教案

四年级数学教案《三角形》

时间:2024-04-03 18:44:33 教案 我要投稿

四年级数学教案《三角形》

  作为一名默默奉献的教育工作者,时常需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那么什么样的教案才是好的呢?以下是小编帮大家整理的四年级数学教案《三角形》,希望对大家有所帮助。

四年级数学教案《三角形》

四年级数学教案《三角形》1

  教学目标

  1、通过量、拼、折等方法,探索和发现三角形内角和是180度。

  2、已知三角形两个角的度数,会求出第三个叫的度数。教学重点

  引导学生发现三角形内角和是180度。教学难点:

  用不同方法探究、验证三角形的内角和是180度。教具、学具准备课件、量角器、白纸一张教学过程

  一、激趣引入

  (一)认识三角形的内角。

  师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?生:三角形是由三条线段围成的图形。生:三角形有三个角……

  出示课件:(课件演示三条线段围成三角形的过程)。三条线段围成三角形后,在三角形内形成了三个角(课件分别闪烁三个角及角的弧线),我们把三角形里面的这三个角叫做三角形的内角。

  [设计意图:通过学生回顾已学知识对三角形有一个更为深刻的认识,特别是让学生认识什么是内角非常有必要,是对学生概念认识的培养。]

  (二)设疑,激发学生探究新知的心理师:请同学们任意画一个三角形,能做到吗?生:能。

  师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)师:有谁画出来啦?生1:不能画。生2:只能画两个直角。生3:只能画长方形。

  师(课件演示):是不是画成这个样子了?哦,只能画两个直角。师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?生:想。

  师:那就让我们一起来研究三角形的内角和吧(揭示矛盾,巧妙引入新知的探究)

  [设计意图:借助矛盾让学生明确三角形内角和的取值范围,为下面进一步研究打下基础。]

  二、动手操作,探究新知

  (一)研究特殊三角形的内角和

  师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)

  生:90°、60°、30°。(课件演示:由三角板抽象出三角形)师:也就是这个三角形各角的度数。它们的和怎样?生:是180°。师:你是怎样知道的?生:90°+60°+30°=180°。

  师:对,把三角形三个内角的度数合起来就叫三角形的内角和。师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

  生:90°+45°+45°=180°。

  师:从刚才两个三角形内角和的计算中,你发现什么?生1:这两个三角形的内角和都是180°。

  生2:这两个三角形都是直角三角形,并且是特殊的三角形。

  [设计意图:让学生经历从特殊到一般的研究过程,使学生明白要想得到一个结论指通过特例是不行的,可以先借助特例研究出的结果,然后研究一般例子来验证是否是一样的结论。经历过程比得到一个结论更重要。]

  (二)研究一般三角形内角和1.猜一猜。

  师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。生1:180°。生2:不一定。 ……

  2.操作、验证一般三角形内角和是180°。

  ●(1)小组合作、进行探究。

  师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

  生:可以先量出每个内角的度数,再加起来。师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。) (2)小组汇报结果。师:请各小组汇报探究结果。生1:180°。生2:175°。生3:182°。

  ……

  [设计意图:让学生明白在研究的过程中会出现误差,但出现误差时我们应该做的是另寻方法得到结论。]

  (三)继续探究

  师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?生1:有。

  生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

  师:怎样才能把三个内角放在一起呢?生:把它们剪下来放在一起。 1.用拼合的.方法验证。

  师:很好,请用不同的三角形来验证。

  师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。 2.汇报验证结果。

  师:先验证锐角三角形,我们得出什么结论?

  生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

  生2:直角三角形的内角和也是180°。生3:钝角三角形的内角和还是180°。 3.课件演示验证结果。

  师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

  师:我们可以得出一个怎样的结论?生:三角形的内角和是180°。

  (教师板书:三角形的内角和是180°学生齐读一遍。)师:为什么用测量计算的方法不能得到统一的结果呢?生1:量的不准。生2:有的量角器有误差。师:对,这就是测量的误差。

  师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

  生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。

  师:在一个三角形中,有没有可能有两个钝角呢?生:不可能。师:为什么?

  生:因为两个锐角和已经超过了180°。师:那有没有可能有两个锐角呢?

  生:有,在一个三角形中最少有两个内角是锐角。

  [设计意图:锻炼学生的思维创新意识,让学生在小组讨论合作交流的过程中得出三角形内角和的结论,经历思考、验证的过程。] 3.游戏巩固。在四人小组中完成:由一个同学出题,其它三个同学回答。(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。

  四、全课总结。

  今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?

  五、课堂检测课堂检测A

  1、在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。

  2、求出三角形各个角的度数。

  3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70度,它的顶角是多少度?

  课堂检测B

  1、你能画出一个有两个直角或两个钝角的三角形吗?为什么?

  2、根据三角形的内角和,你能求出下面图形的内角和吗?

  3、如图:∠1=( ),∠2=( )

  六、布置作业

  任意画五个四边形想办法求出任意四边形的内角和并思考四边形的内角和和三角形的内角和有什么关系? 参考答案:课堂检测A

  1、∠2的度数是15度

  2、(1)60度(2)42度(3)50度

  3、顶角是40度课堂检测B

  1、不能,因为三角形的内角和是180度,所以三个角的度数加起来不可能超过180度。

  2、1080度540度

  3、∠1=( 100度),∠2=( 60度)

四年级数学教案《三角形》2

  教学目标

  ⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。

  ⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。

  ⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

  教学重点:检验三角形的内角和是180°。

  教学难点:引导学生通过实验探究得出三角形的内角和是180度。

  教学环节:问题情境与

  教师活动:学生活动媒体应用设计意图

  目标达成

  导入新课

  一、复习旧知,导入新课。

  1、复习三角形分类的知识。

  师出示三角形,生快速说出它的名称。

  2、什么是三角形的内角?

  我们通常所说的角就是三角形的内角。为了便于称呼,我们习惯用∠A、∠B、∠c来表示。

  什么是三角形的内角和?

  三角形“三个内角的度数之和”就是三角形的内角和。用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。

  3、今天这节课啊我们就一起来研究三角形的.内角和。(揭题:三角形的内角和)

  由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的体现出三内角求和的关系

  二、动手操作,探究新知

  1、出示三角板,猜一猜。

  师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数

  把三角形三个内角的度数合起来就叫三角形的内角和。是不是所有的三角形的内角和都是180°呢?你能肯定吗?

  我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

  3.学生测量

  4.汇报的测量结果

  除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°

  5、巩固知识。

  一个三角形中能不能有两个直角?能不能有2个钝角?

  环节

  三、应用所学,解决问题。

  1、基础练习(课本第68页做一做)

  在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。

  2、判断题

  (1)大三角形的内角和大于180度。()

  (2)三角形的内角和可能是180度。()

  (3)一个三角形中最多只能有一个直角。()

  (4)三角形的三个内角分别可能是30度,60度,70度。()

  3、求出下面三角形各角的度数。

  (1)我三边相等。

  (2)我是等腰三角形,我的顶角是96°。(3)我有一个锐角是40°。

  四、总结:这节课你有什么收获?

四年级数学教案《三角形》3

  教学目标:

  1、让学生亲自动手,通过量、剪、拼等活动,发现并证实三角形的内角和是180°,应用三角形内角和的知识解决实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识,探索精神和实践能力。

  重点、难点:

  经历“三角形内角和是180°”这一知识的形成,发展和应用的全过程。

  三角形内角和是180°的探索和验证。

  教学过程:

  一、揭示课题

  1、今天我们一起来学习三角形的内角和,那什么是三角形的内角和?(三角形里面的角),它有几个内角?(三个)出示纸片,那什么又是三角形的内角和呢?(把三角形的三个角的度数加起来就是三角形的内角和)

  出示课件

  2、提出问题,为后面做铺垫。

  现在有3个三角形(出示课件),直角三角形说:“我是直角三角形,我的内角和最大”钝角三角形说:“我有一个钝角,比你们三个角都大,所以我的内角和才是最大的。锐角三角形说:“我虽然是锐角三角形,但我的个头最大,所以我的内角和才是最大的。

  孩子们,它们这样吵起来可不是办法呀!你们可知道它们谁的内角和最大呢?那我们就一起来证明给他们看。

  二、新授

  1、任意画不同的类型的三角形,算一算三个内角和是多少度。我们就画三个不同类型的三角形,算一算三个内角和是多少度,我们有三大组,为了节约时间,每一大组画一种又分几小组,三人一小组,一人画,一人量,一人记录。(小组合作,画图,量角,记录,计算)

  指名汇报结果并板书(至少一种一个板书),有不同意见的.举手,相差1、2度很正常,量角会有误差(你们完成的又快又好,因此可见小组合作很到位)

  师出示一个大直角三角板,请大家算一算这个三角板的内角和是多少?

  (三角形的内角和都是一样大的,都是180°,仅仅一个实验还不能让它们心服口服,下面我们再来做两个实验,让它们心服口服)

  1、拼一拼,折一折

  孩子们,我们又活动起来吧,拼一拼折一折,让它们看一看,拿出你们准备好的三角形。我们一起来:拿出一个三角形(不管形状),撕下三个角,然后拼在一起(注意三个角的顶点要在同一个点上)你们发现了什么?(拼成了一个平角,这一点就是平角的顶点)

  我们再拿出一个三角形,折一折(注意科学的严谨性,折的时候不留很宽的缝隙)你又发现了什么?(这个三角形还是组成了一个平角)

  通过这三次实验,我们可以得出结论:三角形的内角和等于180°,不分形状,不分大小,任何一个三角形的内角和都是180°

  此时,这三个三角形还争吵吗?它们都心服口服了。

  孩子们,你们真了不起,轻而易举就平息了一场争吵。现在你能不能利用所学知识解决一些问题呢?

  三、练习

  1、抢答游戏(答对的给你的那一小组加一分)

  ①

  这个三角形的内角和是多少度。

  ②

  把这个三角形平均分成两个小三角形,每个小三角形是多少度。

  ③

  这个小三角形再分成一大一小两个三角形,这个三角形的内角和分别是多少度?

  ④

  三个小三角形拼成一个更大的三角形,它的内角和是多少度?

  2、智慧角

  3、判断(用手语表示)(哪个小组同学全部举手,就由哪个小组回答,口说手划答对加一分)

  4、知识扩展

  其实三角形的内角和是一个小朋友发现并提出来的,当时他只有12岁,比你们大一点点,真了不起,你们想知道他是谁吗?(帕斯卡)

  出示课件

  孩子们,其实你们跟他们同样聪明,以后,我们就利用所学知识去发现探索新的知识和规律,只要努力,就一定会成功的,孩子们加油吧!

  四、总结

  任何一个三角形不分大小,不分形状,它们的内角和都是180°

四年级数学教案《三角形》4

  教学目标

  1.使学生理解三角形的意义,掌握三角形的特征和特性,能按角的不同给三角形分类.

  2.培养学生观察能力和动手操作能力.

  教学重点

  正确认识三角形及其分类.

  教学难点

  正确掌握画三角形高的方法.

  教学过程

  一、联系生活,课前调查.

  课前调查:找一找,生活中有哪些物体的外形或表面是三角形?请收集和拍摄这类的图片.

  二、创设情境,导入 新课.

  1.让学生说说生活中见到的三角形.

  投影展示:学生展示收集到的有关三角形的图片.

  2.出示下图:

  3.导入 新课.

  教师导入 :看来生活中的三角形无处不在.关于三角形你还想了解它什么?

  整理学生发言,并提出以下学习目标:

  (1)什么叫三角形?

  (2)三角形有哪些特征?

  (3)三角形具有什么特性?

  (4)三角形怎样分类?

  今天我们就一起来认识三角形.(板书课题:三角形)

  三、师生互动,引导探索.

  1.教学三角形的意义.

  (1)教师:请同学们拿出三根小棒,如果把每根小棒看做是三角形的一条边,你们分组摆一摆,并互相交流一下,知道了什么?

  (2)继续演示课件“三角形”.

  教师:看一看哪组和你摆的一样,它们是三角形吗?

  (3)分组讨论:如果我们摆三角形用的三根小棒看作三条线段,那么什么样的图形叫做三角形呢?

  (4)教师演示三根小棒是怎样摆的,从而使学生知道一根接着一根连在一起的,随后明确这是围成的.(板书:围成)

  (5)揭示概念.

  教师启发同学互相补充,口述三角形的含义.(教师板书)

  (6)练一练:继续演示课件“三角形”.

  2.教学三角形的特征:

  (1)自学:①三角形各部分名称叫什么?

  ②三角形有几条边、几个角、几个顶点?

  (2)继续演示课件“三角形”出示三角形各部分名称.

  教师提问:什么叫三角形的边?三角形有几条边?

  同桌讨论:这些三角形都有哪此共同的特征?

  引导学生用一句话概括三角形的`特征.

  (3)结合手里三角形学具、边摸边说出它的特征.

  3.三角形的特性.

  (1)用三角形木框实验.

  学生尝试:让学生用手拉一拉这个三角形,感觉怎么样?你发现了什么?同桌互相拉一拉.

  引导学生得出结论:三角形的木框不易变形.

  提问:为什么这些部位要制成三角形呢?

  (2)实验:出示三角形、平行四边形(用木条钉成的)教具,让学生试拉一拉它们.感觉如何?你发现了什么?

  提问:要使平行四边形不变形,应怎么办?(加一条边构成一个三角形)

  (3)揭示特性.

  (4)师小结:房架、自行车架等之所以制成三角形的其中很重要的一个原因是利用了三角形的稳定性,使其结实耐用.

  (5)你还能举例子说明吗?

  4.三角形的分类.

  (1)让学生任意画一个三角形(或剪一个三角形)

  (2)对三角形进行分类.

  ①学生猜测:三角形按角的特点可以分为哪几类?

  ②教师揭示:通常我们根据三角形角的特点分成三类.分别是锐角三角形、直角三角形和钝角三角形.

  ③小组讨论:你画或剪的三角形属于哪一类?找同学代表把三角形贴在黑板相应的集合图中.

  ④组织学生观察并分组讨论:这些角有什么特点,可以分成几类?

  ⑤教师小结:三个角都是锐角的三角形叫做锐角三角形;

  有一个角是直角的三角形叫做直角三角形.

  有一个角是钝角的三角形叫做钝角三角形.

  ⑥认识三角形之间的关系.继续演示课件“三角形”.

  教师提问:如果我们把所有的三角形看作一个整体,这个整体是由哪几部分组成的呢?

  (3))三角形按边进行分类.

  全班同学共同测量课本137页上部的三角形.

  教师提问:通过测量你发现这些三角形边、角各有什么特点?

  引导学生得出:每个三角形的三条边长度都相等,每个三角形的三个角都相等.

  教师指出并板书:三条边都相等的三角形叫做等边三角形,又叫做正三角形.等边三角形的三个角都相等.

  引导学生比较等边三角形与等腰三角形,使学生明确:等边三角形是特殊等腰三角形.

  5.认识三角形的底和高,并画高.

  (1)画锐角三角形,教师边作图边说明.

  教师说明:我们已经学过从直线外一点向直线作垂线的方法.现在利用这个知识来认识三角形的高.

  教师提问:锐角三角形有几条高?如果从B点画高,它的底边是哪条线段?如果从C点画高,它的底边是哪条线段?

  引导学生明确:锐角三角形的底和高不止一个,从任何一个顶点都可以向它的对边作高.这样三角形就有3个底和3个高.

  (2)画直角三角形.

  讨论:直角三角形的高应该怎样画?

  使学生明确:因为直角三角形两条边成直角,所以夹直角的一条边是高,另一条边就是底.

  教师提问:再找一找另外一条高在哪儿?

  使学生明确:从直角的顶点向斜边作一条垂线,所以直角三角形的另一条高在斜边上.

  (3)教师演示怎样画钝角三角形的高.

  (4)教师强调说明:每画完一条高,要标上垂足.

  6.教学三角形的内角和.【演示动画“三角形内角和定理”】

  (1)量一量下面每个三角形中三个内角的度数.算一算三角形三个内角的和是多少度.

  教师:怎样能知道三角形的三个内角和的准确度数呢?

  (2)实验:

  指导学生拿一个直角三角形,按下图的顺序,把∠1和∠2沿虚线折过来.观察一下,知道了什么?

  使学生明确:∠1+∠2=∠3=90°.

  指导学生拿一个锐角三角形,按下图的顺序,把∠1、∠2、∠3沿虚线折过来.观察一下,知道了什么?

  使学生明确:∠1+∠2+∠3=180°.

  ③指导学生用一个钝角三角形再试一试.

  (3)引导学生总结:三角形的内角和是180°.

  (4)根据三角形内角的是180°,如果知道三角形是两个角的度数,就能求出第三个角的度数.

  出示例题,引导学生读题,分析题意.

  列式计算.

  (5)练习:“做一做”.

  在三角形中,已知∠1=140°,∠3=25°,求∠2.

  四、巩固练习.

  1.在信封中藏一个三角形,只露出一个锐角,请同学们猜一猜是什么三角形?

  提问:为什么不能确定?

  2.判断.

  ①由三条线段组成的图形叫做三角形.

  ②三角形有三条边、三个角、三个顶点.

  ③有两个角是锐角的三角形一定是锐角三角形.

  ④直角三角形只有一个直角.

  3.操作题.

  在下面的图形中画出一个条线段.

  (1)把这个三角形分成两个锐角三角形?

  (2)把这个三角形分成两个钝角三角形?

  (3)把这个三角形分成两个直角三角形?

  4.实践题.

  小红家的椅子用了很多年了,有点摇摇晃晃了.请同学们帮她想想办法,该如何修理?

  5.说出下面每个三角形的名称,并画出每个三角形的高.

  五、教师小结.

  通过学习,你掌握或学会了什么?

  六、布置作业 .

  140页10题

  下图是一块菜地,它外面的篱笆围成了一个等边三角形.这个篱笆的周长是多少?

  140页11题

  用七巧板拼三角形.

  用两块拼一个三角形,你想出几种拼法?

  用四块拼一个三角形,你想出几种拼法?

  用七块拼一个三角形,你想出几种拼法?

  141页14题

  已知∠1和∠2是直角三角形中的两个锐角.

  (1)∠1=50°,求∠2.

  (2)∠2=48°,求∠1.

  板书设计

  探究活动

  听指挥

  游戏地点

  操场

  游戏用具

  皮筋(封闭的)

  游戏方法

  1.将全班学生分成各小组.每组4人,其中三人按老师要求利用皮筋围成三角形,另外一人负责举旗,当本组完成时,该同学举起小旗,以示做好.

  2.老师可以说任意一种三角形.例如:当老师说“直角三角形”,三个同学就开始围(三个同学各在三个顶点位置),另一个同学认为围好了就举起小旗,先举起小旗者为胜.当说出其它三角形时,游戏方法同上.

四年级数学教案《三角形》5

  (一)教学目标

  1.使学生认识三角形的特性,知道三角形任意两边之和大于第三边以及三角形的内角和是180°。

  2.使学生认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形,知道这些三角形的特点并能够辨认和区别它们。

  3.联系生活实际并通过拼摆、设计等活动,使学生进一步感受三角形的特征及三角形与四边形的联系,感受数学的转化思想,感受数学与生活的联系,学会欣赏数学美。

  4.使学生在探索图形的特征、图形的变换以及图形的设计活动中进一步发展空间观念,提高观察能力和动手操作能力。

  (二)教材说明和教学建议

  教材说明

  1.本单元的内容及作用。

  学生通过第一学段以及四年级上册对空间与图形内容的学习,对三角形已经有了直观的认识,能够从平面图形中分辨出三角形。本单元内容的设计是在上述内容基础上进行的,通过这一内容的教学进一步丰富学生对三角形的认识和理解。

  本单元主要内容有:三角形的特性、三角形两边之和大于第三边、三角形的分类、三角形内角和是180°及图形的拼组。内容结构及具体例题安排如下表:

  三角形是常见的一种图形,在平面图形中,三角形是最简单的多边形,也是最基本的多边形,一个多边形都可以分割成若干个三角形。三角形的稳定性在实践中有着广泛的应用。因此把握好这部分内容的教学不仅可以从形的方面加深学生对周围事物的理解,发展学生的空间观念,而且可以在动手操作、探索实验和联系生活应用数学方面拓展学生的知识面,发展学生的思维能力和解决实际问题的能力。同时也为以后学习图形的面积计算打下基础。

  2.本单元教材的编写特点。

  (1)关注学生的已有经验,强调数学知识与现实生活的密切联系。

  儿童有一种与生俱来,以自我为中心的探索性学习方式,他们的知识经验是在与客观世界的相互作用中逐渐形成的,这些知识与经验是他们进一步学习的基础。为使儿童以一种积极的心态调动原有的知识经验,认识新问题,建构他们自己新的知识与经验,教材的编写注意从学生已有的经验出发,创设丰富多彩的与现实生活联系紧密的情境和动手实验活动,以帮助学生理解数学概念,构建数学知识。例如:对“三角形的分类”这一内容,教材根据学生已懂得了角的分类,能区分锐角、钝角、直角、平角与周角这一基础,设计了“给三角形分类”活动,放手让学生自己在“给三角形分类”的探索活动中了解和把握各种三角形的特征。又如,对三角形的稳定性的设计,教材提供了较丰富的三角形在生活中应用的直观图,让学生联系生活思考:“哪儿有三角形?它们有什么作用?”然后让学生亲自做一个实验感受三角形的稳定性。这不仅是认识几何形体特征的需要,而且有助于学生切实感受到数学对于解决生活实际问题的价值。

  (2)重视创设问题情景,让学生在动手操作、积极探索的活动过程中掌握知识。

  几何初步知识无论是线、面、体的特征还是图形的特征、性质,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分运用其直观性进行教学。“要让学生动手做科学,而不是用耳朵听科学”,让学生带着问题,动手、动口、动脑,调动多种感官参与数学学习活动,在活动中获得知识。基于这样的考虑,教材在提供大量形象的感性材料的同时,加强了数学问题情景、操作探索活动的设计。例如“三角形任意两边的和大于第三边”这一部分内容,创设了“我上学走中间这条路最近”“这是什么原因呢?”这种学生熟悉而有趣的问题情境,让学生去探索、去实验、去发现。从而让学生在动手操作积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力。

  (3)教学内容的呈现不但体现知识的形成过程,而且给学生留有充分自主探索和交流的空间。

  经过第一学段的学习,学生已经具备一定的关于三角形的认识的直接经验,获得相应的知识和技能,为感受、理解抽象的概念,自主探索图形的性质打下了基础。为方便教师领会教材编写的理念与意图,开展有效的教学,更好地发展学生的空间观念、培养学生各种能力,教材在呈现教学内容时,不但重视体现知识形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活地组织教学提供了清晰的思路。这主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。例如,三角形三边之间的关系、三角形的内角和、三角形与四边形的联系等,均是让学生在操作、探索中发现,形成结论。

  (4)加强对图形之间的关系的认识。

  本单元增加了“图形的拼组”,让学生再次感受三角形的特征及三角形与四边形的联系与区别,从而了解数学知识之间的内在联系,进一步发展学生的空间观念和动手操作、探索能力。

  教学建议

  1.准确把握本册关于“三角形的认识”的教学目标。

  这一学段的学生已经积累了一些有关“空间与图形”的知识和经验,形成了一定程度的空间感。他们对周围事物的感知和理解的能力以及探索图形及其关系的愿望不断提高,具备了一定的抽象思维能力,可以在比较抽象的水平上认识图形,进行探索。因此,本册对三角形认识的教学目标与第一学段“获得对简单平面图形的直观经验”有所不同,应使学生通过观察、操作、推理等手段,逐步认识三角形。因此,在进行本单元的教学,如落实“了解三角形任意两边的和大于第三边”“三角形内角和是180°”等内容的具体目标时,不仅要求学生积极参与各种形式的实践活动,而且要积极引导学生对活动过程和结果进行判断分析、推理思考和抽象概括,让学生在学习知识的过程中提高能力。

  2.重视实践活动,让学生在探索中获取知识。

  “数学学习的过程实际上是数学活动的过程”,学生对图形的认识是在活动中逐步建立起来的。回忆生活经验、观察实物、动手操作、推理想像等都是学习理解抽象的几何概念的重要手段,也是发展学生空间观念的途径。教学时,应从学生的生活实践出发,给予学生充分从事数学活动的时间和空间,让他们通过观察、操作、有条理的思考和推理、交流等活动,经历从现实空间抽象出几何图形的、探索图形性质及其变化规律的过程,从而获得对图形的认识,发展空间观念。

  3.促进教学中的数学交流。

  数学在信息社会应用广泛,重要的原因之一就是数学能够用非常简明的方式、经济有效地、精确地表达和交流思想。交流可以帮助学生在他们的直觉的观念与抽象的数学语言、符号之间建立联系。由于学生的个体差异,不同的学生认识事物的方法不尽相同。教师要重视为学生创设交流的情境,提供“数学对话”的机会,鼓励学生用耳、用口、用眼、用手去表达自己的思想和接受他人的思想。这样的过程有助于培养学生的参与意识,学会用不同的方式探索、思考、解释问题,不断提高自己的思维水平。

  4.注重教具、学具和现代教学手段的运用,加强教学的直观性。

  几何图形的直观性为各种教学手段的运用提供了广阔的空间,利用各种教具、学具和现代教学技术,可以使学生认识和探索图形的过程更具有趣味性和挑战性,也是进一步发展学生空间观念和实践能力的有效途径。但在运用各种教学手段时,要注意切合实际,易操作而有实效。一些农村学校由于条件所限,不能配备丰富多彩的教学具,教师必须因地制宜充分挖掘当地资源,积极发动学生制作。学生在制作过程中不但可以激发学习的兴趣而且可以加深对图形的认识。

  5.本单元可安排6课时进行教学。

  (三)具体内容的说明和教学建议

  三角形的特性

  (第80~82页)

  本节包括三角形的定义、三角形各部分名称、三角形的稳定性、三角形任意两边的和大于第三边等内容。

  1.情境图。

  编写意图

  这是一幅建筑工地场景图,图上楼房建筑框架上、脚手架上包含有大量的三角形。教材提供了这样一幅三角形在生活中应用的直观图,目的是让学生联系生活实际思考并说一说“哪些物体上有三角形?”激发学生学习三角形的兴趣,而且引起学生对三角形及其在生活的作用的思考。

  教学建议

  教学时,可以先出示情境图,也可以先让学生说一说生活中的三角形,再看情境图,教师可根据个人的需要灵活处理。为让学生进一步研究三角形的特征,了解三角形的作用做好准备。

  2.例1。

  编写意图

  (1)例1是有关三角形定义的教学。教材让学生在“画三角形”的操作活动中进一步感知三角形的属性,抽象出概念。这样有利于学生借助直接经验,把抽象的概念和具体的图形联系起来。

  (2)出示三角形的定义后,教材在已学的垂直概念的基础上,引入了三角形的底和高。三角形的底和高实际上是一组互相垂直的线段,这两个概念在学习三角形面积的计算时要用到。

  (3)最后,为了便于表述,教材说明如何用字母表示三角形。

  教学建议

  (1)教学时,要充分考虑到学生已有的生活经验和知识基础,恰当把握教学要求。三角形是生活中常见的图形,在第一学段学生已初步认识过。这里重点是引导学生发现三角形的特征,概括出三角形的定义。

  (2)教学三角形的定义时,可让学生在纸卡上画出三角形,思考所画的三角形有几条边?几个角和几个顶点?并尝试标出三角形的边、角、顶点。然后在小组内展示,观察并找出这些三角形的共同点,使学生明确三角形的特征。接着让学生尝试概括三角形的含义,再与课本上的定义比较,着重理解“围成”。之后可出示一组含正、反例的图形让学生辨析,建立正确的三角形概念。

  (3)教学三角形的底和高时,可让学生在例1的基础上,选择画好的三角形的一个顶点向它的对边做一条垂线。然后指出顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。再让学生在小组内展示自己所画的底和高。最后请学生思考、操作“你还能在三角形内画出其他的底和高吗?”但要注意的是在钝角三角形两条短边上做的高在三角形外,学生比较难理解,在小学阶段不作要求。

  这部分内容的教学也可以由实例入手,让学生量出三角形房顶或斜拉索桥的高度,引出底和高的概念进行教学。

  (4)最后说明为了表达方便,可以用字母来表示三角形,并说明如何表示。

  3.例2。

  编写意图

  稳定性是三角形的重要特性,在生活中有着广泛的应用。对它进行教学可以让学生对三角形有更为全面和深入的认识,同时有利于培养学生的实践精神和实践能力。教材对这一内容的设计思路是“情境、问题—实验、解释—特性应用”。

  教学建议

  (1)教学时,可先出示教材中的插图,引导学生讨论、交流:图上哪儿有三角形?它们有什么作用?然后组织学生用课前制作的三角形进行实验,了解三角形的稳定性。最后请学生列举三角形稳定性在生活中应用的例子。

  (2)稳定性的实验也可以这样设计:先出示一个长方形画框,拉动使其变形,请学生思考“为什么会这样?”“怎样才能把画框固定?”然后请学生用课前制作的三角形进行实验,发现特性。最后列举生活实例,并进行应用——把画框固定。

  4.例3。

  编写意图

  (1)教学三角形边的关系——任意两边的和大于第三边。

  (2)教材首先呈现了情境图,通过学生熟悉的生活实例创设问题情境,引发学生对三角形边的关系的思考。然后让学生动手实验,探究规律。

  教学建议

  (1)教学时,可先出示情境图,提出问题“从小明家到学校有几条路?”“哪条路最近呢?”“这是什么原因?”引导学生思考、交流。由于学生还未正式学习三角形边的关系,因此在交流原因时,要鼓励学生结合生活经验谈看法,用自己的话来描述,教师不要作过多的评论,以保护学生学习的积极性。

  (2)接着组织学生以小组合作学习的方式进行实验、探究。探究的重点放在引导学生讨论“第(2)、(3)组纸条为什么摆不成三角形?”然后请学生交流自己在探究中的发现,形成结论。最后用自己的发现解释引入中的问题“为什么小明上学走中间这条路最近”。

  (3)引入时,也可以用学生熟悉的人和街道创设类似教材中的情境,如选择班上某个同学或老师上学(上班)的路线图,或同学们到电影院看电影的路线图等,使学生感到数学是在研究自己周围的人和事,解决生活中的问题。

  三角形的分类

  (第83~84页)

  1.例4。

  编写意图

  (1)三角形的分类,教材分两个层次编排。第一层次,按角分,认识锐角三角形、直角三角形、钝角三角形;第二层次,按边分,认识特殊的三角形:等腰三角形和等边三角形。

  (2)一般来说,进行分类的基本原则是不重复、不遗漏。对三角形按角进行分类即符合上述原则。教材中用集合图直观地表示出,三角形整个集合与锐角三角形、直角三角形、钝角三角形之间整体与部分的关系。

  (3)三角形按边分类,可以分为不等边三角形和等腰三角形。等腰三角形里又包含等边三角形。但按边分类难一些,为避免增加学生的负担,教材不强调分成了几类,着重引导学生认识等腰三角形、等边三角形边和角的特征。

  教材在学生按边分类的活动中,引出等腰三角形和等边三角形,分别给出两种三角形各部分的名称。并通过让学生量一量它们的各个角,来认识它们的角的特征。最后让学生找一找这两种特殊的三角形。

  教学建议

  (1)教学时,可以以小组为单位把课前剪好的三角形分类。教师不要给出分类的标准,要让小组商量按什么分,然后进行操作。

  (2)小组汇报时,抓住其中按角分的情况要求其他小组也试一试。交流、汇报时,首先让各小组谈谈把哪些三角形分为一类,为什么。再请学生给三类三角形命名。然后引导学生比较这三类三角形的三个角,看有什么相同点和不同点。再指出什么叫锐角三角形、直角三角形、钝角三角形。使学生明确:每个三角形都至少有两个锐角,另外一个角是锐角、直角、钝角中的一个。最后用集合图表示出三种三角形之间的关系。

  (3)按边分类,在学生分出不等边三角形和等腰三角形两类后,再引导学生对等腰三角形进一步分类,就此引出等腰三角形和等边三角形。并告诉学生这两种三角形各部分的名称。在认识等腰三角形、等边三角形后,可让学生观察猜测这两种三角形角的特征,然后测量验证,再列举这两种特殊三角形在生活中的应用。

  (4)“做一做”在点子图上画三角形,可以根据班级情况提出不同层次的要求:一种是让学生任意画,然后说说是什么三角形;另一种是让学生画出不同形状的三角形,这需要学生考虑所围图形的特性,是一个探究与构思的过程,难度要大些。

  三角形的内角和

  (第85~89页)

  三角形的内角和是180°是三角形的一个重要性质。它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

  1.例5及“做一做”。

  编写意图

  (1)教材先通过让学生度量不同类型的三角形的内角度数,并分别计算出它们的和,使学生初步感知到它们的内角和是180°。在此基础上,教材再提出用实验的方法加以验证。

  (2)实验的方法是把一个三角形的三个角剪下来,引导学生拼成一个平角来加以验证,并概括三角形的内角和是180°。

  (3)“做一做”应用这一结论解决问题,使学生知道,在一个三角形中,已知两个角的度数,可以用“三角形的内角和是180°”求第三个角的度数。

  教学建议

  (1)教学时可先安排猜角游戏,以激发学生的兴趣,调动学生探索的愿望。如,可以先让学生猜一猜三角形三个内角的和大概是多少度。然后小组合作画出几个不同类型的三角形,再量一量、算一算每个三角形内角的和各是多少度。也可以让学生先量出三角形每个内角的度数,报出其中两个内角的度数,请教师猜第三个内角的度数,结果老师总是能猜出来。以此激起学生的疑问,然后请学生算一算每个三角形内角和的度数。使学生初步感知它们的和大约是180°,是不是准确呢?再引导学生用实验来验证,进而概括出结论。

  (2)最后让引导学生应用“三角形内角和等于180°”完成“做一做”。

  (3)教学时要注意两点:一是应使学生先理解“内角”“内角和”的含义;二是为了使所得的结论具有普遍性,要分别对锐角三角形、直角三角形、钝角三角形进行操作实验。

  2.关于练习十四中一些习题的说明和教学建议。

  第5题,有的蚂蚁可以从两个洞口进入。如,等腰直角三角形既可以进直角三角形的洞,又可以进等腰三角形的洞,这一点要注意引导学生发现。

  第7题,猜一猜的游戏可在小组内进行,猜的内容不应局限于教材上的一种,可先准备好多个三角形,由1人报出1个三角形的某个特征,其他同学猜测。

  第13题,这类操作有利于培养空间观念,剪的方法或步骤也不一定相同,可由学生自行探索,再组织交流,只要学生的方法可行,就应给予肯定。

  第12、16*题,都是通过把多边形分割成若干个三角形,根据三角形的内角和是180°求出多边形的内角和。教学时应指导学生进行分割(转化),其中长方形、正方形还可以通过90°×4=360°的'方法来验证。对于学有余力的学生,还可以扩展:五边形、八边形……的内角和是多少?引导学生探究规律。

  第17*题,学生一般会通过有顺序地数的办法得出结果。有的也可能将数出的每个图的三角形个数的规律转化为数列的规律。

  三角形的个数

  引导学生发现每增加一条线就增加2,3,4…个三角形(见上图第二行数列)。还可以指导学生在有规律地数三角形个数时发现(见上图第三行数列):

  三角形个数=单个三角形个数+两个单个三角形组成的三角形个数+三个单个三角形组成的三角形个数+…

  如,第四个图形,单个三角形的个数是4,其三角形的总个数为4+3+2+1=10(个)。

  图形的拼组

  (第90~94页)

  本小节安排了两个例题,例6让学生用三角形拼出不同的四边形,例7让学生用三角形拼组图案。使学生进一步体会三角形的特征,体会平面图形之间的关系,学习用联系变化的观点看待事物,并为图形面积的学习打基础。

  1.例6。

  编写意图

  (1)安排了一个用同样大小的三角形拼四边形的活动,让学生从中体会三角形与四边形的关系。

  (2)在此基础上,教材提出想一想:任何两个相同的三角形都可以拼成一个四边形吗?使学生通过动手拼摆,了解到可以拼成,并且拼成的四边形可以是平行四边形、长方形和正方形等。由此为后面学习平行四边形面积的计算打基础。

  教学建议

  (1)具体活动时,不一定按教材提供的思路拼,可以让学生自主拼,看用同样的三角形可以拼出哪些四边形,并说一说是怎么拼摆的。

  (2)自主拼摆后,可提出:是不是任何两个相同的三角形都可以拼成一个四边形?让学生通过动手拼摆回答这一问题。在汇报结果时,让学生说一说用两个相同的三角形拼成了哪些四边形,使学生明确拼成的四边形可能是平行四边形、长方形或正方形等。还可以让学生看一看它们都是由什么样的三角形拼成的,为进一步学习做铺垫。

  2.例7及“做一做”。

  编写意图

  (1)安排了用三角形拼出美丽图案的活动,进一步感受三角形与其他图形的关系,同时享受创作的快乐,感受数学美。

  (2)作为范例,教材呈现了几种用三角形拼出的实物图:美丽的孔雀、健壮的马、卡通式的船、可爱的房子。

  (3)“做一做”要求用七巧板设计自己喜欢的图案。

  教学建议

  (1)本例所用的三角形,可以鼓励学生课前用色纸剪出。各种三角形多准备一些。

  (2)本例可以设计成“我是图案设计大师”等活动。可以让学生共同设计,设计后展示交流,互相欣赏。展示作品时,可先让大家猜一猜拼出的是什么,看像不像,并说一说作品中包含哪些图形。使学生进一步体会三角形和其他图形之间的关系。书上的图案可让学生欣赏一下,如学生有兴趣也可以照着拼一拼,并说一说每个图案中包含哪些图形。

  (3)“做一做”中要用到七巧板,如果学生没有可以让他们用三角形拼制,从中进一步体会三角形与其他图形的关系,同时初步感知三角形是最基本的平面图形。

  3.关于练习十五中一些习题的说明和教学建议。

  第3题,在点子图上画等腰三角形和直角三角形,每种都要求画出两个不同的。如果学生画出的两个三角形共用一条边(如下)也是可以的。

  第4题,可以让学生利用“三角形两边的和大于第三边”直接判断哪三根小棒可以摆出一个三角形。能摆出的三角形一共有四种:2 ,5,6;2,6,6;5,6,6;6,6,6。学生能摆几种就摆几种,不必举全。但要指导学生有序思考。

  第7题,问用直角三角形、等边三角形拼指定的图形,至少需要几个。教学时,可以让学生动手拼一拼。如果有学生直接在所要拼成的图形中画线,看其中含有几个规定的三角形,对于这种逆思考教师要给予表扬。

  教科书第93页思考题,指导用正方形纸剪等边三角形。其过程见下图:

  折到第③步时,要注意提醒学生将AB边向上折起,B点要与折痕相交(交点C),这样沿BC、CA剪就能得到一个等边三角形,为什么呢?原因是AC是由AB翻折过去得到的,所以AC=AB。而AC与BC,又可通过将剪好的三角形沿折痕对折完全重合,说明AC=BC。这一原因可以让学生通过测量讨论探究。

  4.生活中的数学。

  编写意图

  (1)本单元之后,教材安排了“生活中的数学”介绍平面图形密铺的知识。

  (2)密铺在生活中非常普遍,如家庭、商场、街道用地砖铺的地板、走廊,厕所里铺的墙壁等,密铺成的图案绚丽、美观,装扮了我们的生活,给我们以美的享受。教材因版面所限仅提供了一些用长方形、正方形、三角形密铺起来的图案,让学生知道什么是密铺并感受密铺创造的美。并在最后展现了自然界中的密铺现象,即小蜜蜂用六边形密铺成的蜂窝,让学生在感受自然界奥秘的同时惊叹于小蜜蜂的独运匠心。

  教学建议

  (1)教学时,在学生知道密铺的概念后,教师还可以展示更多的密铺图案,让学生欣赏,谈谈感受并说说每种图案是由哪些平面图形拼成的,使学生初步感知到长方形、正方形、三角形、六边形可以用来密铺。同时也可让学生举出生活中的一些密铺图案,感受数学在生活中的应用。

  (2)要注意这里介绍密铺,主要是使学生感受平面图形给生活带来的美,体会数学的应用价值。对于密铺的概念只要学生了解就可以了,不要拔高要求,如对于什么样的平面图形可以用来密铺不要让学生研究。

  (四)参考教案

  课题一:三角形的特性

  教学内容:教科书第80、81页,练习十四第1、2、3题。

  教学目标:

  1.通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。

  2.通过实验,使学生知道三角形的稳定性及其在生活中的应用。

  3.培养学生观察、操作的能力和应用数学知识解决实际问题的能力。

  4.体验数学与生活的联系,培养学生学习数学的兴趣。

  教具、学具准备:师生分别准备木条(或硬纸条)钉成的三角形。

  教学过程:

  一、联系生活,情境导入

  1.展示课本第80页情境图:我们的城市日新月异,每天都有新的变化。

  瞧,这是正在建设中的会展中心,不久的将来就会落成,成为我们城市新的标志性建筑。你在建筑框架上、吊车上发现三角形了吗?请你描出几个三角形。

  2.让学生说一说:生活中还有哪些物体上有三角形。

  3.出示一些生活中常见的物体上的三角形:电视接收塔上的三角形、铁桥上的三角形、交通标志牌上的三角形、晾衣架上的三角形等。

  4.导入课题:三角形在生活中有这么广泛的运用,究竟它有什么特点?这节课我们将对它进行深入的研究。(板书课题)

  二、操作感知,理解概念

  1.发现三角形的特征。

  请你画出一个三角形。边画边想:三角形有几条边?几个角?几个顶点?

  展示学生画的三角形,组织交流:三角形有什么特点?

  让学生在自己画的三角形上尝试标出边、角、顶点。

  反馈,教师根据学生的汇报板书,标出三角形各部分的名称。

  2.概括三角形的定义。

  引导:大家对三角形的特征达成了一致的看法。能不能用自己的话概括一下,什么样的图形叫三角形?

  学生的回答可能有下面几种情况:

  (1)有三条边的图形叫三角形或有三个角的图形叫三角形;

  (2)有三条边、三个角的图形叫三角形;

  (3)有三条边、三个角、三个顶点的图形叫三角形;

  (4)由三条边组成的图形叫三角形;

  (5)由三条线段围成的图形叫三角形。

  请学生对照上面的说法,议一议:下面的图形是不是三角形?

  讨论:哪种说法更准确?

  阅读课本:课本是怎样概括三角形的定义的?你认为三角形的定义中哪些词最重要?

  组织学生在讨论中理解“三条线段”“围成”。

  3.认识三角形的底和高。

  出示练习纸:三角形屋顶的房子和斜拉桥。

  你能测量出三角形房顶和斜拉桥的高度吗?

  学生在练习纸上操作。反馈:你是怎么测量的?

  指出:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

  出示教材第81页上的三角形。提问:这是三角形的一组底和高吗?在这个三角形中,你还能画出其他的底和高吗?

  学生操作,然后评议交流。

  三、实验解疑,探索特性

  1.提出问题。

  出示教材第81页插图:图中哪儿有三角形?生产、生活中为什么要把这些部分做成三角形的,它具有什么特性?

  2.实验解疑。

  下面,请大家都来做一个实验。

  学生拿出预先做好的三角形、四边形学具,分小组实验:拉一拉学具,有什么发现?

  实验结果:三角形具有稳定性。

  请学生举出生活中应用三角形稳定性的例子。

  四、巩固运用,提高认识

  指导学生完成练习十四1、2、3题。

  五、总结评价,质疑问难

  这节课我们学习了什么?你对三角形有了哪些进一步的认识?还有什么有关三角形的问题?

  课题二:三角形任意两边的和大于第三边

  教学内容:教科书第82页。

  教学目标:

  1.探究三角形三边的关系,知道三角形任意两条边的和大于第三边。

  2.根据三角形三边的关系解释生活中的现象,提高运用数学知识解决实际问题的能力;提高观察、思考、抽象概括能力和动手操作能力。

  3.积极参与探究活动,在活动中获得成功的体验,产生学习的兴趣。

  学具:不同长度的小棒。

  教学过程:

  一、创设情境

  1.出示:课本82页例3情境图。

  (1)这是小明同学上学的路线。请大家仔细观察,他可以怎样走?

  (2)在这几条路线中哪条最近?为什么?

  2.大家都认为走中间这条路最近,这是什么原因呢?

  请大家看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?那么走中间这条路,走过的路程是三角形的一条边,走旁边的路走过的路程实质上是三角形的另两条边的和,根据刚才大家的判断,走三角形的两条边的和要比第三边大,那么,是不是所有的三角形的三条边都有这样的关系呢?

  我们来做个实验。

  二、实验探究

  1.实验1:用三根小棒摆一个三角形。

  在每个小组的桌上都有5根小棒,请大家随意拿三根来摆三角形,看看有什么发现?

  学生动手操作,发现随意拿三根小棒不一定都能摆成三角形。接着引导学生观察和比较摆不成三角形的三根小棒,寻找原因,深入思考。

  2.实验2:进一步探究三根小棒在什么情况下摆不成三角形。

  (1)每个小组用以下四组小棒来摆三角形,并作好记录。

  (2)观察上表结果,说一说不能摆成三角形的情况有几种?为什么?

  (3)能摆成三角形的三根小棒又有什么规律?

  (4)师生归纳总结:三角形任意两边的和大于第三边。

  三、应用深化

  1. 通过实验,我们知道了三角形三条边的一个规律,你能用它来解释小明家到学校哪条路最近的原因吗?

  2. 请学生独立完成86页练习十四的第4题:在能拼成三角形的各组小棒下面画“√”。(单位:厘米)

  问:我们是否要把三条线段中的每两条线段都相加后才能作出判断?有没有快捷的方法?(用较小的两条线段的和与第三条线段的关系来检验。)

  你能用下图中的三条线段组成三角形吗?有什么办法?

  3.有两根长度分别为2 cm和5 cm的木棒。

  (1)用长度为3 cm的木棒与它们能摆成三角形吗?为什么?

  (2)用长度为1 cm的木棒与它们能摆成三角形吗?为什么?

  (3)要能摆成三角形,第三边能用的木棒的长度范围是。

  四、反思回顾

  在这节课里,你有什么收获?学会了什么知识?是怎样学习的?

四年级数学教案《三角形》6

  学科:数学

  年级/册:4年级下册

  教材版本:人教版

  课题名称:4年级下册第五单元《三角形的内角和》

  教学目标:

  掌握探究方法(猜想—验证—归纳总结),学会用“转化”的数学思想探究三角形内角和。

  重难点分析

  重点分析:教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。

  难点分析:通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。但是围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,这些初步的数学交流能力还欠缺。

  教学方法:

  1、探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的习惯。

  2、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。

  教学过程

  导入:各位同学大家好,今天由我来和大家一起学习人教版四年级下册《三角形的内角和》,我们前面学习和了解了三角形的相关知识,请大家说说三角形按角分,可以分成哪几类?知识讲解(难点突破)

  例五:画出几个不同类型的三角形。量一量,算一算,三角形3个内角的和各是多少度?解决这个问题的时候,我们先来了解一下什么是三角形的内角和?

  讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

  (一)量一量:我们如何解决这个问题呢?

  同学们请看,这里有一个直角三角形,我们先分别量一量这个直角三角形三个内角的度数并标注。90°30°60°现在我们将这三个内角的度数加起来等于180度°通过测量计算发现这个直角三角形内角和都是180°,是不是所有直角三角形的内角和都是180°呢?同学们你们也来量一量你刚才画的直角三角形3个内角的度数,算一算是不是也和老师的结果一样呢?注意在测量要认真,力求准确。停顿数秒从刚才的测量和计算结果中,你发现了什么?你是不是发现直角三角形的内角和都是180°当然有些同学的.测量结果不是等于180°,这是我们在测量时,由于在测量工具、测量方法等各方面的原因,使我们的测量结果存在一定的误差。实际上,直角三角形三角形内角和就等于180°。

  (二)

  1、提出猜想:刚才我们通过测量和计算发现了直角三角形内角和等于180,那你能不能大胆的猜测一下:锐角三角形内角和,钝角三角形的内角和是不是也是180°呢?

  2、动手操作,验证猜想这时每个同学的心中都有了猜测的答案,这个猜想是否成立呢?除了用量角器量一量,你还有其他办法来验证吗?聪明的你,是不是想到好办法了,那就快快动手吧!

  方法:

  A、拼一拼的方法

  B、折一折的方法把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,通过折叠的方法,三角形的三个内角折到一起正好组成一个平角,所以也能证明三角形的内角和是180°。

  同学们我们通过量一量拼一拼折一折,发现无论是直角三角形,锐角三角形钝角三角形,它们内角和都等于180度,我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

  小结:通过剪拼的方法,把三个角剪下来,拼在一起,三角形的三个内角正好拼成一个平角,因为平角是180°,所以三角形的内角和是180°三角形的形状和大小虽然不同,但是三角形的内角和都是180度。说明三角形的内角和和他的形状大小无关

  课堂练习(难点巩固)

  总结:我们今天用量一量,折一折,拼一拼的方法得到了三角形的内角和等于180°这一结论,希望同学们在在以后的学习中大胆探索,去发现数学的奥秘吧!我们今天的课程就到这里了,同学们再见!

四年级数学教案《三角形》7

  教学内容:

  人教版《义务教育课程标准实验教科书数学》四年级下册第80、81页的内容。

  教学目标:

  1.让学生在观察、操作和交流等活动中,经历认识三角形的过程。

  2.认识三角形各部分名称,会画三角形的高,了解三角形具有稳定性特征。

  3.体验三角形的稳定性在生活中的广泛应用,感受几何图形与现实生活的密切联系。

  教学重点:

  理解三角形的特性;在三角形内画高。

  教学难点:

  理解三角形高和底的含义,会在三角形内画高。

  教学准备:

  多媒体、长方形、正方形、三角形学具、小棒、钉子板、直尺、三角板。

  教学过程:

  一、联系实际,引出课题感知三角形

  1.谈话导入。

  2.学生汇报交流自己收集到的有关三角形信息。

  3.教师展示三角形在生活中应用的图片。

  谈话引出课题:“你想学习有关三角形的什么知识呢?(板书课题:三角形的认识。)

  二、动手操作,探索新知

  1.动手制作三角形,概括三角形定义。

  (1)学生利用老师提供的材料动手操作,选择自己喜欢的方式做一个三角形。(制作材料:小棒、钉子板、直尺、三角板。)

  (2)学生展示交流制作的三角形,并说说自己是怎么做的。

  (3)观察思考:这些三角形有什么相同地方?

  (4)认识三角形组成,初步概括三角形定义。

  (5)教师出示有关图形,引起学生质疑,通过学生思考讨论,正确概括出三角形定义。

  (6)判断练习。

  2.理解三角形的底和高。

  (1)情境创设。

  “美丽的南宁邕江上有一座白沙大桥,从侧面看大桥的框架就是一个三角形,工程师想测量大桥从桥顶到桥面的距离,你认为怎样去测量?”

  (2)出示白沙大桥实物图和平面图。

  (3)学生在平面图上试画出测量方法。

  (4)学生展示并汇报自己的`测量方法。

  (5)学生阅读课本自学三角形底和高的有关内容。

  (6)师生共同学习三角形高的画法。

  (7)学生练习画高。

  3.认识三角形的稳定性。

  (1)联系实际生活,为学生初步感受三角形的稳定性做准备。

  (2)动手操作学具,体验三角形的稳定性。

  (3)利用三角形的稳定性,解决实际生活问题。

  (4)学生联系实际,找出三角形稳定性在生活中的应用。

  (5)欣赏三角形在生活中的应用。

  三、总结本课内容

  1.学生说说本节课收获。

  2.教师总结。

四年级数学教案《三角形》8

  教学目标

  知识与能力:学生通过测量、撕拼的方法探索和发现三角形三个内角和是180°。

  过程与方法:学生经历合理猜想和验证三角形内角度数和等于180°的过程,发展空间观念及分析推理能力。

  情感态度和价值观:学生在活动中体验成功的喜悦,激发学生探索数学的愿望和兴趣。

  重点难点

  教学重点:

  探究发现三角形的内角和是180度。

  教学难点:

  在猜想和验证三角形内角和的过程中发展空间观念。

  教学过程

  活动1【导入】理解内角、内角和概念

  1、谜语引入:形状似座山,稳定性能坚,三竿首尾连,学问不简单,打一几何图形猜一猜是什么?

  Q:结合谜面的信息来说一说三角形有什么特点?

  2、介绍内角:这三个角都在三角形的里面,又叫内角。

  Q:三角形有几个内角?

  3、介绍内角和:把三个内角的度数加起来求和就是三角形的内角和。

  引出课题:今天我们就来研究三角形内角和。

  活动2【活动】观察图形

  1、观察图形的变与不变

  ppt依次出示

  Q:这是锐角三角形,什么是它的内角和?

  出示直角三角形,它的内角和是指?

  出示钝角三角形,内角和是指?

  质疑:哪个三角形的内角和最大?

  预设1:钝角三角形内角和大。(说想法)

  预设2:一样大。(说想法)

  预设3:180度。

  小结:三个三角形的样子不一样,大小也不一样,三个内角也不一样,但内角和是一样的。

  (二)活动二:猜想内角和不变的度数

  Q:这个一样的度数是多少?你是怎么知道的?

  预设1:听说过,学过。

  预设2:直角三角尺上三个角的度数和是180度。

  预设3:等边三角形。

  这两个都是我们知道度数的特殊的三角形,请你根据这个特殊的三角形来大胆的猜猜三角形内角和是多少度?那任意的一个三角形的内角和度数是不是180°呢?今天我们就来一起研究。

  活动3【活动】测量验证

  (一)思考量的方法和原因

  过渡:你想怎么研究?(用量角器去量)

  Q:谁来介绍介绍量的方法?

  预设:要想研究内角和,只要把三个内角度数量出来再加起来看看是不是180度就可以了。

  (二)动手测量

  PPT:操作建议:

  1、请你找到三角形的三个内角,用彩笔标序号1、2、3。

  2、用量角器仔细测量后,记录角的度数。

  3、列式计算出三角形内角和度数。

  动手测量

  (三)汇报交流:

  学生1展示测量的过程。

  Q:还有谁测量的这个锐角三角形,说一说?

  追问:为什么同一个三角形内角和度数却不一样?

  Q:你在测量的过程中遇到了什么困难?

  Q:观察这些数据,虽然都不太一样,但是都很接近?

  小结:测量确实可以帮助我们找到三个角的度数,加起来就可以求出内角和,但是测量有误差。

  活动4【活动】拼角验证

  (一)思考其它验证方法

  Q:你还有其他的'方法吗?

  预设1:学生没有反应。

  师引导:说到180度,你想到什么角?(平角)

  预设2:撕拼法

  Q:怎么把三个内角拼在一起?

  (生不撕,教师帮助突破,撕下三个内角。)

  Q:你能在投影上拼一拼吗?

  预设3:折叠法

  你的方法也很好,你们听懂了吗?一会儿可以试试。

  预设4:描画法

  Q:怎么描?你能演示一下吗?

  其他同学观察他在做什么?

  引语:刚才说的方法都很好,下面我们自己来试一试。

  (二)动手拼一拼

  操作要求:

  1、请你用彩笔在纸上随意画一个三角形,并剪下来。

  2、用彩笔标出三个内角。

  3、尝试操作。

  动手操作

  (三)汇报交流

  Q:你是怎么研究的?发现了什么?

  (四)小结

  刚才每人的三角形是自己任意画出的,形状、大小都不一样。无论是撕拼、折叠、还是描画的方法,都是在把这三个内角拼在了一起,转化成一个平角,我们发现他们的内角和都是180度。

  活动5【活动】几何画板验证

  引:但我们时间有限,研究的三角形个数有限,是不是任意一个三角形的内角和都是180度呢?我们可以借助几何画板来看一看。

  师:介绍:计算机能够帮助我们比较精确地测量出三个角的度数,并计算它们的和。

  观察:老师拉动一个顶点,什么变了?什么没变?

  小结:也就是,无论我们怎么改变三角形的形状,大小,虽然它的内角在变化,但三个内角和的却是不变的,都是180度。

  活动6【练习】基础练习

  1、三角形中∠1=55°,∠2=45°,∠3=?

  2、直角三角形:我有一个锐角是40°,求另一个角?

  3、说一说:在一个三角形中,能有两个直角吗?能有两个钝角吗?为什么?

  4、拼三角形

  师:两个180°不是360°吗?

  小结:看来,组合以后的图形还要分清楚哪些是内角。

  活动7【练习】拓展练习

  (一)拓展练习

  今天,我们通过自己的研究发现三角形内角和是180度。那四边形有没有内角和呢?它的内角和是多少度?

  课件演示。

  说说这节课你的收获?

四年级数学教案《三角形》9

  [教学目标]

  1、通过画一画、量一量、算一算等实验活动,探索并发现三角形任意两边之和大于第三边。

  2、在实验过程中培养学生自主探索、合作交流的能力。

  3、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。

  [教学重、难点]

  1、探索并发现三角形任意两边之和大于第三边。

  2、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。

  [教学准备]

  学生、老师准备几个形状不同的三角形、直尺。

  [教学过程]

  一、创设情境,引出问题。

  出示情境图,问:从邮局到杏云村那条路最近?你是怎样想的`?

  生:走路线a最近。因为......

  师:在生活中人们都愿意走近路。在这幅图中,邮局、清泉村和杏云村所在的位置,正好组成一个三角形,从图中和我们的生活经验中同学们都认为路线a最近,路线b加上路线c一定比路线a远。那么,是不是三角形任意两边长度的和一定比第三边大呢?

  二、自主探索、合作交流。

  1、小组活动:在填一填中画几个三角形,量出它们的边长,再比一比,填入表格中。书上有一个范例,可先讨论一下,再做。

  2、汇报:

  引导学生得出结论。

  三、运用知识解决问题。

  练一练:第1题:判断每一竖行三条线段能否摆成三角形。

  第2题:组织学生用小棒摆一摆,并填入表中。

  第4题:如果三角形的两条边的长分别是5厘米和8厘米,那么第三条边可能是多长?有多个答案,第三边只要大于3厘米小于13厘米即可。鼓励学生尽可能多的得到答案。

  [板书设计]

  三角形三条边的关系

  填一填:

  结论:

四年级数学教案《三角形》10

  教学目标

  1。通过观察和操作认识三角形,掌握三角形的概念,理解三角形的含义;

  2。从实例中感知三角形的稳定性以及三角形任意两边之和大于第三边,并能运用知识解决实际问题;

  3。认识三角形的高,掌握三角形高的画法,能画出任意三角形的一条高。

  教学重难点

  重点:理解三角形的含义,掌握三角形的概念。

  难点:掌握三角形高的画法,能画出三角形的高。

  教学准备

  课件、平行四边形和三角形的教具、三角尺。

  主要教法选择:观察法、知识迁移法

  教学设计

  一、导入

  请每位同学从你的抽屉里拿出两根小棒,试一试,你能摆出什么图形?

  谁来说说自己摆出了什么图形?(指名说)

  下面请每位同学再添上一根小棒,能摆成什么图形?(指名说)

  用屏幕出示学生们可能摆出的图形,提问:你能说说自己摆的'是什么图形吗?那么,在同学们摆出的图形中,那些是三角形?

  今天,我们就来学习三角形的特性。(板书课题:三角形的特性)

  二、学习新课

  1、学习三角形的定义及组成

  ⑴在我们的生活中,也有许多三角形,你能说出哪些物体上有三角形吗?(让学生充分发言)

  同学们说了这么多,其实在我们的校园中也有许多的三角形,我们一起去看看吧!(播放录像)

  ⑵刚才我们一起观察了生活中的三角形,那么你能说说三角形有什么共同的特点吗?(有三条边,三个角,三个顶点等)

  提问:那你能说一说什么样的图形叫做三角形吗?(三条线段围成的图形)你认为这句话中哪个词比较重要?(围成)为什么?(三角形是封闭图形)

  那么这三条线段应该怎样去围呢?(每相邻的两条线段端点相连)

  请学生互相说一说,什么是三角形。(同桌互说,再指名说)

  2、学习两边之和大于第三边

  ⑴小组活动:请组长将本组的小棒分给组员,每人三根小棒,摆一个三角形,看谁摆得又对又快!

  有学生发现自己的三根小棒摆不成三角形,这是怎么回事啊?

  小组研究:为什么有的三根小棒摆不成三角形?

  小组汇报,并总结:三角形任意两边的和大于第三边。

  ⑵利用所学知识解决实际问题

  屏幕出示例3的图,让我们帮助小明解决一个问题:小明每天上学从哪条路走最近?为什么?(中间的这条路最近,两点之间直线距离最短;三角形两边之和大于第三边)

  3、学习三角形的稳定性

  ⑴游戏

  让我们来轻松一下,做个游戏,比一比谁的力气大。

  游戏规则:每人一个图形,拉动这个图形,只要使它的形状发生变化,就算赢。

  请学生推荐两名力气比较大的学生(一男一女),出示教具,一个三角形,一个平行四边形,先让女生选择一个图形,另外一个就是男生的。

  请大家预测一下,男生和女生谁会赢?为什么?

  得出结论:平行四边形容易变形,三角形具有稳定性。

  ⑵三角形具有稳定性,那么,要想使这个平行四边形也能够固定住,该怎么办呢?(加上一根木条,形成两个三角形。)

  正是因为三角形具有稳定性,所以在生活中的运用也非常广泛。

  ⑶你瞧:这张桌子摇摇晃晃多危险啊!有什么办法加固它呢?

  斜着钉两根木条,组成三角形。

  4、学习三角形的高

  ⑴刚才我们知道了三角形有三个顶点,我们可以用大写字母来表示点,例如,我们可以给这三个点分别取名字为A、B、C,那么这个三角形就可以称为三角形ABC,三角形的三条边就可以分别称为AB、AC、BC,下面想请同学上来指一指,每一个顶点分别对应哪条边。

  ⑵教师边示范边讲解:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

  提醒注意:高要画成虚线,而且要画上垂直符号。

  想一想:一个三角形中能画出几条高?为什么?(有三条高,因为每个三角形有三个顶点)

  ⑶学生练习

  请每位学生在课本86页,练习十四第一题,请你画出第一个三角形的高。

  提醒注意:三角形的高要画成虚线,并且要画上垂直符号。

  你能画出几条高?那么,另外两个三角形的高你会画吗?试一试,好吗?

  (让学生互相检查,并说说怎么检查)

  三、全课总结

  今天这节课,我们一起进一步认识了三角形,我们知道了三角形是由三条线段围成的图形,每相邻两条线段的端点相连;三角形有三条边,三个角,三个顶点,具有稳定性,而且三角形的任意两条边之和大于第三边。

  我们还认识了三角形的高,并且学会了给三角形画高,不同的三角形所在位置不同,我们下一节课再继续研究。

四年级数学教案《三角形》11

  教学目的:

  1.使学生认识并理解三角形的意义。

  2.结合实际,使学生掌握三角形的特征和特性。

  3.使学生能按三角形内角的不同对三角形进行分类,形成锐角三角形、直角三角形和钝角三角形的概念。

  4.培养学生的观察、分析、比较、抽象概括等能力。

  教学重、难点:三角形的认识及其特性。能正确区分锐角三角形,直角三角形和钝角三角形。

  教学过程:

  一、复习准备

  1.指出下面的角各是什么角。

  2.什么叫锐角?什么叫直角?什么叫钝角?

  二、教学新课

  1.导入。

  大家都知道角的两边是射线,下面我在这每个角的两边上分别截取一段(老师在每个角的边上点上一点),这样每个角的两边就成了什么?(线段)我再连结这两个端点,看变成了什么图形?(三角形)今天我们进一步来认识、研究三角形。

  2.理解三角形的意义。

  (1)我们见过哪些物体的形状是三角形?

  (2)指名学生说。老师投影红领巾、三角旗、房梁架图,(覆盖片)再掀掉覆盖层,还原三角形原形。

  (3)观察这些三角形,数一数,每个三角形中有几条线段?(板书:三条线段)

  (4)是不是只要给你三条线段,都可以组合成一个三角形吗?看投影,这三条线段组成的图形是三角形吗?

  (5)那么什么叫做三角形?(老师接着板书:围成的图形)学生齐读三角形的概念;

  (6)能不能说:“由三条线段组成的图形叫三角形”。为什么?(指名说)

  (7)老师指出:围成三角形的每条线段叫做三角形的边,每两边线段的交点叫做三角形的顶点。看一看,一个三角形有几条边,几个顶点,几个角。(板书如下)这就是三角形的特征。

  3.认识三角形的特性。

  (1)投影电线杆、自行车图。大家观察一下图中哪些部位是三角形的?

  (2)这些部位为什么要做成三角形的,而不做成其它形状呢?我这儿有一个长方形和一个三角形的木框,角上都用螺母固定了,下面我请两个同学上来拉给大家看看,你们就明白了。

  (3)指名的.两同学先拉长方形框,大家观察,发现了什么?(变形)再拉三角形框,又发现什么?(不变形),这说明了什么呢?

  (4)老师指出:三角形具有稳定性。这是三角形固有的特性。正因为三角形的这种特性,所以不少东西都采用三角形的结构。

  (5)请大家想一想,在日常生活中,你还见过哪些地方用到了三角形的稳定性。

  4.教学三角形的分类。

  (1)在黑板上贴上一组三角形贴片,请大家说一说每个三角形中的三个角各是什么角?

  (2)大家能不能根据这些三角形的特征,每两个一组,把这些三角形分成三组?

  (3)指名回答,讨论为什么要这样分。(把归为一组的贴片放到一起)

  (4)指出:①⑥为一组,因为都有一个角是直角;②④为一组,因为都有一个角是钝角;③⑤是一组,三个角都是锐角。

  (5)三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形。

  (6)大家根据我们刚才看这些三角形角的情况,想一想,不管是锐角三角形还是直角三角形、钝角三角形它们都有一个怎样的共同特点?(每个三角形至少有两个锐角)

  (7)我们把所有三角形作为一个整体,锐角三角形,直角三角形和钝角三角形就分别是这个整体的一部分。(老师边讲解边板书)

  (8)尝试练:猜三角形的形状。老师揭下黑板上三角形贴片,在一本大书后面只露出一个角,让学生猜三角形是什么形状。

  (9)重点说明,只露出一个锐角,你能猜出这个三角形的形状吗?为什么?

  三、课堂小结

  什么是三角形?三角形有什么特征和特性?三角形按角的不同可分为哪几类?什么是锐角三角形、直角三角形和钝角三角形?

  四、巩固练习

  1.做练习三十一的第1题。着重结合三角形的概念说清为什么。

  2.做练习三十一的第2题。多指名说。

  3.做练习三十一的第3题。

  只指出锐角三角形、直角三角形和钝角三角形。

  4.判断。(对的在括号里打“√”,错的打“×”)

  (1)由三条线段组成的图形叫做三角形。()

  (2)如果三角形中有一个角是钝角,这个三角形就一定是钝角三角形。()

  (3)有一个角是直角的三角形是直角三角形,有一个角是锐角的三角形就是锐角三角形。()

四年级数学教案《三角形》12

  [教学目标]

  1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角和的度数和等于180o。

  2、已知三角形的两个角的度数,会求出第三个角的度数。

  [教学重、难点]

  1、探索和发现三角形三个内角和的度数和等于180o。

  2、已知三角形的两个角的度数,会求出第三个角的度数。

  [教学准备]学生、老师准备几个形状不同的三角形、量角器。

  [教学过程]

  一、创设情境,激趣质疑

  教材第30页创设的情境,激发探索的兴趣。

  二、自主探索

  1、提出问题:怎样得到一个三角形的内角和?

  大多数学生会想到测量角度。

  2、小组活动:测量三角形的三个内角的度数,并记录在第30页的表格中。

  3、汇报测量结果和得到的结论。

  发现大小、形状不同的每个三角形,三个内角和的度数和都接近180o。

  4、进一步探索:三角形的三个内角的和是否正好等于180o呢?

  小组活动探索方法。

  5、得出结论。

  三、试一试:

  已知三角形的两个角的度数,运用三角形的三个角的'度数和是180o,求出第3个角的度数。

  四、练一练

  运用三角形内角和等于180o,判断题中的三个三角形说的对吗?

  [板书设计]

  三角形的内角和

  测量三个角的度数求和:结论:

四年级数学教案《三角形》13

  教材分析

  教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。

  教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。

  三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180°。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。

  另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90°,钝角三角形里的两个锐角和小于90°。

  学情分析

  学生在前面的学习中已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,知道了平角是180°;学生通过前几年的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯,所以在学生具备这些数学知识和能力的基础上,来引导学生探索和发现三角形内角和是180°这一性质。

  要让学生明确一个三角形分成两个小三角形后,每个三角形内角和还是180°,两个小三角形拼成一个大三角形,大三角形的内角和也是180°。

  教学目标

  1、知识目标:让学生探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

  2、能力目标:培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

  3、情感目标:培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。

  教学重点和难点

  教学重点:掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题。

  教学难点:让学生经历探索和发现三角形的内角和是180°的过程。

  教学过程:

  (一)、激趣导入:

  1、认识三角形内角

  我们已经认识了什么是三角形,谁能说出三角形有什么特点?

  (三角形是由三条线段围成的图形,三角形有三个角,…。)

  请看屏幕(课件演示三条线段围成三角形的过程)。

  三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角

  形的内角。(这里,有必要向学生直观介绍“内角”。)

  2、设疑激趣

  现在有两个三角形朋友为了一件事正在争论,我们来帮帮它们。(播放课件)

  同学们,请你们给评评理:是这样吗?

  现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?

  这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)

  (二)、动手操作,探究新知

  1、探究特殊三角形的内角和

  师拿出两个三角板,问:它们是什么三角形?

  (直角三角形)

  请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。

  (由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°)

  从刚才两个三角形内角和的计算中,你们发现了什么?

  (这两个三角形的内角和都是180°)。

  这两个三角形都是直角三角形,并且是特殊的三角形。

  2、探究一般三角形内角和

  (1).猜一猜。

  猜一猜其它三角形的内角和是多少度呢?(可能是180°)

  (2).操作、验证一般三角形内角和是180°。

  所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

  (可以先量出每个内角的度数,再加起来。)

  测量计算,是吗?那就请四人小组共同计算吧!

  老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:

  (3)小组汇报结果。

  请各小组汇报探究结果

  提问:你们发现了什么?

  小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。

  3继续探究

  (1)动手操作,验证猜测。

  没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?

  (先小组讨论,再汇报方法)

  大家的办法都很好,请你们小组合作,动手操作。

  (2)学生操作,教师巡视指导。(3)全班交流汇报验证方法、结果。

  学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)

  我们可以得出一个怎样的结论?(三角形的内角和是180°)

  引导学生通过剪拼、撕拼和折拼的`方法发现:各类三角形的三个内角都可以拼成一个平角,使学生证实三角形内角和确实是180°,测量计算有误差。

  5、辨析概念,透彻理解。

  (出示一个大三角形)它的内角和是多少度?

  (出示一个很小的三角形)它的内角和是多少度?

  一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?(学生有的答360°,有的180°.)

  把大三角形平均分成两份。每个小三角形的内角和是多少度?(生有的答90°,有的180°。)

  这两道题都有两种答案,到底哪个对?为什么?

  (学生个个脸上露出疑问。)

  大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。

  经过一翻激烈的讨论探究后,学生发现:三角形不论位置、大小、形状如何,它的内角和总是180°

  (三)小结

  刚才同学们用很多方法证明了无论是什么样的三角形内角和都是180°,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

  (四)、巩固练习,拓展应用

  下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)

  1、求三角形中一个未知角的度数。

  (1)在三角形中,已知∠1=85°,∠2=65°,求∠3。

  (2)在三角形中,已知∠1=98°,∠2=49°,求∠3。

  2、判断

  (1)一个三角形的三个内角度数是:90°、75°、25°。()

  (2)一个三角形至少有两个角是锐角。()

  (3)钝角三角形的内角和比锐角三角形的内角和大。()

  (4)直角三角形的两个锐角和等于90°。()

  3、解决生活实际问题。

  (1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?

  (2)交通警示牌“让”为等边三角形,求其中一个角的度数。

  4、拓展练习。

  利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)

  小组的同学讨论一下,看谁能找到最佳方法。

  学生汇报,在图中画上虚线,教师课件演示。

  请同学们自己在练习本上计算。

  (四)、课堂总结

  通过这节课的学习,你有哪些收获?

四年级数学教案《三角形》14

  [教学内容]

  北师大版小学数学四年级下册《三角形三条边之间的关系》

  [教学目标]

  1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。

  2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。

  [教学重、难点]

  探索并发现三角形任意两边之和大于第三边。

  [教学准备]

  学生、老师各准备几个长短不等的小棒、直尺、探究报告单。

  [教学过程]

  一、摆一摆,激发探究欲望

  师:前一节课我们学习了三角形,给你三根小棒,谁能到黑板上围成一个三角形?

  (指两名同学到黑板上来。提供的小棒一组能摆成三角形,另一组摆不成三角形。)

  在学生摆不出来时,引导学生发现不是任意三根小棒都能摆出三角形来。

  师:若想再摆个三角形,你有解决的办法吗?

  看来,要想摆成一个三角形,对三条边的长度是有要求的。这节课我们就来研究三角形边的关系。(板书课题)

  师:谁来猜一猜,这三条边究竟有什么样的关系呢?

  师:你的猜想是否正确呢,我们还是用实验来验证吧。

  [反思]这个环节,我首先让学生围三角形,第一名学生不费吹灰之力很顺利地围成了三角形,第二名学生怎么也围不成。这样使学生在具体的操作过程中产生思维冲突,从而提出“数学问题”,有效地激发了学生的探究欲望。课一开始,就牢牢的抓住了学生的心,让学生饶有兴趣的投入到下一轮的学习中去。

  二、操作验证,揭示三边关系

  (一)分组研究,四人小组长拿出准备好的四组小棒。

  出示实验要求:

  1、 量出每组小棒的长度。

  2、 将三根小棒首尾相接,看是否能围成三角形。

  3、 把任意两条边的长度加起来,再与第三边进行比较。(用式子表示)

  4、 小组讨论,你发现了什么?将实验结果填写在探究报告单上。

  (二)小组汇报交流实验结果

  结论:三角形任意两边的和大于第三边。(引导学生理解“任意”的`意思)

  再用这个结论解释实验中围不成三角形的原因。

  [反思]:苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个开拓者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。”教学中,我有意设置这些动手操作,共同探讨的活动,既满足了学生的这种需要,由让学生在高昂的学习兴趣中学到了知识,体验到了成功。

  三、应用与拓展

  1、判断下面几组线段能否围成三角形,为什么?

  (引导学生理解快速判断的方法)

  (1)1厘米、3厘米、5厘米

  (2)3厘米、5厘米、2厘米

  (3)11厘米、6厘米、7厘米

  [反思]:课堂练习的目的是为了让学生及时掌握知识,形成能力。教学中我充分注意到了这一点,即让学生用所学内容来说明为什么这一环节。同时我们引导学生发现,快速判断的方法,使学生在原来所学内容的基础上,对原知识又有发展,找到了最佳的判断方法。

  2、小华上学走哪条路近?为什么?(引导学生从多角度解释)

  书店

  学校

  小华家

  [反思]:教材是学习的载体,我充分挖掘教材知识之间的联系,。这副情境图既能靠直觉来判断,又能用三角形三条边的关系来解释,还可以用“连接两点的线中,线段最短”来解释。这样既拓展了学生思维的空间,感受到解决问题方法多样性,又领悟到知识与实际的结合,从而使学生认识到生活中处处有数学。

  3、一个三角形,其中两条边长是4厘米和6厘米,第三条边长是多少厘米?

  (引导学生探究第三边的取值范围)

  [反思]:此题设计目的是引导学生发现三角形第三边的取值范围是大于另两边的差,小于另两边的和。教学中开始学生逐渐答出了3厘米、4厘米、5厘米、6厘米、7厘米、8厘米、9厘米,接着就沉默了,我就提出了9.2厘米行不行?学生略一思考得出结论:行。于是他们的思维又活跃起来,9.6厘米、9.9厘米……当学生发现小数部分是无限的时,得出结论第三边小于10厘米大于3厘米就可以,于是我又提出问题:现在同学们找到的最小答案是3厘米,2.5厘米行不行?学生经过思考得出答案:第三边要小于10而大于2。由于时间关系,当时我有些着急,直接将我想要学生了解的“第三边的取值范围要大于另两边的差,小于另两边的和”这个结论直接说了出来,结果效果并不是太好。不如让学生自己课下探究“三角形两边之差与第三边的关系”更好。虽然此处处理并不是很恰当,但在这道题中师生、生生之间思维的碰撞,激发了学生探究的意识,培养了学生的质疑探究的能力。

  4、儿童乐园要建一个凉亭,亭子上部是三角形木架,现在已经准备了两根3米长的木料,假如你是设计师第三根木料会准备多长?并说明理由。

  (引导学生实际生活中要讲究美观、实用)

  [反思]此题是上一道题的延伸,是培养学生应用数学知识合理解决生活问题的能力。

  5、 用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?

  [反思]这是一道要同学动手探究的问题,作为家庭作业学生更愿意做这样的题。

  本课总结:同学们的表现非常棒,不仅能猜想,而且能通过实验进行验证,并利用所学知识解决实际问题

四年级数学教案《三角形》15

  教学内容:

  教材第63、第64页的内容及第65页练习十五的第4、第5、第9、第10题。 课型 新课

  教学目标:

  1、通过实际操作、探究,掌握三角形的分类标准及方法,体会每类三角形的特征,并能够识别直角三角形、锐角三角形、钝角三角形和等腰三角形、等边三角形。

  2、通过观察、分类记录等活动,折、剪等操作,提高学生的探索精神、归纳概括能力、逻辑思维能力和空间想象能力。

  3、让学生在探究的过程中,感受到学习数学的乐趣,体验成功的喜悦,从而激发学生学好数学的热情,同时懂得合作可以提高效率的道理。

  教学重点:

  通过思考、自主探索、合作交流,分别从三角形的角和边两个方面的特征,对三角形准确的地进行分类。

  教学难点:

  能够掌握各种三角形的特征以及各类三角形之间的内在联系。

  教具学具:

  多媒体课件、各种三角形图形。

  教学过程:

  一、情境导入

  师:如果让你把班里某一个小组的同学分成两组,你将如何分组呢?

  (学生回答)

  师:既然如此,如果把三角形进行分类,你觉得应该按什么样的标准来分呢?为什么?

  (引导学生说出原因)

  师:刚才同学们说了两种方法,按边分或者按角分。这节课我们就一起来研究三角形的分类。

  (板书:三角形的分类)

  二、自主探究

  1、认识锐角三角形、直角三角形和钝角三角形。

  课件出示例5.

  师:用量角器量出每组中每一个三角形的每一个角的大小,看看三角形中每个角是多少度?各是什么角》

  生1: 通过测量发现,有些三角形的三个角都是锐角。

  生2:有些三角形有一个直角、两个锐角。

  生3:有些三角形有一个钝角、两个锐角。

  师:三个角都是锐角的三角形叫锐角三角形,有一个角是直角的三角形叫直角三角形,有一个角是钝角的三角形叫钝角三角形。

  2、把三角形按照角进行分类。

  师:如果把所有的'三角形看做一个整体,那么锐角三角形、直角三角形和钝角三角形都可以分别看作是这个整体的一部分,它们之间的关系你会画图表示吗?

  (课件出示三种三角形的关系图)

  3、认识直角三角形的直角边和斜边。

  (课件出示直角三角形图)

  师:在直角三角形中,夹直角的两条边叫直角边,直角所对的边叫斜边。你能用直尺量出每条边的长度吗?测量后你会发现什么?

  生:通过测量发现,在直角三角形的三条边中,斜边最长。

  4、认识等腰三角形和等边三角形。

  (课件出示等腰三角形和等边三角形图)

  师:观察三角形的三条边会发现什么?

  生:有的三角形的三条边都不想等,有的三角形有两条边相等,有的三角形三条边都相等。

  师:在数学上,有两条边相等的三角形叫等腰三角形,有三条边相等的三角形叫等边三角形,又叫正三角形。

  5、认识等腰三角形、等边三角形各个部分的名称。

  师:在等腰三角形中,相等的两条边叫做三角形的腰,另一条边叫等腰三角形的底,两腰的夹角是等腰三角形的顶角,腰和底边的夹角是三角形的底角。在等边三角形中,三条都相等的边都叫三角形的边。

  6、等边三角形、等腰三角形之间的关系。

  师:你能说说等边三角形与等腰三角形之间的关系吗?

  生:两腰相等的三角形是等腰三角形,所以等边三角形师特殊的等腰三角形,但是等腰三角形不一定是等边三角形。

  7、等腰三角形和等边三角形各自角的特征以及认识等腰直角三角形。

  通过测量等腰三角形和等边三角形的角发现:等腰三角形的两个底角相等;等边三角形的各个角都相等。

  有些直角三角形,有两条边相等,有两个角相等,这样的三角形在数学上叫等腰直角三角形,如常用的直角三角板中的一种。

  三、探究结果汇报

  师:哪一组的同学愿意为大家展示一下按角分类的成果呢?

  (老师根据学生的讲述板书直角三角形、锐角三角形、钝角三角形)

  师:按边分呢?

  生:三角形按角分可以分成锐角三角形、直角三角形、钝角三角形;按边分可以分成任意三角形、等腰三角形、等边三角形。

  四、师生总结收获

  师:这节课,你知道了什么?懂得了什么?学会了什么?

  生:三角形可以按边分类,也可以按角分类。

  师:今天你学会了什么数学方法?

  生:分类。

  师:分类在我们的日常生活中和重要,因为运用了分类方法,我们的生活才变得井井有条,我们的生活才会更加舒心,更加精彩。

  五、板书设计

【四年级数学教案《三角形》】相关文章:

四年级下册数学教案:三角形10-07

认识三角形幼教数学教案03-25

《三角形内角和》数学教案08-04

三角形的认识数学教案06-04

小学数学教案:三角形面积02-18

三角形的中位线数学教案10-07

有趣的三角形中班数学教案03-26

等腰三角形数学教案10-07

认识三角形小班数学教案03-24