愿意把你的竖式展示给大家看看.(直接反馈)

  (生没出现)师:我们以前学习两位数乘一位数的时候可以用竖式做,那两位数乘两位数可以吗?自己试着做做看。用这种方法做的时候要注意什么?(相同数位对齐,从个位算起)

  ⑵学生尝试列竖式。

  ⑶(投影机)反馈,全班交流(学生可能出现以下几种)

  2 3

  × 1 2

  276

  2 3 2 3 4 6

  ×2 × 1 0 +2 3 0

  4 6 2 3 0 2 7 6

  2 3

  × 1 2

  4 6…………2*23

  2 3 0…………10*23

  2 7 6 …………46+230

  2 3

  ×1 2

  4 6

  2 3

  2 7 6

  请列竖式的学生说说自己是怎么算的。请学生对他的算法提出不明白的问题?

  主要围绕以下几个问题:

  ①46是怎么来的?230呢?276?(根据学生回答,写出)

  (同学们观察一下,有没有发现什么?)(原来口算和笔算是相通的,只不过表达的形式不同而已)

  ②0是否可以省略?

  ③省略后23是否需要往后移?为什么3必须写在十位。

  ⑷师黑板板书完整算法。(好,我们现在一起来算一算)

  师边写边问:我要先算什么?再算什么?要注意什么?最后算什么?

  ⑸(同桌交流)竖式中每一步的意思。

  6、刚才我们通过拆数变成旧知识来算,现在又学会了列竖式.方法可真多呀!

  口算我们已经学过了。这节课我们要重点掌握列竖式来笔算两位数乘两位数。(完整板书)

  7、你能接着算吗?

  问:两个36,意思一样吗?

  8、选择练习:

  你能列竖式吗?选一道算一算

  出示:21×14= 25×11=

  34×21= 14×21=

  同桌互相检查,出现错误汇报。集体纠正

  你有什么发现?(交换两个因数的位置,积不变,我们可以用这种方法来进行乘法验算。

  10、总结梳理

  这节课我们在学习什么?(两位数乘两位数的笔算)碰到这个新问题我们是怎样来学习的?(把新问题转化成我们学过的旧知识)

  师:是呀,我们学习数学往往都是把新问题转化为旧知识来进行的,今天的新知识,对于后面要学的知识来说又变成了旧知识,因此我们必须今天的知识学好,学扎实。

  现在你能说说应该怎样笔算两位数乘两位数吗?

  现在我们就用今天的知识,去解决实际问题。

  环节三:实践应用

  有42个小朋友去游乐场。如果每个人都想玩这两个游乐项目,那么请你帮他们算一算,每个项目的费用是多少?

  游乐项目 价格

  碰碰车 12元/车 每车限坐2人

  丛林探险 14元/船 每船限坐4人

  拓展题:

  12×11= 13×11= 14×11=

  算一算,你有没有发现什么规律。

三位数乘两位数教案 篇2

  教学内容

  教材第33、34页,三位数乘两位数的口算。

  教学提示

  本部分的教学是口算乘法,包括:整百数乘整十数、几百几十的数乘整十数。这些内容是义务教育阶段有关整数口算乘法的教学目标,它是作为小学生应该具备的口算乘法技能的基本要求。教学时,要注意为学生创设问题情境,使学生能自主学习,掌握整数乘法的一般口算方法。

  教学目标

  理解整百数乘整十数和几百几十的数乘整十数的口算算理;掌握合理的口算方法。能正确进行口算,培养思维的灵活性,促进思维条理化。

  过程与方法

  经历过口算步骤的推导,初步培养学生的类推能力;结合形式多样的练习,培养学生学习数学的兴趣,积淀数学意识。

  情感、态度与价值观

  人人参与口算,是学生养成积极动脑、认真口算的良好学习习惯。

  教学重点、难点

  教学重点:理解整百数乘整十数和几百几十的数乘整十数的口算方法。。

  教学难点:掌握合理的口算思考过程,正确进行口算。

  教学准备

  教师准备:多媒体

  学生准备:课前小研究,学习用品

  教学过程

  (一)新课导入:

  1.复习回顾,谈话导入

  10个十是( ) 10个一百是( ) 12个一百是( ) 50个十是( ) 500个十是( ) 420个十是( )

  20×5 30×6 4×70 100×6 3×200 500×3 200×6 12×4

  学生开火车,直接说出得数。教师随机选两题,说一说口算方法。

  设计意图:通过复习整百数乘一位数的`乘法口算,帮助学生回忆口算的方法,为新课的学习做好铺垫。

  2.创设情景,导入新课,出示信息窗,找出数学信息。

  出示情境图信息窗一,让学生欣赏图片,搜集数学信息

  谈话:请大家仔细欣赏图片,并要认真阅读下面的文字,看你从图中能得到哪些信息?谁能发表你的看法?

  学生交流自己的想法。

  根据信息提出问题。

  谈话:根据我们得到的这些数学信息,你能提出什么数学问题?

  学生提出问题,教师把本节课要重点解决的问题板书在黑板上。

  提出学习目标:同学们提的问题还真多,我们本节课重点研究这几个问题,以完成这样的学习目标。

  (1)整百数或整百整十数乘整十数的口算方法。 (2)养成认真计算的良好学习习惯。 设计意图:使学生在熟悉的情境中,激发探究的欲望,为后面的学习做准备。

  (二)探究新知:

  自主探究,学习新知

  根据数学信息,提出数学问题

  根据你找到的数学信息,你想提出哪些数学问题?

  探索整百数乘整十数的口算方法

  (1)一组共发放了多少份宣传资料? 指名学生列式:400×20(板书) 得数是多少呢?

  (2)把你的算法在小组里互相说一说 指名小组代表交流 预设1:根据4×2=8,推算400×20=8000

  预设2:根据400×2=800,再算800×10=8000 预设3:先算4×20=80,再算80×100=8000

  (3)比较异同,优化算法

  其实这几种算法都是转化为我们学习过的算式进行计算。几种算法中你最喜欢哪种算法?

  交流讨论,让学生发现两个因数末尾0的个数与积末尾0的个数的关系,通过对比,让学生体会到确实用添0的方法来计算这些题最简便,那添0法到底是怎么样的?让学生分小组去归纳:只要先把0前面的数相乘,然后看两个因数末尾一共有几个0,就在积的末尾加上几个0。

  (4)即时练习:自主练习第一题,算一算,比一比,体会算法。

  探索几百几十乘整十数的口算。

  (1)教材34页红点问题:二组一共发放了多少份宣传资料?

  指名列式:210×30(板书)

  又该怎样计算呢?

  (2)把你的算法在小组里互相说一说。 指名小组代表交流。 预设1、先算21×3=63,再推算210×30=6300 预设2、先算210×3=630,再推算630×10=6300

  (3)优化算法:先把0前面的数相乘,然后看两个因数末尾一共有几个0,就在积的末尾加上几个0。

  设计意图:使学生掌握整数乘法口算的方法,体验解决问题策略的多样性。同时在对比中归纳出简便算法。

  (4)即时练习:自主练习第三题

  (三)巩固新知:

  自主练习1和3,直接写得数。

  让学生独立完成,然后讲一讲,集体订正。重点让学生说算法:怎样算?

  自主练习2,解决问题。

  学生说思路及解决问题的方法。

  设计意图:让学生经历从不同的角度思考可以解决问题,培养学生的发散思维,巩固本节课所学的知识。

  (四)达标反馈

  1.口算,我最棒!

  400×30= 90×600=

  50×200= 30×300=

  250×40= 490×20=

  160×50= 70×130=

  2.

  有30行苹果树,每行400棵,一共有多少棵苹果树?

三位数乘两位数教案 篇3

  教学内容:三位数乘两位数的笔算

  教学目的:

  1、使学生进一步掌握三位数乘两位数的方法,自己提高熟练程度。

  2、使学生在计算时遇到连续进位问题时会正确计算。

  3、培养学生初步的分析、类比、计算能力。

  教学过程:

  一、创设情境,激发兴趣

  同学们,0年广州亚运会取得圆满成功。广州市在比赛前作了大量的准备工作,咱们一块儿去了解一下关于修建高速公路方面的信息。

  (多媒体出示)为迎亚运,广州市修建了高速公路。一期工程历时14个月,平均每月修路86米;二期工程历时15个月,平均每个月修建213米;三期工程历时12个月,平均每个月修建260米。

  师:根据这些信息,你能提出什么数学问题?

  生交流,师选择性板书:

  一期工程全长多少米?

  二期工程全长多少米?

  三期工程全长多少米?

  师:一期工程全长多少米?请同学们做在练习本上。比比谁做得又对又快。学生交流算法。

  二、自主探究,解决问题:

  (一)探究新知:因数中没有0的三位数乘两位数的笔算

  解决问题:二期工程全长多少米?

  1、生列算式,师板书:213×15

  2、揭示课题:

  师:这两个算式有什么不同?

  这节课我们就一起来学习:三位数乘两位数的笔算

  (板书课题:三位数乘两位数的笔算)。

  学生试做,抽一生板演。

  做完小组内交流做法。

  3、集体交流。(出示错误做法。)

  1)展台展示,学生错误原因。

  重点交流:用第二个因数的十位数去乘第一个因数的个位数时,积的末位应该写在哪一位上,说明理由。

  (2)黑板板演的学生说一说计算过程:先算什么?再算什么?最后算什么?师根据学生的说法板书:213×5的积,213×10的积。

  4、小练习:456×19208×37

  (二)探究新知:因数末尾有0的三位数乘两位数的笔算。

  解决问题:三期工程全长多少米?

  1、生试做。

  2、师巡视,展台展示不同做法。

  260260

  ×12×12

  重点讨论:为什么积的末尾要加上0?(强调简便结果是384个10)

  3)算法最优化:哪种做法更简便?

  3、两个因数末尾都有0

  出示320×30,会做吗?

  学生试做。

  展示交流多种算法。

  4、:在计算因数末尾有0的.乘法时应注意什么?

  计算因数末尾有0的乘法,可以先用0前面的数相乘,再看两个乘数的末尾一共有几个0,就在乘得的积的末尾添几个0。

  三、巩固拓展

  1、第55页第1题

  2、第57页第8题生自己在书上改正后指名说说错误之处及错误原因。

  四、这节课你学会了什么?说说计算中应注意哪些问题?

【三位数乘两位数教案】相关文章:

三位数乘两位数的估算教案12-29

三位数乘两位数教学教案03-16

《三位数乘两位数的估算》教案设计04-15

【推荐】三位数乘两位数教案3篇05-16

三位数乘两位数教案合集9篇05-16

两位数乘两位数教案03-07

关于三位数乘两位数教案集合八篇05-16

关于三位数乘两位数教案模板合集八篇05-16

三位数乘两位数的笔算的教学方案03-07