教案

方程的意义的教案

时间:2024-11-17 07:07:40 教案 我要投稿

方程的意义的教案

  作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,教案有助于顺利而有效地开展教学活动。那么问题来了,教案应该怎么写?下面是小编收集整理的方程的意义的教案,仅供参考,大家一起来看看吧。

方程的意义的教案

方程的意义的教案1

  教学内容:方程的意义和解简易方程(教材第105一107页,练习二十六)。

  教学要求:

  1.使学生理解和掌握等式及方程、方程的解和解方程的意义,以及等式与方程,方程的解与解方程之间的联系和区别。

  2.使学生理解并掌握解方程的依据、步骤和书写格式,培养良好的解题习惯。

  教 具:

  教学天平、小黑板。

  学 具:

  自制的简易天平、定量方块。

  教学步骤:

  一、复习

  1.根据加法与减法,乘法与除法的关系说出求下面各数的方法。

  (1)一个加数=( )○( )

  (2)被减数=( )○( )

  (3)减数=( )○( )

  (4)一个因数=( )○( )

  (5)被除数=( )○( )

  (6)除数=( )○( )

  2.求未知数X(并说说求下面各题X的依据)。

  (1)20十X=100 (2)3X=69

  (3)17—X=0.6 (4)x÷5=1.5

  二、新授

  1.理解和掌握“方程的意义”。

  (1)出示天平,介绍使用方法(演示)后,设问:

  在天平两边放物体,在什么情况下才能使天平保持平衡?

  (两边的物体同样重时,天平才能保持平衡。)

  (2)演示:在左边放两个重物各20克和30克,右边砝码也是50克,让学生观察,天平是平衡的。说明了什么?怎样用式子表示?

  板书:20十30=50

  指出:表示左右两边相等的式子叫等式。

  (并板书)等式:表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。

  (3)教学例2(课本105页)。

  ①教师继续演示,调整,在左盘放一20克的重物和一个未知重量的方块,右盘里放一个100克重的砖码。(如教材105页第二幅图)让学生观察天平是否平衡(指针正好指在刻度线中央,天平是平衡的),那么也就说明了这个天平左右两边的`物体的重量相等。怎样用等式表示出来呢?

  板书:20+?=100

  ②等式“20+?=100”中的?是未知数,通常我们用“X”来表示,那么上面的等式可写成 (板书)20十X=100

  ③比较:等式“20+X=100”与等式“20+30=50”有什么不同?(含有未知数)教师指出,“20+X=100”是含有未知数的等式。

  ④想一想:X等于多少,才能使等式“20+X=100”左右两边相等?(未知方块重80克时才能使天平两边的重量相等,即X=30)

  (4)教学例3(课本106页)。

  出示教材第106页上面的例图的放大图,并根据图意写出等式。设问:

  ①图中每个篮球的价钱是X元,3个篮球的总价是多少元?(3x)

  ②依图示(看图)表明3个篮球的总价(3x)是多少元?(234元)它们之间的关系可以用一个怎样的等式表示出来?

  (板书)3X=234

  ③这个等式有什么特点?(含有未知数)当X等于多少时,这个等式等号左右两边正好相等?(X=78)

  (5)方程的意义:

  综合观察以上三个等式,想一想,它们之间有什么联系,有什么区别:

  20+30=50……一般的等式

  20+X=200 含有未知数的等式

  3X=234 称之为方程

  (板书)像20+x=100 3X=234 X—10=35 X÷12=5等,含有未知数的等式叫做方程。

  ①根据方程的含义,方程应该具备哪些条件,(一要是等式,二要含有未知数,二者缺一不可。)

  ②方程与等式之间是什么关系?(是方程就一定是等式,但是等式不一定是方程,也就是说方程是等式的一部分,小学数学教案《数学教案-方程的意义和解简易方程》。)

  (6)练一练(指名学生判断,并说明理由)教材第106页“做一做”。

  2.学习“解简易方程”。

  (i)理解和掌握方程的解和解方程的含义。设问:①看教材第107页,什么叫做方程的解?什么叫解方程?

  (板书)使方程左右两边相等的未知数的值,叫做方程的解。

  例如:X=80是方程20+X=100的解;

  X=78是方程3X=234的解。

  (板书)求方程的解的过程叫做解方程。

  ②方程的解和解方程有什么联系和区别?

  方程的解是指未知数的值等于多少时能使等式左右两边相等;而解方程是指求出这个未知数的值的过程。因此方程的解是解方程过程中的一部分。它们既有联系,又有区别。

  (2)教学例1:

  解方程X一8=16

  ①教师指出:我们以前做过一些求未知数X的题目,实际上就是解方程,以前怎么解,现在仍然怎么解,只是在格式要求方面增加了新的内容。

  ②引导学生说出自己的推想过程:题中的未知数X相当于什么数?(被减数)怎么求被减数?(减数十差)

  (板书)解方程X一8=16

  解::根据被减数等于减数加差;

  X=16十8(与原来学过的求X的思路相同)

  X=24

  检验:把X=24代人原方程

  左边=24一8=16,右边=16

  左边=右边

  所以X=24是原方程的解。

  总结有关的格式要求:

  ①做题时要先写上“解”字。

  ②各行的等号要对齐,并且不能连等。

  ③方框里的运算根据可以不写。

  ④验算以“检验”的形式出示,有固定的格式。解方程时,除了要求写检验以外,都要口算进行检验,防止走过场。

  指导学生看教材第105一107页。

  三、巩固

  1.教材107页“做一做”。

  2,教材第108页练习二十六第1、2题。

  四、练习

  教材第108页,练习二十六第3~5题。

  作业辅导

  1.判断题。

  (1)含有未知数的式子叫方程。 ( )

  (2)方程是等式,所以等式也叫方程。 ( )

  (3)检验方程的解,应当把求得的解代人原方程。()

  (4)36是方程X÷3=12的解。 ( )

  2.把下面的各关系式写完整。

  (1)一个加数=( )○( )

  (2)被减数=( )○( )

  (3)减数=( )○( )

  (4)一个因数=( )○( )

  (5)除数=( )○( )

  (6)被除数=( )○( )

  3.解下列方程。(第一行两小题要写出检验过程)

  10—X=0.42 4.5X=27 X十5.8=16.4

  X÷28=76 2÷X=0.5 X—8.75=4.65

  板书设计:

  解简易方程

  例1 解方程X-8=16

方程的意义的教案2

  一、教学目标:

  1、初步理解方程的意义,会判断一个式子是不是方程。

  2、会按要求用方程表示出数量关系。

  3、培养学生观察、分析、比较、概括及创新的能力。

  二、重点:会用方程的意义去判断一个式子是不是方程。

  三、难点:依据多种不同的标准对式子进行不同的分类。

  四、教具准备:天平、礼物(100克)、水杯(40克)、多媒体课件

  五、教学过程:

  1、简介天平、导入新课:

  展示从古埃及到现代的各式天平图,简介天平的历史。

  教师称量100克物体(礼物)的重量,学生观察。(学生未使用过天平)

  2、分组实践、写出式子:

  学生实践的任务是:称量礼物+水杯的重量(共140克)。

  同学们能用字母来表示一下水杯的'重量吗?(x,y,m)

  同学们能用含有字母的式子来表示礼物和水杯的总重量吗?(礼物重量已知100克)(100+x,100+y,100+m)

  第一次试称量:放一个50克的砝码,物体的重量和砝码表示的重量有怎样的关系?能用式子表示下来吗?(得到式子100+x150);

  第二次试称量:取出50克砝码,放入20克砝码,物体的重量和砝码表示的重量有怎样的关系?(得到式子:100+x120);

  第三次称量:再放入一个20克的砝码,得到天平平衡,这时物体的重量和砝码表示的重量有怎样的关系?(得到式子:100+x=140)。

  3、自主探索、合作交流:

  老师这里也有这样的一些式子:

  35+65=100x-1472y+24

  5x+32=472816+146(a+2)=42

  同学们自己先分一分,看有几种不同的分法,然后以小组为单位,互相交流,并整理。

  4、展示结果、得出结论:

  以小组为单位实物投影展示分类情况。

  其中一组分类情况:35+65=100,x-1472,y+24,2816+14分为一组,5x+32=47,6(a+2)=42分为一组。

  若学生们未分出这种分类情况,应该肯定分出:x-1472,y+24,2816+14为一组,35+65=100,5x+32=47,6(a+2)=42为一组这种分法。此时可以引导:第二组还可以再分类吗?还可以分为哪两类?学生就会分得5x+32=47,6(a+2)=42在一组,根据其特点:既是等式,又含有未知数,引出方程的意义:含有未知数的等式是方程。

  5、巩固练习、扩展延伸:

  基础练习:

  你能写出二个方程吗?

  老师这里有一些式子,你们能判断哪些是方程吗?并说明理由。

  扩展提高:

  判断下面的式子哪些是等式,哪些是方程。同学们发现了什么?

  同学们能用图示来表示一下方程和等式的关系吗?小组探究。

  教师引导:所有方程都是等式,方程是等式的一种(必须含有未知数)。

  出示一些简单数学情境,找出等量关系并列出方程。如:三个球一共20.3元。两个部分一部分是5.2,另一部分是x,全部是6.5。

  6、课堂总结:

  同学们今天认识了方程,谁能说一说你对她的了解。读《小知识》,了解方程的历史。

方程的意义的教案3

  教学内容:

  教科书第1-2页例1、例2。

  教学目标:

  1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

  2、培养学生概括、归纳的能力。

  教学准备:

  天平、砝码。

  教学重点及难点:

  理解方程的意义,方程与等式的关系。

  教学过程:

 一、借助天平体会等式的含义。

  (1)你会用等式表示天平两边物体的质量关系吗?(50+50=100 50×2=100)

  (2)你还能写出这样的等式吗?根据学生举例写下2~3个。

  (3)你感觉什么样的式子是等式呢?

  用等于号连接的数学表达式;左右两边相等的式子;左边算起来来等于右边的';

  二、感知不等式,教学方程的意义。

  1、出示实物天平:

  (1)左边放克,右边放克,可以用什么式子来表示?

  板书:

  (2)现在老师要在左边再放一个物体,左边的质量怎样来表示呢?(+x)

  (3)这时候,你觉得天平会发生什么变化呢?你能把这些可能写下来吗?

  交流并板书+x< +x= +x>

  (4)这些式子与等式相比有什么不同?(有字母,有的不是等式。用大于号或者小于号连接,我们把这些叫不等式。)。

  2、例二的内容

  (1)学生在作业纸上完成例二的内容。集体交流汇报。板书

  x+5>100 x+50=150 x+50<200 2×x=200

  (2)概括概念

  A、观察黑板上的算式,你能把他们分分类吗?

  B、你分类的依据是什么?

  第一次分类:按照等式、不等式分

  (老师把黑板上不是等式的式子擦掉)剩下的式子是什么?(都是等式)

  还能再分下去吗?

  第二次分类:按既含有字母且是等式分

  (此处也可能先按有字母和没有字母来分,然后再按等式和不等式来分)

  C、像x+50=150、2x=200这样含有未知数的等式叫做方程。(板书:方程)

  像50+50=100、x+50>100和x+50<200为什么这些不是方程呢?把板书补充完整。

  D、完成试一试

  三、突出方程概念的内涵与外延

  1、讨论判断

  (1):哪些是等式,哪些是方程?

  6+x=14 36-7=2960+23>708+x y-28=35

  x+4〈14 m+n=100

  (2)在判断之后,你对等式和方程有什么新的认识呢?

  可能有:未知数可以用x、y等多个字母表示;

  一个等式中可以含有多个未知数;

  等式与方程这两个概念之间的包含与被包含关系。即方程都是等式,但等式不都是方程。(如果学生说不到或者不明白就出现以下的比较辨析。)

  (3)讨论比较,辨析概念。

  讨论下面的说法正确吗?

  所有的方程都是等式。

  所有的等式都是方程。

  (4)刚才我们是用语言描述的方式表示出了方程和等式的关系,你还有什么更清楚简明的办法来表示它们之间的关系吗?

  (5)你能自己创造一到两个和现实生活有联系的方程的例子吗?能够将自己创造出来的方程与邻座的同学分享讨论,集体分享。(不会,老师先举个例子。)

  (6)引导质疑你还有什么疑问?

  四、用方程表示直观情境里的相等关系

  (1)看图列方程

  (2)用方程表示下面的数量关系。

  (3)列式:妈妈买米用了50元,买油用了15元,妈妈一共用了多少钱?

  (说明:并不是任何时候都要列方程的。)

  五、总结提升,介绍方程的数学史

  板书设计:方程的意义

  X+50=100

  X+X=100

  像X+50=150、2X=200这样含有未知数的等式是方程。

  教学后记:

方程的意义的教案4

  教学内容: 教科书第1~2页的内容及练习一的1~3题。

  教学目标:1、通过学习,使学生理解方程的含义,感受方程思想。知道像X+50=150、2X=200这样含有未知数的等式是方程。

  2、经历从生活情景到方程模型的建构过程。

  3、培养学生观察、描述、分类、抽象、概括、应用等能力。

  教学重点:使学生理解方程的含义,感受方程思想

  教学难点:使学生理解方程的含义,感受方程思想

  课前准备:天平、砝码

  教学过程:

  一、创设情景,抽象数学模式。

  1.出示实物天平。

  师:认识吗?它在生活中有什么作用?(称物体的重量、使得左右平衡)

  2.演示:

  出示两个50g砝码和一个100g砝码,(将未标有重量的一边朝向学生)

  师:它们的重量我们还不知道,如果要分别放在两个盘上,天平会怎样呢?(演示)

  学生观察后发现天平平衡(这时,将砝码标有重量的一边朝向学生)

  提出要求:你能用等式表示天平两边物体的质量关系吗?

  学生在本子上写。

  指名回答,板书:50+50=100

  3、出示例1

  说明:含有等号的式子叫等式,它表示等号两边的结果是相等的。

  (板书:含有等号的式子叫等式)

  二、引导分类,概括方程概念。

  1、学生自学

  要求:

  (1)学生在书上独立填写,用式子表示天平两边的质量关系。

  (2)小组同学交流四道算式,最后达成统一认识:

  X+50>100 X+50=100

  X+50<100 X+X=100

  根据学生的回答,教师板书这4道算式。

  (3)把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。

  A、想一想你分类的标准是什么?

  B、把自己分类的情况,写在纸上?

  学生可能会这样分:

  第一种:

  X+50>100 X+50=100

  X+50<100 X+X=100

  第二种:

  X+50>100 X+X=100

  X+50<100

  X+50=100

  2、概括概念

  过渡:看来同学们都能按自己的标准对式子进行分类。

  引导学生理解第一种分法:

  你为什么这样分,说说你的想法。

  A、教师指着黑板说:像右边的'式子就是我们今天所要学习的方程。(板书:像X+50=150、2X=200这样_____________的等式方程)

  B、你能说说什么叫方程吗?

  C、学生发言,概括出:“含有未知数的等式叫做方程”(板书)

  提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”

  那X+50>100 、X+50<100为什么不是方程呢?

  提问:那等式和方程有什么关系呢,在小组里交流。

  方程一定是等式,但等式不一定是方程。

  3、举例方程、理解概念

  你能例举出方程吗?谁能举的与刚才不一样吗? (用字母Y表示、有难度的方程)

  以前我们见过方程吗?

  三、完成“试一试”、“练一练”

  1、“试一试”

  (1)观察左边的天平图,说说图中的是数量关系,列出方程。

  (2)观察右边的图,弄清题意,列出方程。

  1、练一练第1题

  (1)观察,找一找哪些是等式,哪些是方程?

  (2)交流:

  (3)说明:方程中的未知数可以用X表示,也可以用Y表示,还可以用其他字母表示。

  (4)判断:方程是含有未知数X的等式。……..( )

  2、练一练第2题

  (1)先写一些方程

  (2)组织交流

  3、练一练第3题

  四、课堂作业:

  1、练习一第1题 先独立完成在交流

  2、练习一第2题

  (1)先说一说每题的数量关系

  (2)独立列出方程

  (3)交流

  3、练习一第3题

  (1)说一说天平两边有什么物体,这些物体的质量间有什么关系

  (2)独立思考列出方程

  (3)观察方程,初步感知等式的性质。

  习题超市:

  1、讨论判断:下面的式子哪些是方程,哪些不是方程?

  8x=0 6x+2 4+2>10 2y÷5=10 n-5m = 15

  17-8 = 9 10<3m 6x +3 = 11+2x 4+3z =10 a÷8=60

  2、根据下面的信息,你能列处几个不同的方程?

  我比莉莉重25 kg,,我重61 kg。

  我186 cm。

  我身高x cm,我比爸爸矮40cm。

  我重y kg。

  板书设计及课后反思:

  方程的意义

  含有等号的式子叫等式

  X+50=100

  X+X=100 像X+50=150、2X=200这样含有未知数的等式是方程。

  教材简析:

  等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让学生体会等式的含义。

  天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。例1在天平图下方呈现“=”,让学生用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。

  例2继续教学等式,教材的安排有三个特点:

  第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。学生在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于学生初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对学生的要求由扶到放。圆圈里的关系符号都要学生填写,学生在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让学生填写,这是因为他们以前没有写过含有未知数的等式与不等式。

  第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养学生发现和理解现实情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:

  一是直观情境的呈现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,学生比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让学生看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充分了,看天平图列方程能让学生初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。

  在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个部分数相加是它们的总数。在几个部分数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,学生容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。如果少数学生列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于学生体会数量间的相等关系,对以后的教学也是有弊无利的。

方程的意义的教案5

教学内容:人教版小学数学五年级上册第53~54页内容,方程的意义教学设计。

  教学目标:

  1、理解和掌握方程的意义,弄清楚方程和等式两个概念的关系。

  2、培养学生认真的观察、思考分析问题的能力。

  3、通过自主的探究、合作交流等教学活动,激发学生的兴趣,培养合作意识。

  教学重点:理解和掌握方程的意义。

  教学难点:弄清方程和等式的.异同。

  教学过程:

  一、创设情境,生成问题

  (1)出示ppt显示曹冲称象的画面引导同学们自己思考怎么把大象的重量称出来

  小组之间讨论并得出结论全班集体订正。继而引出相等,平衡的概念。

  (2)课件出示天平,让学生说说天平的特点。师概括总结得出天平的平衡这一特点。

  师;怎样才能使天平左右两边相等?

  出示一架天平的左边是有物体20克和30克,右边是50克

  师:用算式怎么表示?

  生:20+30=50

  引导总结得出这个一个等式。

  二、探索交流,解决问题再出示天平左边是20克的物体和?克的物体,右边是100克的物体,教案《方程的意义教学设计》。

  师:“?”表示什么?我们可以用什么表示?

  生:用字母表示。

  生1:20+x=100

  生2:100-x=20

  生3:100-20=x

  师:你认为用哪个式子更能表示天平的作用两边是平衡的?

  引导得出:20+x=100表示天平左右两边是平衡的

  出示6架天平,根据天平的平衡状态写算式。

  把这8个算式标号,得练习:

  ①20+30=50 ⑤ 80

  ②20+χ=100 ⑥ 3χ=180

  ③50×2=100 ⑦100+20

  ④50+2χ>180 ⑧100+2χ=3×50

  思考:你能给这些式子分类吗?并说说是按照什么标准分类的。

  同桌合作交流汇报

  等式 不等式

  ①20+30=50 ④50+2χ>180

  ②20+χ=100 ⑤ 80

  ③50×2=100 ⑦100+20

  ⑥ 3χ=180

  ⑧100+2χ=3×50

  含有未知数的式子 不含未知数的式子

  ②20+χ=100 ①20+30=50

  ④50+2χ>180 ③50×2=100

  ⑤ 80

  ⑥ 3χ=180

  ⑧100+2χ=3×50

  师:既是等式,又含有未知数的的式子有哪几个?

  生:②20+χ=100

  ⑥ 3χ=180

  ⑧100+2χ=3×50

  像这种含有未知数的等式我们今天给它起个新的名字,称为“方程”

  三、巩固应用,内化提高

  练习:下面哪些是方程?哪些不是方程?

  ① 35-χ =12 ( ) ⑥ 0.49÷χ =7 ( )

  ② Y+24 ( ) ⑦ 35+65=100 ( )

  ③ 5 χ+32=47 ( ) ⑧χ-14>72 ( )

  ④ 28<16+14( ) ⑨9b-3=60 ( )

  ⑤ 6(a+2)=42 ( ) ⑩ χ +y=70 ( )

  张强也列了两了式子,不小心被墨水弄脏了。猜猜他原来列的是不是方程?

  (1)6X + ( =78

  (2)36 + ( ) =42

  四、回顾整理,反思提升通过这一节课的学习,你有哪些收获?

方程的意义的教案6

  设计说明

  1、引导学生边观察、边思考,提高自主学习能力。

  《数学课程标准》中指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验的基础上。本教学设计没有将等式、方程的概念强加给学生,而是充分尊重学生的原有知识水平,结合具体情境,运用天平保持平衡的原理来解释各数量之间的相等关系,按照教材上的连环画,通过教师反复操作,一步一步观察,思考每一步骤的数学含义,让学生逐步理解式子中的“=”就是天平的平衡,从而让学生初步体验和感受方程的意义。  2。引导学生辨方程、写方程,重视学情反馈。

  数学学习重要的`是巩固和应用,因此学习后的学情反馈是很重要的。本设计在学生明确方程的概念后,引导学生自己写方程,识别方程并说出理由的练习,进一步掌握方程的意义,明确判断一个式子是不是方程的两个要素:一看是不是等式,二看有没有未知数。通过应用反馈,加深对方程特点的理解,提高了学习效率。

  课前准备

  教师准备:PPT课件、学情检测卡、课堂活动卡

  学生准备:小黑板、练习卡片

  教学过程

  情境引入,体会“等”与“不等”

  师:同学们,我们学校一年一度的足球比赛又如火如荼地开始了,昨天的比赛是五(1)班对战五(3)班,由于上半场五(3)班发挥出色,上半场的比分为1∶4,中场休息后,五(1)班马上调整了战术,下半场五(3)班没得分,五(1)班连追了x分。

  师:两个班最后的比分是几比几?(学生回答,教师板书:x+1∶4)

  师:哪个班赢了?你能用一个数学式子来表示吗?

  (学生回答:x+1>4,x+1<4,x+1=4;并注意提问式子的意义)

  师:其实在我们的生活中有许多现象是可以用数学式子来表示的。今天我们就来一起学习一个新的数学知识。(教师板书课题:方程的意义)

  设计意图:用学生经历的真实活动为情境,充分调动学生的学习积极性,使学生切实感受到数学来源于生活,服务于生活。同时通过熟悉情境的创设,让学生更易理解,更深刻地感受“等”与“不等”,为后面理解方程的意义作铺垫。

  情境呈现,抽象模型

  1、自学方程的意义,初步感悟新知。(课件出示教材62页情境图)

  自学提示:

  (1)理解教材62页每幅图画及对应式子的含义。

  (2)标示出你认为重要的内容。

  (3)思考:方程应该具备哪几个条件?

  (4)结合你对方程概念的理解,完成教材63页“做一做”1题。

  2、合作学习。

  (1)你能自己写几个方程吗?小组内互相订正。

  (2)组内交流收获。在小组内互相说一说:你学到了什么?

  由组长带领组内成员集体订正教材63页“做一做”1题的答案,说清理由,并将小组内认为不是方程的算式记录在小黑板上。

  (3)全班交流。教师展示学生的完成情况,先把答案相同的进行分类,再从答案最少的一块着手分析。遇到问题,学生之间互相解答,加深对方程的意义的理解。

  (此环节教师要随机应变,注意提问学生“方程应该具备哪几个条件”。如果出现了对方程理解有困难的同学,再次为学生讲解)

  预设:

  ①全班同学的答案一致,全对。

  ②一部分小组全对,一部分小组有错误。

  这时教师可以先找有错误的一个小组到黑板上汇报讲解。讲解时随时和下面的同学互动交流,在学生的争论中,教师适时引导、提问,指导学生判断正误的方法。

  3、整理分类,加深对方程意义的理解。

  (1)组织学生分组活动,根据黑板上的算式特点进行分类。

  (2)交流汇报,说出分类依据。教师板书。

  4、独立完成教材63页“做一做”2题,汇报,集体订正。

  5、引导学生独立完成教材66页1题,集体订正,并加以补充:判断0=5z-15是不是方程。

方程的意义的教案7

  教学理念:让学生在广泛的探究时空中,在明主平等、轻松愉悦的氛围里,应用已有知识经验,通过自主预习、质疑问难、释疑解惑、合作交流,理解并掌握方程的意义,知道等式和方程、方程的解与解方程之间的关系,并能进行辨析,学会用方程表示简单情境中的等量关系,提高观察能力、分析能力和解决实际问题的能力。初步建立分类的思想,进一步感受数学与生活之间的密切联系。

  教学目标:

  1、借助天平明白等式的含义,并在分类的基础上充分感受、认识什么是方程。

  2、会用方程表示数量关系。

  3、培养学生观察、描述、分类、抽象、概括、应用等能力。

  4、感受方程与现实生活的密切联系,体验数学活动的探索性。

  重点:理解方程是含有未知数的等式;

  难点:方程的意义抽象的过程。

  课前谈话:渗透平衡和等量(谈体验)

  教学过程:

  一、激情导入:

  出示天平,(见过天平吗?在那里见过?有什么作用啊?)根据天平的状态列出不同的式子,(不平衡让学生想办法得出让天平两边平衡)。

  二、探究新知:

  1.对不同的式子进行分类(不要有任何要求)

  让学生先独立思考,然后小组合作交流自己的想法。

  2.小组汇报分类的想法。小组之间在倾听的过程中逐渐完善自己本组的想法。

  让小组的代表说说自己组是怎样分类的?为什么这样分类?

  3.教师根据各小组的分类进行小结:像这样的用等号连接左右两边的叫做等式。像这样的这一类叫方程。板书课题。(在学生分类的基础上)

  4.小组探究什么是方程?(先观察式子,独立思考,后小组交流)

  5.小组汇报各组的'想法。在各组倾听的基础上逐渐完善自己的想法。

  6.教师在学生小组汇报的基础上进行小结:像这样,含有未知数的等式叫方程。

  7.生举例。

  8、师举例,让学生说哪些是方程哪些不是方程,并说明理由。

  9、通过刚才的几道算式,让学生说说对方程又有了哪些新的认识?

  10、判断两句话:所有的方程都是等式,所有的等式都是方程。

  11、画图表示方程与等式之间的关系。

  三.应用练习

  1.判断下列式子是不是方程。

  2.看图列方程。

  3.根据题意列方程。

  四.拓展延伸

  1、谈谈自己在知识和情感上的收获。

  2、送给同学们一个方程:天才+X=成功。

方程的意义的教案8

  教学目标:

  1、使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。

  2、使学生会用方程表示简单情境中的等量关系,培养学生的动手操作能力、观察能力、分析能力和解决实际问题的能力。

  教学准备:简易天平、法码、水笔、橡皮泥、纸条、白纸、磁铁。

  同学们,你们平时喜欢干什么?你们喜欢玩吗?喜欢的请举手?

  这么多人喜欢玩,老师想问这么多同学中有人玩过玩过跷跷板吗?玩过的请举手,谁来说说玩跷跷板时是怎样的情景?(学生自由回答)

  当两边的距离相等,重的一边会把轻的一边跷起来,两边的重量相等,跷跷板就平衡。

  利用这种现象,科学家们设计出了天平,老师也自己做了一个简易的天平。我们用它来玩一个类似于跷跷板的游戏。好不好?

  谁想上来玩?

  请你在左边放一个20克的法码,右边放一个50克的法码,这时天平怎么样?(右边的把左边的跷起来了),在左边再放一个20克的法码,这时天平怎么样?(右边的把左边的跷起来了,说明右边的重量比左边的重),你能用一个数学式子来表示这时候的.现象吗?(用水笔板书:20+20<50)

  你能也用一个式子来表示这时候的现象吗?(板书:20×20+10=50。学生说加法,则说两个20相加还可用[用水笔板书:]

  看来我们还可以用式子来表示天平的平衡情况,你们想不想亲自来玩一玩?

  老师为你们每一个学习小组也准备了一架简易天平,还有一些法码,以及两块橡皮泥,大家可以利用这些工具,或者利用你们身边一些比较轻的物体,如橡皮、小刀等,来玩一玩,然后把你们玩的时候看到的现象用式子表示出来,好不好?

  给你们5分钟的时间,比一比哪个小组又快又好。

  哪个小组把自己所写的式子拿上来展示出来。

  你们对这些式子满意吗?

  大家写出了这么多的式子,你能把这些式子按照一个统一的标准分类吗?小组讨论怎么分?按照什么样的标准分?

  谁来说说你们是按照什么标准分的?

  1、如果学生中有“是否含有未知数”(板书:含有未知数)“是否是等式”(板书:等式)这两类的指名上黑板分,其余的口头交流。

  2、把学生写的式子分成两堆,让学生分]

  师:按照不同的标准,有不同的结果。这一种分法,我们得到的这几个式子是什么式子?这一种分法,师:你能把这一种再分成两类吗?怎么分?指名板演。

  象这样,含有未知数的等式我们把它叫做方程。这也是我们今天这堂课要学习的内容。出示课题。

  练习:你能举一个方程的例子吗?学生在本子上写一个。

  老师这儿也有几个式子,它们是方程吗?(用手势表示,随机让学生说说为什么)

  通过这几道题的练习,你对方程有了哪些新的认识?

  (1)未知数不一定用X表示。

  (2)未知数不一定只有一个。

  师:含有未知数的等式叫方程,那么方程和等式有什么关系呢?

  也就是说:方程一定是(等式),但等式[不一定是(方程)]。

  你能用自己的方式来表示方等式和方程之间的关系吗?

  例如画图或者别的方式,小组合作,试一试。(用水笔画在白纸上,字要写得大些)

  师:同学们的图非常形象地表示出了方程和等式之间的关系,1、这些图你能用方程来表示吗?

  2、看来同学们对今天学的知识掌握得不错,用方程还可以表示生活中的一些数量之间的关系?

  如:我班一共有多少人,男生有多少人?如果把女生的人数看成X,你会用方程来表示男女生人数与全班人数之间的关系吗?

  师:这里还有一些有关我们学校的信息,谁来读一读。

  3、新的谢桥中心小学,是苏州市内占地面积最大的小学之一。建筑面积约25000平方米,3幢教学楼的建筑面积一共约为19500平方米,平均每幢为c平方米,其它建筑面积为m平方米。你能选择其中一些信息列出方程来吗?(同桌交流)

  学了这堂课你有什么想说的吗?你有什么想对老师说的吗?

方程的意义的教案9

  一,教学内容

  "义务教育课程标准实验教科书数学"五年级上册p53~54方程的意义

  二,教材分析

  方程的意义对学生来说是一节全新的概念课,让学生用一种全新的思维方式去思考问题,拓展了学生思维的空间,是数学思想方法认识上的一次飞跃.方程的意义是学生学了四年的算术知识,及初步接触了一点代数知识(如用字母表示数)的基础上进行学习的,同时也是学习"解方程"的基础,是渗透用方程表示数量关系式的一个突破口,是今后用方程解决实际问题的一块奠基石.

  三,教学目标

  根据新课标的要求,结合教材的特点和学生原有的相关认识基础及生活经验确定本节课的教学目标:

  1,使学生在具体的情境中理解方程的含义,体会等式与方程的关系,并会用方程表示简单情境中的等量关系.

  2,经历从生活情境到方程模型的构建过程,使学生在观察,描述,分类,抽象,交流,应用的过程中,感受方程的思想方法及价值,发展抽象思维能力和增强符号感.

  3,让学生在学习中体验到数学源于生活,充分享受学习数学的乐趣,进一步感受数学与生活之间的密切联系.

  四,教学重点,难点

  教学重点:理解方程的含义,以及在具体的`情境中建立方程的模型.

  教学难点:正确寻找等量关系列方程.

  五,教学设想

  概念教学本来就比较抽象,而且方程思想作为一种全新的思维方式又有别于学生一贯的算术思路,因此在教学时要重视学生在理解的基础上感知方程的意义,充分利用学生原有的认识基础,关注由具体实例到一般意义的抽象概括过程,尽量直观化,生活化,发挥具体实例对于抽象概括的支撑作用,同时又要及时引导学生超脱实例的具体性,实现必要的抽象概括过程.经历从具体-----抽象------应用的认知过程.

  六,教学准备:课件,天平,实物若干等

  七,教学过程:

  课前准备:利用学具(简易天平)感受天平平衡的原理.

  教学过程

  学生活动

  设计意图

  一,创设情景,建立表象

  1.认识天平.

  2.同学们通过课前的实际操作你发现要使天平平衡的条件是什么

  (天平两边所放物体质量相等)

  3.用式子表示所观察到的情景:

  情景一:导入等式

  (1)天平左边放一个300克和一个150克的橙子,天平的右边放一个450克的菠萝

  300+150=450

  (2)天平左边放四盒250克的牛奶,右边放一盒1000克的牛奶

  250+250+250+250=1000

  或250×4=1000

  情景二:从不平衡到平衡引出不等式与含有未知数的等式

方程的意义的教案10

  教材简析:

  《方程的意义》一课是人教版小学数学五年级上册第四单元《简易方程》中的内容。本节课的主要内容是根据天平写出式子,并通过类比分析归纳出方程的概念,并根据概念学会正确判断一个式子是不是方程以及利用方程概念解决问题。方程这部分知识,在初等代数中占有重要的地位,方程这部分知识的学习,是学生从算术方法解决问题到代数方法解决问题的过渡,因此,在教学中起着承上启下的作用。

  学情分析:

  学生在学习《方程的意义》之前,在低年级的数学学习中均有填算式中的括号、数字谜等不同形式的思维训练,对于方程的意义有了一定的知识渗透,在本单元中,学生已经学习了用字母表示数,这些都为理解方程意义起着铺垫作用。

  教学目标:

  1、了解方程的意义,弄清方程与等式的联系与区别。

  2、在自主探究的学习过程中,结合教学内容帮助学生建立分类思想,进一步感受数学与生活之间的密切联系。

  3、培养学生的动手操作能力、抽象概括能力,以及在合作学习中的的合作探究能力。

  教学重点:

  了解方程的意义

  教学难点:

  完成数量关系到等量关系的过渡,构建方程的概念。

  教学过程:

  一、谈话导入,认识天平:

  同学们,你们小时候玩儿过跷跷板吗?(同时出示图片)

  对于这个游戏的玩儿法与经验,谁能向大家介绍一下?

  其实在生活中,还有一样物品与跷跷板长得很像,它可不是用来游戏的,而是用来测量的,它就是天平。

  【跷跷板与天平有许多相似之处,它们都是在中间有一个支点,都靠力臂两端的重量来达到平衡。但是对于学生而言,天平比较陌生,而跷跷板与学生的生活密切相关,因此,以此导入,形象生动,学生容易找到旧经验与新事物的联系,形成表象】

  二、利用天平,写出式子

  在上一节数学活动课中,我们认识了天平,利用天平称量了物品的质量。

  下面我们就一起来利用天平来测量一杯水的重量。

  【在这部分教学中,教师通过演示再现天平测量物体的过程,水的重量是未知的,用字母X来表示,这部分教学的重点是让学生经历了由形象的天平左右两边的平衡关系过渡到用抽象到数学符号表示的思维过程,为突破教学难点进行铺垫。】

  三、合作探究,认识方程

  1、测量物品,写出式子

  下面请同学们再次利用天平测量桌面上物品的质量,或者利用天平比较物品的轻重,并且根据天平的平衡关系写出式子。最后将你们小组写出的式子按照一定的标准进行分类。

  【《课程标准》中明确指出,数学课要让学生积累数学基本的活动经验。数学作为一种普遍适用的技术,是人们生活、劳动和学习必不可少的工具,因此基本的数学活动经验要在小学数学课中显得尤为重要。在这部分的`教学中,我经历了实验---不实验——再实验的设计过程。第一次教学中,我采用了让学生动手操作,但在实验中,学生由于对天平的好奇以及操作的不熟练,使大部分时间浪费在了感知新事物上,没有完成教学任务;第二稿中,我放弃了实验,让学生直观看教师的大屏幕演示,然后写出式子,学生再根据图片,写出式子,结果整节课学生就在不停地对着抽象的符号写和算,对知识没有形成表象,练习效果不佳。后来,在网络备课和教研员的指导下,我在课前加入了数学活动课,让学生熟悉天平的操作过程,在课堂中,将重点放到利用天平写出式子这一环节,学生目的明确,操作熟练,高效完成了预设的教学目标。】

  2、交流汇报,归纳概念:

  教师选取了每个小组有特点的式子将其呈现在黑板上,学生根据自己的经验进行分类,同时教师进行板演:

  等式不等式

  含有未知数3x=180 50+2b>180

  100+y=50×3 80

  不含未知数50×2=100 100+20

  根据板书,教师讲解:像3x=180、100+y=50×3这样,含有未知数的等式叫做方程,这就是我们今天所要学习的内容。板书课题。

  【"领悟数学基本思想"是新课标中数学中最核心的要求。数学思想是数学知识和方法在更高层次上的抽象与概括。在本节课中,我更注重了对知识的类比归纳,()让学生感知方程与等式的关系,与不等式的区别,最后归纳总结出方程的特征。】

  3、概念演绎,建立模型:

  刚才同学们根据天平所写的式子中还有方程吗?

  老师在测量中的这几个式子中哪个是方程?

  你能根据方程的意义也写出几个与众不同的方程吗?

  【通过这三个内容的练习,既完成了对概念的基本理解与应用,同时又将前面教学中只有乘法和加法的方程式子进行补充,学生写出了将含有减法与除法的方程,使方程的基本模型更清晰准确。】

  四、练习应用,巩固新知

  在练习中,我设计了这样几个题目:

  1、判断式子是不是方程

  2、根据线段图写方程

  3、根据数量关系写方程

  4、判断是否是方程

  5、方程与等式的关系

  【通过由浅入深的练习,学生从基本的判断到实际的应用,从具体的图片写方程到文字的数量关系写方程,最后通过一道判断题,将等式与方程的关系用集合图来表示,使学生对方程的概念的理解更准确,应用更灵活。】

  五、拓展延伸,感受文化

  早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的资料。一直到三百年前,法国的数学家笛卡儿第一个提出用x、y、z等字母代表未知数,才形成了现在的方程。

  【数学是人类文化的重要组成部分,任何一个数学知识的形成都凝聚着人类智慧与汗水。因此通过这部分知识的讲解,学生对方程有了更全面的了解,同时激发了学生的学习钻研热情。】

方程的意义的教案11

  一、教学内容:

  人教版五年级上册第62~63页“方程的意义”。

  二、教学目标:

  1.在具体的情境中理解方程的含义,初步认识等式与方程的关系,会用方程表示简单的等量关系。

  2.在观察、比较、描述、抽象、概括的过程中,让学生经历将现实问题抽象成等式与方程的过程,体会方程是刻画现实世界的数学模型,发展抽象思维。

  3.加强数学知识与现实生活的联系,有利于培养学生的数学应用意识。培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。

  三、教学重、难点:

  1.教学重点:理解并掌握方程的意义。

  2.教学难点:建立“方程”的概念,并会应用。

  四、教学过程:

  (一)情境引入

  今天的这节数学课上老师带了一种利用平衡创造的工具,你们看是什么?(出示天平)关于天平你们都有哪些了解的?(简单介绍天平的工作原理)

  (二)探究新知

  1.现在我们对天平有了初步的了解,那我们来看这幅图(出示天平:左盘2个50g的物品,右盘100g砝码。)

  请同学们仔细观察,在这副图里你获得了哪些信息?

  师:能用一个式子表示这种平衡状态吗?(50+50=100或50×2=100)。

  2.我们再来看这幅图又告诉了你什么信息?(课件出示:左边一个空杯子,右边一个100g砝码的天平。)(杯子重100g)

  3.师:现在我给杯子倒满水,天平还平衡吗?天平发生了怎样的变化呢?

  师:我们不知道加入的水有多重,可以用一个未知数x来表示(水重xg),那么天平左边的杯子和水共重多少克?可以怎样表示呢?(100+x)

  师:天平向左倾斜,说明左边这杯水的重量比右边100g砝码的重量要重。得到数学式子:100+x>100

  4.现在我给右盘再加一个100g的砝码,仔细观察,现在天平平衡了吗?得到数学式子:100+x>200

  师:我给右盘再增加一个100g的砝码,你又发现了什么?得到数学式子:100+x<300

  师继续演示:将右盘中的.一个100克砝码换成50克砝码,天平逐渐平衡,从中得到数学式子100+x=250。

  5.观察比较:

  50+50=100

  100+x>100

  100+x>200

  100+x<300

  100+x=250

  总结:像这样两边相等的(用等号连接的)算式我们把它叫做等式。

  像100+x=250这样,含有未知数的等式就是方程。

  揭题:今天这节课我们学的就是“方程的意义”。(板书课题)

  6.提问:这一个等式是方程吗?为什么?

  追问:这两个式子里都含有未知数,它们是方程吗?

  思考:你认为一个方程应该符合哪些条件?

  (强调:方程既要是等式,又要含有未知数。)

  (三)巩固练习

  1.判断下面哪些式子是方程,并同桌说一说理由。

  35+65=100 8-x=2 y+24

  2.4=a×2 x-14>72 15÷b=3

  5x+32=47 28<16+14 6(y+2)=42

  2.下面哪些天平不能用方程表示?(出示6幅天平图)

  用方程表示出剩下天平的数量关系。

  (说一说天平两边的数量关系,列方程)

  3.用方程表示下面的数量关系。(说数量关系,列方程)

  先独立列出方程,再与同桌说一说方程表示的数量关系。

  4.猜方程

  让学生初步感知:方程一定是等式,等式不一定是方程。

  5.写方程,编故事。

  6.方程“史话”。

  (四)课堂小结

  今天这节课我们学习了方程,方程必须要具备几个条件?方程和等式是怎样的关系?

方程的意义的教案12

  教学目标:

  知识目标:理解与掌握方程的意义,弄清方程和等式两个概念的关系。

  能力目标:培养学生认真观察、思考分析问题的能力。

  情感目标:激发学生求知欲和好奇心,感受数学探索的乐趣,体会“生活中处处蕴涵数学知识”;渗透数学来源于实际生活辩证唯物主义思想。

  教学重点:理解和方掌握程的意义,会用方程的意义去判断一个式子是否是方程。

  教学难点:会用方程表示简单情境中的等量关系。

  教学准备:教学课件。

  教学流程:

  一、导入新课:

  教师:我们已经学习了用字母表示数,今天学习解简易方程。这部分知识非常重要,掌握了它会使我们多了一种解题方法,可以使某些较难的应用题化难为易,有助于提高我们分析问题和解决问题的能力。

  二、探究新知:

  (一)探究方程的意义:

  介绍天平:(课件出示天平图)

  天平实验,引出方程:

  1、第一步,称出一只空杯子重100克;

  第二步,往杯子里倒人约X克水,使天平出现倾斜。

  第三步,增加100克砝码,发现了什么?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?(100+x>200)

  第四步,再增加100克砝码,天平往砝码这边倾斜。哪边重些?怎样用式子表示?(100+x

  第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?(100+x=250)

  2、教师:①观察100+x=250:这是一个等式吗?这个等式有什么特点?

  ②像100+x=250这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?(方程)

  小结:像100+x=250这样的含有未知数的等式,称为方程。

  3、深入探讨理解:

  ①根据方程的含义,方程应该具备哪些条件,②方程与等式之间有什么关系,你能用集合图来表示吗?

  写方程,加深对方程的认识:

  三、练习巩固:

  1、完成课本第54页做一做。在是方程的式子后面打上“√”。

  判断并说胡理由。通过交流使学生明确判断一个式子是不是方程,一看是不是等式,二看有没有未知数。

  2、判断,对的在括号里打√,错的打×。

  (1)等式都是方程,方程都是等式。()

  (2)含有未知数的.式子叫方程。()

  (3)不是方程。()

  3、用方程表示下面的等量关系。

  (1)加上35等于91。(2)的3倍等于57。

  (3)减31的差是86。(4)7.8除以等于1.3。

  4、先说出下面题目中的数量间的相等关系,然后用方程表示出各题中数量间的相等关系。

  (1)文具店原有乒乓球40筒,卖出χ筒,还剩18筒。

  (2)某班有男生23人,女生χ人,共有50人。

  (3)小红买了5支铅笔,每支χ元,共付9元。

  (4)一头大象重5.1吨,一头牛重χ吨,这头牛比大象轻4.75吨。

  (5)甲地距乙地S千米,一辆汽车以每小时42千米的速度从甲地开往乙地,12小时到达。

  5、开放题:妈妈生日到了,小明想用12元零花钱为妈妈买几枝康乃馨,康乃馨每枝X元,他的钱如果买4枝则多3.6元,如果买6枝则少0.6元。根据题目提供的信息,选择有用的条件,你能列几个方程?(同桌议一议)

  四、课堂总结:

  教师:想一想,这节课学习了什么?你有哪些收获?

  课后反思:

  学生对什么是方程都有所了解,本节课是成功的。

方程的意义的教案13

  教学目标:

  1、知识与技能:让学生理解方程的意义,知道什么是方程的解,什么是解方程,并弄清等式与方程的关系。

  2、过程与方法:会判断什么是方程,会解一步计算的方程,并会检验方程的解。

  3、情感态度与价值观:让学生养成良好的检查、验算的习惯,培养学生的分析能力、观察能力。

  教学重点:

  理解方程的意义,初步掌握解方程的方法和书写格式。

  教学难点:

  方程的解和解方程两个概念间的联系及区别,并会应用。

  教具准备:

  课件、白纸

  教学过程:

  一、激情导入

  1、游戏引出课题:

  师:小朋友们,我们来做个游戏吧!老师来说一个词语,你们反这个词语反一反说出来,好吗?看谁反应快!

  父母的爱——爱父母;动物的画——画动物;

  节目的表演——表演节目;生命的感悟——感悟生命;朋友的理解——理解朋友;

  朋友的善待——善待朋友;亲人的召换——召换亲人;儿女的担忧——担忧儿女

  问题的答——答问题;方程的解——解方程;

  引出课题:板书“方程的解解方程”

  这节课我们来研究这里面的知识。

  二、讲解概念“等式、方程”

  1、找朋友:

  师:刚才我们玩的这个游戏中,找到了好几对文字上的朋友。

  下面,请你来帮这些式子或数字找找朋友,你愿意吗?

  生:愿意。

  ①、出示课件:同桌之间说一说;指名回答,根据学生回答再次出示课件。

  师:这几对好朋友都有什么特点呢?

  生:它们相等。(关键引出“相等”)

  师:除了把它们用线连起来,还可以用什么方法来表示它们之间是相等的呢?

  生:列成一个式子。

  学生口答列式,师边板书:80-20=60

  2+0.5=2.5

  30÷15=2

  30×2=60

  师:像这样用等号连接起来的,表示左右两边相等的式子,我们把它们取名叫等式。

  师:你能举例说几个等式吗?

  ②、引出方程:

  师:那剩下的'几个它们找不到朋友,心里不太高兴,你能把它们也连连线写成一个等式吗?

  生:能。

  学生口答并板书,如:x+3=9

  300-b=250

  3a=18

  师:我们又找到了3对朋友,它们也是等式。那这三个等式跟刚才的四个等式有哪些相同和不同的地方吗?

  生:它们有未知数x、a、b。

  师:像这样含有未知数的等式,我们给它取名叫方程。

  你能举例说几个方程吗?

  2、等式与方程的关系:

  师:那等式和方程之间到底是什么关系呢?

  你能用一种直观形象的方法来表示它们之间的关系吗?

  你可以在纸上写一写、画一画,用自己喜欢的方式来表示,四人小组讨论一下。

  指名回答。出示课件并板书。

  师小结:方程属于等式,里面含有未知数,是一种特殊的等式,但等式不一定是方程。

  3、判断练习:

  师:我们有了方程和等式的知识,当遇到一个式子,要判断它是不是方程时,应该怎么想?

  生:先看它是不是等式,如果是等式,再看它有没有未知数。如果它有未知数,就是方程;如果没有未知数,就不是方程,而是一般的等式。

  师小结:一必须是等式,二必须含有未知数。

  师出示课件中的练习:下列哪些是方程,哪些不是方程?

  ①、下面哪些是方程,哪些不是方程:

  35-b=1284÷12=7

  5x-32<749÷y=7

  450x=90069+a

  ②、含有未知数的算式叫做方程。

  ③、方程一定是等式;等式一定是方程。

  ④、35+x=76既是等式,也是方程。

  ⑤、30+20=10+40是等式,但不是方程。

  ⑥、y=0不是方程。

  ⑦、x=20是方程30+x=50的解。

方程的意义的教案14

  教学内容:教科书第1~2页的内容及练习一的1~3题。

  教学目标:

  1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

  2、培养学生概括、归纳的能力。

  教学重点与难点:通过学习,使学生理解方程的含义。

  教学流程:

  一、教学例1

  出示例1,提出要求:你能用等式表示天平两边物体的质量关系吗?

  学生在本子上写。

  指名回答,板书:50+50=100

  含有等号的式子叫等式,它表示等号两边的结果是相等的。

  二、教学例2

  学生自学

  1、学生在书上独立填写,用式子表示天平两边的质量关系。

  2、小组同学交流四道算式,最后达成统一认识:

  X+50>100X+50=100

  X+50<100X+X=100

  3、把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。

  学生可能会这样分:

  第一种:X+50>100X+50=100

  X+50<100X+X=100

  第二种:X+50>100X+X=100

  X+50<100X+50=100

  引导学生理解第一种分法:

  你为什么这样分,说说你的'想法。

  小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。

  指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的等式是方程。

  提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”

  那X+50>100、X+50<100为什么不是方程呢?

  提问:那等式和方程有什么关系呢,在小组里交流。

  方程一定是等式,但等式不一定是方程。

  三、完成“试一试”、“练一练”

  学生独立完成。

  集体订正时围绕“含有未知数的等式”进一步理解方程的含义

  四、课堂作业:练习一的1、2、3。

  板书:X+50=100

  X+X=100

  像X+50=150、2X=200这样含有未知数的等式是方程。

方程的意义的教案15

  教学目标:

  (1)使学生理解方程概念,感受方程思想。

  (2)经历从生活情景到方程模型的建构过程。

  (3)培养学生观察、描述、分类、抽象、概括、应用等能力。

  教学过程:

  一、创设情景,抽象数学模式。

  1.出示实物天平。

  (实物天平比较小,用屏幕上的天平来模拟实验。)

  2.两个大苹果和一个小西瓜,它们的重量我们还不知道,如果要分别放在两个盘上,猜猜看,天平可能会哪边重呢

  (说明两边的重量可能有三种不同的关系。)

  用式子描述重量之间的相等关系。

  3.一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗?

  用式子表示两队比分的关系。

  红队的教练啊也关注了这个情况,马上叫了一次暂停,并作了战术上的调整,一上场的一段时间里,只有红队连续得了分,请你猜一猜,两队的情况会怎样呢?

  用式子来表示比分的三种关系。

  4.创设四个情景。

  (1)每个情景中数量之间有什么关系?

  (2)你能用关系式清晰地来描述吗?

  二、引导分类,概括方程概念。

  刚才我们对情景的描述得到了很多式子。

  200+200=400182318+2318+2318+=23

  280100120425+=7022y+720=1050

  1.学生尝试第一次分类。

  可能有几种不同的分法。

  (1)看是否是等式。

  (2)看是否含有未知数。

  2.学生尝试第二次分类。

  得到四组不同的式子。

  3.描述每一组的特征。

  4.引导概括方程概念。

  含有未知数的等式叫方程。

  三、抓等量关系,体会方程本质。

  1.演示动态平衡。有等量关系,能用方程表示

  2.出示情景(没有等量关系,不能用方程表示。)

  出示情景120元正好买2个玩具企鹅。(有等量关系,能用方程表示)

  3.通过今天这节课,你学到了什么呢?

  四、联系实际,应用与拓展。

  1.周老师从无锡到徐州来上课。

  (1)线段图。

  (2)我乘火车从无锡站开出,每小时行千米,7小时到达徐州站。无锡站到徐州站的铁路长525千米。

  (3)到了徐州站,我买了3枝圆珠笔,每枝元,付出20元,找回2元。

  2.情景图。

  本届奥运会上,中国台北队获得了枚金牌,中国队获得了32枚,日本队获得y枚。男孩说:中国台北队金牌数的16倍正好等于中国队的金牌数。女孩说:日本队的金牌数等于中国台北队的8倍。

  3.开放题。

  小芳集邮共260张,小明集邮共300张。怎样才能使两人的集邮张数一样多(用方程表示)

  方程的意义教学设计的说明

  在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,由此通过自我理解、生成、连接,形成自己的知识系统。本课《方程的意义》的教学设计,基于对数学概念及概念教学的再把握,相对于传统的教学,有了比较大的变化。这是我们的尝试,也是一种思考和探索。

  整体的`把握:

  数学概念不仅是局部的,而且是全局的;不仅是静态的,而且是动态的;不仅是学科的,而且是儿童的。所以对方程概念及其教学应从多个层面加以把握:

  形式层面含有未知数的等式(是关系的一种)。这是一种静态的结论。

  发现层面经历方程模式的生成过程,它来源于现实又回到现实,寻找等量关系并用方程来表示。这是一个动态的过程。

  直观具体层面举出正例或反例。

  直觉层面一种数学的意识、一种方程的感觉。

  这样才能形成一个有力的认知结构(其中包含知识结构、方法结构和经验结构)

  目标的把握:

  经历从现实问题到方程概念建立的过程,(方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中特定关系的过程。)体会方程是刻画现实世界的数学模型。

  渗透方程思想的三个方面:设立未知量,将其当作已知数,参与到问题中事实的表达;建立等量关系,用方程表示(方程是说明两件事情是等价的);区别未知量与己知量,只要经过运算,就可用已知数表示未知量。

  过程的把握:

  统揽全局基础上的局部聚集,突出知识胚胎的生成。学生的认识不是线性发展的,而是整体式推进的。各个部分知识的拼装不可能产生真正意义上的有生命的知识,只有胚胎式的整体推进才能领略到知识生命的意蕴。所以概念教学须克服原有的分割式、部分式教学,突出知识胚胎的生成。传统教学注重从部分到整体,形成一个结构。现代教学应更重视从整体到部分再到整体,形成更有意义和活力的结构。

  本课方程概念的教学,力图围绕目标形成一个包括知识技能、思维方式和方程思想的整体结构,在其后的教学中再对方程的各个部分进行深化,形成所谓同心圆结构的知识生成模型,这是儿童认识的规律,也许可以解决数学教学中知识太散的问题。

  经历问题情景数学模型解释与应用的全过程。从问题情景数学模型展开数学化和结构化的过程。再从数学模型解释与应用展开结合现实寻找意义的过程。方程整体概念生成必须经历这样的过程,才能使目标的各个部分协调地组合在一起,产生一种数学的意识和方程的观念。

  参考文献:

  (1)史宁中、孔凡哲著.方程思想及其课程教学设计数学教育热点问题系列访谈录之一.《课程.教材.教法》第24卷第9期,(2)林永伟、叶立军编著.《数学史与数学教育》第65页.方程产生历史的启示意义。

  (3)《全日制义务教育数学课程标准(实验稿)》北京师范大学出版社。

【方程的意义的教案】相关文章:

《方程的意义》教案05-28

《方程》教案01-27

人教新课标五年级数学方程的意义教案01-16

比的意义教案01-06

解方程例4教案02-08

数学课《方程》教案03-25

分数的意义教案04-17

小数的意义教案10-20

分数的意义教案01-02