- 有理数的减法教案优秀 推荐度:
- 相关推荐
有理数的减法教案
作为一位杰出的教职工,时常会需要准备好教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。写教案需要注意哪些格式呢?下面是小编为大家整理的有理数的减法教案,仅供参考,大家一起来看看吧。

有理数的减法教案1
〖教学目的〗
〖知识与技能目标:〗理解有理数减法的意义。
〖过程与方法:〗会进行有理数减法运算
〖情感态度与价值观:〗
有意识培养学生学习数学的信心和克服困难的勇气,从中体味成功的快乐.
〖教学重点、难点:〗重点:异号两数相减。难点:异号两数相减。
〖教学方法:〗引导发现法
〖教具准备:〗尺、小黑板。
〖教学过程:〗
Ⅰ.复习提问:
1.叙述有理数加法法则。
2.两个有理数的和一定大于每一个加数吗?
3.10比3大多少?10比-3大多少?-10比3大多少?如何计算?
4.3-10有意义吗?它应当等于多少?
注:问2是要向学生强调,两数的和不一定大于每一个加数,一个数加一个非零的有理数,其和可能增加也可能减少。问3是向学生说明求一个数比另一个数大多少在有理数范围内同样要用减法运算。问2和问3都是为了引入新课而设计的。
Ⅱ.新课讲解:
1.由问2、问3讲解有理数减法的意义。
在正有理数范围内3-10是没有意义的,因为3比10小,问3比10大多少,问题的本身就有问题,但引入负数就不同了。如果你有3元钱向售货员买了10元的物品,如果售货员让你先把物品拿走,那么你将欠售货员7元。这件事实如用算式表达,即3-10=-7。
由实际运算的`例子归纳有理微减法法则。
考察:3-10=3+(-10)=-7,3-(-10)=3+10=13,
(-10)-(-3)=-10+3=-7,(-10)-7=-10+(-7)=-17。
等式左边的运算结果,用减法意义求出。3比10大-7,3比-10大13,-10比-3大-7,-10比7大-17,或画数轴,让学生观察得出。考察以上计算后。提问:减法是否都可转化为加法计算?启发学生自己得出有理数减法法则:减去一个数等于加上这个数的相反数。
3.讲解例题:
(l)补充例题:问15℃比5℃高多少度?15℃比-5℃呢?-5℃比15℃呢?
解:∵15-5=10,∴15℃比5℃高10℃;
∵15-(-5)-15+5=20,∴15℃比-5℃高20℃;
∵-5-15=-5+(-15)=-20,∴-5℃比15℃高-20℃。即-5℃
比15℃低20℃。
(2)教科书例1、例2。
Ⅲ.做一做
课堂练习:教科书第82页练习第1~3题。
Ⅳ.课时小结
有理数减法的意义。
Ⅴ.课后作业
1.习题2.6A组第1~9题,B组选做。
《2.5有理数的减法》同步练习
2.(题型一)李明的练习册上有这样一道题:计算|(-3)+_|,其中“_”是被墨水污染而看不到的一个数,他翻看了后边的答案得知该题的计算结果为6,那么“_”表示的数应该是.
3.(考点一)计算:(1)-2- (+10);
(2)0-(-3.6);
(3)(-30)-(-6)-(+6)-(-15);
《2.5有理数的减法》测试
16.下表记录了七年级(1)班一个组学生的体重与标准体重的差(正号表示比标准体重重,负号表示比标准体重轻),标准体重是50 kg.
姓名小明小丁小丽小文小天小乐
体重与标准体重的差(kg)-5+3-7+4+60
(1)谁最重?谁最轻?
(2)最重的比最轻的重多少千克?
有理数的减法教案2
这一课时的重点是继续帮助学生实现减法向加法的转化与加减法互化,了解运算符号和性质符号之间的关系.把任何一个含有有理数加、减混合运算的算式都看成和式,这一点对学生熟练掌握有理数运算非常重要,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.
备课时如果在教学设计方面与实际生活中的问题联系在一起更能激发学生兴趣,
课堂教学中学生的主体性体现得不好,还需要学生更多的参与到课堂中,主要原因是练习不够,课外作业设计得太单一。教师备课需要与实际生活、教学大纲、学生、教材等联系在一起。
一、选择题
1.下列计算正确的是().
A.(-14)-(+5)= -9 B.0-(-3)=3
C.(-3)-(-3)= -6 D.(+7)-(-2)=5
2.(20xx年凉山州)比1小2的'数是().
A.-1 B.-2 C.-3 D.1
3.下列结论中,正确的是().
A.有理数减法中,被减数不一定比减数大
B.减去一个数,等于加上这个数
C.零减去一个数,仍得这个数
D.两个相反数相减得0
4.一个数加-3.6,和为-0.36,那么这个数是().
A.-2.24 B.-3.96 C.3.24 D.3.96
5.若 ,且 ,则 是().
A.正数 B.正数或负数 C.负数 D.0
6.若两数的和为m,差为n,则m,n之间的关系是().
A.m=n B.m>n C.m 二、填空题 7.减去一个数,等于,也可以表示成a-b=a+. 8.在括号内填上合适的数: (1)(-17)-(+9)= (-17)+(______);(2)2-(-9)=2+(______); (3)0-(-9)=0+(______). 9.月球表面中午的温度是101℃,夜晚的温度是-150℃,那么夜晚的温度比中午低_________℃. 10.数轴上表示数-3的点与表示数-7的点的距离为. 三、解答题 11.计算下列各题: (1)(-12)-(-7);(2)2.7-16.7. 12.已知甲数是4的相反数,乙数比甲数的相反数小7,求乙数比甲数大多少? 13.若规定 a-b=a-b-1,求(-27.2)- ( -2.2)的值. 14.一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是-1℃,乙此时在山脚测得温度是5℃,已知该地区每增加100米,气温大约降低0.6℃,这个山峰的高度大约是多少米? 15.某矿井下A,B,C三区的标高为A(-29.3m),B(-120.5m),C(-38.7m),哪处最高?哪处最低?最高处与最低处相差多少? 《1.3.2有理数的减法》同步练习题(含答案) 一、选择题 1.下列等式计算正确的是( ) A.(-2)+3=-1 B.3-(-2)=1 C.(-3)+(-2)=6 D.(-3)+(-2)=-5 答案 D (-2)+3=1,故选项A错误;3-(-2)=3+2=5,故选项B错误; (-3)+(-2)=-5,故选项C错误,选项D正确,故选D. 2.-3,-14,7的和比它们的绝对值的和小( ) A.-34 B.-10 C.10 D.34 答案 D 可列式:(|-3|+|-14|+|7|)-(-3-14+7)=24-(-10)=34. 《1.3.2有理数的减法》同步练习含答案 1.把-6-(+7)+(-2)-(-9)写成省略加号和括号的和的形式是( ) A.-6-7+2-9 B.-6-7-2+9 C.-6+7-2-9 D.-6+7-2+9 2.式子-20+3-5+7的正确读法是( ) A.负20加3减5加7的和 B.负20加3减负5加正7 C.负20加3减5加7 D.负20加正3减负5加正7 3.下列交换加数位置的变形中,正确的是( ) A.1-4+5-4=1-4+4-5 B.1-2+3-4=2-1+4-3 C.4-7-5+8=4-5+8-7 D.-3+4-1-2=2+4-3-1 4.某地冬季一天中午的气温是5 ℃,下午上升到7 ℃,受冷空气影响,到夜间气温最低时又下降了9 ℃,则这天夜间的最低气温是________ ℃. 教学目标 1.理解掌握法则,会将运算转化为加法运算; 2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过运算,培养学生的运算能力. 3.通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想. 教学建议 (一) 重点、难点分析 本节重点是运用法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施. (二)知识结构 (三)教法建议 1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决. 2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的. 3. 因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆. 4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。 教学设计示例 一、素质教育目标 (一)知识教学点 1.理解掌握法则. 2.会进行运算. (二)能力训练点 1.通过把减法运算转化为加法运算,向学生渗透转化思想. 2.通过有理数减法法则的推导,发展学生的逻辑思维能力. 3.通过运算,培养学生的运算能力. (三)德育渗透点 通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想. (四)美育渗透点 在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美. 二、学法引导 1.教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动. 2.学生学法:探索新知→归纳结论→练习巩固. 三、重点、难点、疑点及解决办法 1.重点:有理数减法法则和运算. 2.难点:有理数减法法则的推导. 四、课时安排 1课时 五、教具学具准备 电脑、投影仪、自制胶片. 六、师生互动活动设计 教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决. 七、教学步骤 (一)创设情境,引入新课 1.计算(口答)(1); (2)-3+(-7); (3)-10+(+3); (4)+10+(-3). 2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少? 教师引导学生观察: 生:10℃比-5℃高15℃. 师:能不能列出算式计算呢? 生:10-(-5). 师:如何计算呢? 教师总结:这就是我们今天要学的内容.(引入新课,板书课题) 【教法说明】 1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础. 2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—. (二)探索新知,讲授新课 1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢? 生:(+10)-(+3)=+7. 师:计算:(+10)+(-3)得多少呢? 生:(+10)+(-3)=+7. 师:让学生观察两式结果,由此得到 (+10)-(+3)=+10)+(-3). (1) 师:通过上述题,同学们观察减法是否可以转化为加法计算呢? 生:可以. 师:是如何转化的呢? 生:减去一个正数(+3),等于加上它的相反数(-3). 【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算. 2.再看一题,计算(-10)-(-3). 教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加加会得到-10,那么这个数是谁呢? 生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7. 教师给另外一个问题:计算(-10)+(+3). 生:(-10)+(+3)=-7. 教师引导、学生观察上述两题结果,由此得到: (-10)-(-3)=(-10)+(+3). (2) 教师进一步引导学生观察(2)式;你能得到什么结论呢? 生:减去一个负数(-3)等于加上它的相反数(+3). 教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算. 【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标. 师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么? 学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充. 师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书) 教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:. 【教法说明】结合引入新课中温度计的实例,进一步验证了法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际. 4.例题讲解: [出示投影1 (例题1、2)] 例1 计算(1)(-3)-(-5); (2)0-7; 例2 计算(1)7.2-(-4.8); (2)()-. 例1是由学生口述解题过程,教师板书,强调解题的`规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算. 例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评. 【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数. 师:组织学生自己编题,学生回答. 【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授. (三)尝试反馈,巩固练习 师:下面大家一起看一组题. [出示投影2 (计算题1、2)] 1.计算(口答) (1)6-9; (2)(+4)-(-7); (3)(-5)-(-8); (4)(-4)-9 (5)0-(-5); (6)0-5. 2.计算 (1)(-2.5)-5.9; (2)1.9-(-0.6); (3)()-; (4)-(). 学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上. 【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备. 用实物投影显示课本第45页的画面. 3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少? 生答:8848-(-392)=8848+392=9240. 所以两地高度相差9240米. 【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际. (四)课堂小结 提问:通过本节课学习你学到了什么?生答:略. 师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施. 八、随堂练习 1.填空题 (1)3-(-3)=____________; (2)(-11)-2=______________; (3)0-(-6)=____________; (4)(-7)-(+8)=____________; (5)-12-(-5)=____________; (6)3比5大____________; (7)-8比-2小___________; (8)-4-( )=10; (9)如果,,则的符号是___________; (10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________. 2.判断题 (1)两数相减,差一定小于被减数.( ) (2)(-2)-(+3)=2+(-3).( ) (3)零减去一个数等于这个数的相反数.( ) (4)方程在有理数范围内无解.( ) (5)若,,,.( ) 九、布置作业 (一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题. (二)选做题:课本第84页中5、8. 十、板书设计 随堂练习答案. 1.(1)6; (2)-13; (3)6; (4)-15; (5)-7; (6)-2; (7)6; (8)-4; (9)+; (10)8848-(-155). 2.× × √ × √ 作业 答案 (一)必做题:2.(2)102;(4)-68;(6)-210;(8)92 3.(2)-0.6;(4)0.2;(6)-1.5;(8)9.11 4.(2);(4);(6);(8) (二)选做题:5.(1)-9;(2)-5;(3)1;(4)12;(5)-2.28;(6) 8.(1)4;(2)5;(3)7;(4)5 一、学生起点分析: 有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。学生对减法运算并不陌生,但在小学阶段多是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在.因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义. 学生的知识技能基础:本节课是在学习了正负数、相反数、有理数的加法运算之后学习的新内容。 学生的活动经验基础:在相关知识的学习过程中,学生已经经历了一些数学活动,解决了一些简单的实际问题,感受到了有理数运算的必要性与作用,具有了一定合作学习的经验,具备了一定的合作与交流的能力。 二、学习任务分析 “数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算.本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算.通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。 鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下: 1.知识目标: 经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算. 2.能力目标: 经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想. 3.情感目标: 在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习. 为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用.教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题. 三、教学过程设计: 根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用探究发现法、多媒体辅助教学方法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。 本节课设计了五个教学环节; (一) 引入课题: (二)新课讲解: (三) 巩固练习: (四) 课堂小结: (五)布置作业 第一环节 引入课题: 活动内容 多媒体呈现教科书61页图片,提出问题:乌鲁木齐的最高温度为4℃,最低温度为-3℃,这天乌鲁木齐的温差为多少?你是怎么算的? 活动目的:根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。 教学要求与效果:由身边的数学问题引入,感受有理数减法运算的现实意义。 第二环节(二)新课讲解: 活动内容:通过对温度计的观察,计算温差,感知有理数减法法则。 问题1:你能从温度计上看出4℃比-3℃高多少摄氏度吗? 先请同桌两位同学相互讨论交流,然后请2~3个学生发言. 问题2:如何计算4-(-3)呢? 先引导学生回忆:被减数、减数、差之间的关系,被减数-减数=差,再利用减法是加法的逆运算,引导学生得出:差+减数=被减数· 如:计算4-3就是求一个数“x”,使它加上3等于4,同样的,要计算4-(-3)就是求一个数“x”,使x与-3相加等于4.、 即X+(-3) =4,因为7+(-3) =4,所以4-(-3) =7 减法 加法 (+4)-(-3)=+7 (+4)+(+3)=+7 让学生比较上面这两个算式并讨论后得出: (+4)-(-3)=(+4)+(+3) 再给出以下算式: 减法 加法 (+5)-(+2)=+3 (+5)+(-2)=+3 继续让学生比较上面这两个算式并讨论后得出: (+5)-(+2)=(+5)+(-2) 问题3:请同学们想一想,4十?=7? 请学生回答,教师板书:4+(+3) = 7,用彩色粉笔在4-(-3)与4十(+3)处画出着重号.引导学生观察4+(+3)=7与4-(-3)=7,从而提出猜想“减去一个数与加上这个数的相反数是相等的”: 4-(-3)=4+(+3). 这时教师问:你发现这个等式有什么特点? 学生回答后,示意再换几个数试一试,并请学生分组合作计算、交流: (1)把4换成0,-1,-5,得0-(-3),(-5)-(-3),(-5)一(-3),这些数减(-3)的结果与它们加(+3)的结果相同吗? (2)计算9-8,9+(一8),15一7,15+(一7),你发现了什么? 请小组代表全班汇报,教师在此基础上归纳: 有理数减法法则:减去一个数,等于加上这个数的相反数. 问题4:你能够用字母把法则表示出来吗? a-b=a+(-b) (说明:简明的表示方法,体现字母表示数的优越性实际运算时会更加方便) 强调运用法则时:被减数不变,减号变加号,减数变成其相反数 减数变号(减法=加法) 活动目的:《标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学.其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用. 上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的.本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程. 教学要求与效果:通过学生的合作探讨,培养学生与他人合作交流的习惯与意识,改变他们的`学习方式,争取让他们的学习方式,争取让每个学生都在同伴的交流中获益。此处也是让学生验证前面所提的猜想的正确性,用字母把减法法则表示出来,有利于学生的理解和记忆。 第三环节 巩固练习 活动内容: 让学生完成课本P63的练习1,巩固有理数减法法则的运用,强化学生对这节课的掌握。例1,例2口答,例3题请2个学生上黑板板演。对回答好的同学给予表扬肯定,如果有错误,请其他同学纠正。 例1 计算 :(1) (-3)-(-5); (2) 0 - 7 例2 计算(1) 7.2 - (-4.8) ; (2) (-3 -2 ) - 5 例3 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米? 活动目的:通过例题教学使学生巩固方法,初步具备解决问题的能力。 教学要求与效果:讲解时注意让学生复述有理数法减法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。渗透化归的思想:让学生归纳一些运算的规律、特征,有利于提高学生的运算能力。补充例题的作用在于让学生体会减法在实际生活的应用。让学生感受8848米这个高度,培养学生的数感。 第四环节:课堂小结(师生共同完成) 1.有理数的减法运算法则: 减去一个数,等于加上这个数的相反数 a-b=a+(-b) 2.转化的思想方法: 减法运算转化成加法进行计算 第五环节:布置课后作业: 课本习题知识技能的2.3.4和问题解决1,教学目的:通过作业反馈对学生所学知识掌握的效果,以利课后解决学生尚有疑难的地方。 四、教学设计与反思 1.本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现教师是学生学习的引导者、伙伴的新型师生关系. 2.在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际问题过程中培养运算能力.另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性.在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的是让学生顺利地掌握法则,并达到熟练运用的程度。 创设情境,引入课题: 【问题1】:今天一天的气温为-3℃?4℃这天的温差是多少呢?(温差代表最好温减去最低温)。这就是我们今天要探究的有理数的减法。 【活动】:一下是一个室温计的图示,请同学们观察并读出温差? 教师可以引导学生去计算4与-3之间想减的方法来归纳总结。 步步探索,形成概念: p22探究 【定义】:有理数减法法则:减去一个数,等于加上这个数的相反数。有理数减法法则也可以表示为: a- b=a+(-b) 【例题1】:计算: 1、(-3)-(-5)2、0-73、7.2-(-1.8)4、(-3111)-5244 【例题2】:1、比2℃低8℃的温度。 2、比-3℃低6℃的温度。 【思考】:同桌之间相互探讨,我们在前面学习过程中,只有a>b或者a=b,我们理所当然会做,那么,在a 【例题3】:计算:(-20)+(+3)-(-5)-(+7) 分析:这个式子中有加法和减法,可以根据有理数的'减法法则把它写为:(-20)+(+3)+(+5)+(-7) 【思考】:这里这个计算将会用到什么运算规律。 【设计意图】:通过对这个设计可以是学生巩固加法和减法的混合运算。由此可以归纳出:a+b-c=a+b+(-c) 【问题4】:对于计算(-20)+(+3)+(+5)+(-7)我们可以如何去理解?前后同桌讨论。 ? 课堂练习,巩固提高: 【例题3】:计算: 1、1-4+3-0.5;2、-2.4+3.5-4.6+3.53、(-7)-(5)+(-4)-(-10) 习题1.3: 必做题:1:(2)(4)(6)(8)。2:(2)(4)6、9、10、11、12 选做题:14、 一、知识与技能 理解有理数加减法可以互相转化,能把有理数加减混合运算统一为加法运算,灵活应用运算律进行计算、 二、过程与方法 经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力、 三、情感态度与价值观 体会数学与现实生活的联系,提高学生学习数学的兴趣、 教学重点、难点与关键 1、重点:有理数加减法统一为加法运算,掌握有理数加减混合运算、 2、难点:省略括号和加号的加法算式的运算方法、 3、关键:理解加减混合运算可以统一成加法,?以及正确理解省略加号的有理数加法形式、教具准备 投影仪、 四、教学过程 一、复习提问,引入新课 1、叙述有理数的加法、减法法则、 2、计算、 (1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6); (4)(—8)—6;(5)5—14、 五、新授 我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算、 六、巩固练习 1、课本第24页练习、 (1)题是已写成省略加号的代数和,可运用加法交换律、结合律、 原式=1+3—4—0。5=0—0。5=—0。5 (2)题运用加减混合运算律,同号结合、 原式=—2。4—4。6+3。5+3。5=—7+7=0 (3)题先把加减混合运算统一为加法运算、 原式=(—7)+(—5)+(—4)+(+10) =—7—5—4+10(省略括号和加号) =—16+10 =—6 七、课堂小结 有理数加减混合运算通常统一成加法运算,运算时常用交换律和结合律使计算简便,一般情况采用:(1)凡相加是整数的,可以先加;(2)分母相同或易于通分的分数相结合;(3)有互为相反数可以互相抵消的,先相加;(4)正、负数分别相加、总之要认真观察,灵活运用运算律、 八、作业布置 1、课本第25页第26页习题1、3第5、6、13题、 九、板书设计: 第四课时 1、把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便、 归纳:加减混合运算可以统一为加法运算、 用式子表示为a+b—c=a+b+(—c)、 2、随堂练习。 3、小结。 4、课后作业。 十、课后反思 本课教学反思 本节课主要采用过程教案法训练学生的听说读写。过程教案法的理论基础是交际理论,认为写作的过程实质上是一种群体间的交际活动,而不是写作者的个人行为。它包括写前阶段,写作阶段和写后修改编辑阶段。在此过程中,教师是教练,及时给予学生指导,更正其错误,帮助学生完成写作各阶段任务。课堂是写作车间,学生与教师,学生与学生彼此交流,提出反馈或修改意见,学生不断进行写作,修改和再写作。在应用过程教案法对学生进行写作训练时,学生从没有想法到有想法,从不会构思到会构思,从不会修改到会修改,这一过程有利于培养学生的写作能力和自主学习能力。学生由于能得到教师的及时帮助和指导,所以,即使是英语基础薄弱的同学,也能在这样的'环境下,写出较好的作文来,从而提高了学生写作兴趣,增强了写作的自信心。 这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣,在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。 在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。 在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。 教学目标 1.了解有理数加法的意义,理解有理数加法法则的合理性; 2.能运用有理数加法法则,正确进行有理数加法运算; 3.经历探索有理数加法法则的过程,感受数学学习的方法; 4.通过积极参与探究性的数学活动,体验数学来源于实践并为实践服务的思想,激发学生的学习兴趣,同时培养学生探究性学习的'能力. 教学重点 能运用有理数加法法则,正确进行有理数加法运算. 教学难点 经历探索有理数加法法则的过程,感受数学学习的方法. 教学过程(教师) 一、创设情境 小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢? 1.试一试 甲、乙两队进行足球比赛.如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球. 你能把上面比赛的过程及结果用有理数的算式表示出来吗? 做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表: 2.我们知道,求两次输赢的总结果,可以用加法来解答,请同学们先个人研究,后小组交流. 你还能举出一些应用有理数加法的实际例子吗? 二、探究归纳 1.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“”的位置上. 用数轴和算式可以将以上过程及结果分别表示为: 算式:________________________ 2.把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“1”的位置上. 用数轴和算式可以将以上过程及结果分别表示为: 算式:________________________ 3.把笔尖放在数轴的原点,沿数轴先向左移动3个单位长度,再向左移动2个单位长度,这时笔尖的位置表示什么数? 请用数轴和算式分别表示以上过程及结果: 算式:________________________ 仿照上面的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果. 4.观察、思考、讨论、交流并得出有理数加法法则. 讨论:两个有理数相加时,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗? 《2.5有理数的加法与减法》课时练习 1.七年级(3)班同学李亮在一次班级运动会上参加三级跳远比赛,共跳了5次,他第一次跳了6m,第二次比第一次多跳0.1m,第三次比第二次少跳0.3m,第四次比第三次多跳0.5m,第五次比第四次少跳了0.4m.他那一次跳得最远?成绩是多少? 2.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10. (1)通过计算说明小虫是否回到起点P. (2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间. 2.5有理数的加法与减法:同步练习 1.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:km) +17,-9,+7,-15,-3,+11,-6,-8,+5,+16 (1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远? (2)养护过程中,最远外离出发点有多远? (3)若汽车耗油量为0.09升/km,则这次养护共耗油多少升? 2.5 有理数的减法 题 目 有理数的减法 课时1 学校教者 年级七年 学科数学 设计来源 自我设计 教学时间 教学目标 1.理解有理数减法法则, 能熟练进行减法运算. 2.会将减法转化为加法,进行加减混合运算,体会化归思想. 重点 有理数的减法法则的理解,将有理数减法运算转化为加法运算. 难点 有理数的减法法则的理解,将有理数减法运算转化为加法运算. 教学方法 讲授教学过程 一、情境引入: 1.昨天,国际频道的天气预报报道,南半球某一城市的最高气温是5℃,最低气温是-3℃,你能求出这天的日温差吗?(所谓日温差就是这一天的最高气温与最低气温的差) 2.珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰比吐鲁番盆地高多少? 探索新知: (一) 有理数的减法法则的探索 1.我们不妨看一个简单的'问题: (-8)-(-3)=? 也就是求一个数“?”,使 (?)+(-3)=-8 根据有理数加法运算,有 (-5)+(-3)= -8 所以 (-8)-(-3)= -5 ① 2.这样做减法太繁了,让我们再想一想有其他方法吗? 试一试 做一个填空:(-8)+( )= -5 容易得到 (-8)+(+3 )= -5 ② 思考: 比较 ①、②两式,我们有什么发现吗? 3.验证: (1)如果某天A地气温是3℃,B地气温是-5℃,A地比B地气温高多少? 3-(-5)=3+ ; (2)如果某天A地气温是-3℃,B地气温是-5℃,A地比B地气温高多少? (-3)-(-5)=(-3)+ ; (2)如果某天A地气温是-3℃,B地气温是5℃,A地比B地气温高多少? (-3)-5=(-3)+ ; (二)有理数的减法法则归纳 1.说一说:两个有理数减法有多少种不同的情形? 2.议一议:在各种情形下,如何进行有理数的减法计算? 3.试一试:你能归纳出有理数的减法法则吗? 由此可推出如下有理数减法法则: 减去一个数,等于加上这个数的相反数。 字母表示: 由此可见,有理数的减法运算可以转化为加法运算。 【思考】:两个有理数相减,差一定比被减数小吗? 说明:(1)被减数可以小于减数。如: 1-5 ; (2)差可以大于被减数,如:(+3)–(-2) ; (3)有理数相减,差仍为有理数; (4)大数减去小数,差为正数;小数减大数,差为负数; (三 )问题: 问题1. 计算: ①15-(-7) ②(-8.5)-(-1.5) ③ 0-(-22) ④(+2)-(+8) ⑤(-4)-16 ⑥ 问题2.(1)-13.75比少多少?? (2)从-1中减去-与-的和,差是多少? (四)课堂反馈: 1.求出数轴上两点之间的距离: (1)表示数10的点与表示数4的点; (2)表示数2的点与表示数-4的点; (3)表示数-1的点与表示数-6的点。 归纳总结: 1.有理数减法法则2.有理数减法运算实质是一个转化过程 达标测评 【知识巩固】 1.下列说法中正确的是( ) A减去一个数,等于加上这个数. B零减去一个数,仍得这个数. C两个相反数相减是零. D在有理数减法中,被减数不一定比减数或差大. 2.下列说法中正确的是( ) A两数之差一定小于被减数. B减去一个负数,差一定大于被减数. C减去一个正数,差不一定小于被减数. D零减去任何数,差都是负数. 3.若两个数的差不为0的是正数,则一定是( ) A被减数与减数均为正数,且被减数大于减数. B被减数与减数均为负数,且减数的绝对值大. C被减数为正数,减数为负数. 4.下列计算中正确的是( ) A(—3)-(—3)= —6 B 0-(—5)=5 C(—10)-(+7)= —3 D | 6-4 |= —(6-4) 5.(1)(—2)+________=5; (—5)-________=2. (2)0-4-(—5)-(—6)=___________. (3)月球表面的温度中午是1010C,半夜是-153oC,则中午的温度比半夜高____. (4)已知一个数加—3.6和为—0.36,则这个数为_____________. (5)已知b < 0>,则a,a-b,a+b从大到小排列________________. (6)0减去a的相反数的差为_______________. (7)已知| a |=3,| b |=4,且a,则a-b的值为_________. 6.计算 (1) (—2)-(—5) (2)(—9.8)-(+6) (3)4.8-(—2.7) (4)(—0.5)-(+) (5)(—6)-(—6) (6)(3-9)-(21-3) (7)| —1-(—2)| -(—1) (8)(—3)-(—1)-(—1.75)-(—2) 7.已知a=8,b=-5,c=-3,求下列各式的值: (1)a-b-c;(2)a-(c+b) 8.若a<0>0, 则a, a+b, a-b, b中最大的是( ) A. a B. a+b C. a-b D. b 9.请你编写符合算式(-20)-8的实际生活问题。 教与学反思 你有什么收获? 教学反思: 1、本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现教师是学生教学的引导者、伙伴的新型师生关系. 2、在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力.另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性.在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的。 教学目标 1、 经历探索有理数减法法则的过程。 2、理解并初步掌握有理数减法法则,会做有理数减法运算。 3、能根据具体问题 ,培养抽 象概括能力和口头表达能力。 教学重点 运用有理数减法法则做有理数减法运算。 教学难点 有理数减法法则的得出。 教具 学具 多媒体、教材 、计算器 教学方法 研讨法、讲练结合 教学过程 一、 引入新课: 师:下面列出的是连续四周的最高和最低气温: 第1周 第二周 第三周 第四周 最高气温 +6℃ 0℃ +4℃ -2℃ 最低气温 +2℃ -5℃ -2℃ - 5℃ 周温差 求每 周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。 生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。 列式为; (+6)-(+2)=4 0 -(-5)=5 (+4)-(-2)=6 (-2)-(-5)=3 教学过程 二、 有理数减法法则的推倒: 师:1、根据上面的`计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。 2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么? 3 、自己设计一些有理数的减法,用计算器检验一下你 归纳的减法法则是否正确。 举例: (-5)+( )=-2 得出 (-5)+(+3)=-2 所以得到(-2)-(-5)=+3 而 (-2)+(+5)=+3 有理数减法法则:减去一个数,等于加上这个数的相反数。 三、 法则的应用: 例1:先做笔算,再 用计数器检验。 (1)(-34)-(+56)-(-28); (2)(+25)-(-293)-(+472) 教学过程 解:(1 )原式= -34+(-56)+(+28) =-90+(+28) = -62 (2)原式=+25+(+293)+(-472) =+25+(-836) = 676 注意:强调计算过程不能跳步,体现有理数减法法则的运用。 检 测 题 五、 练习反馈: 书P411、2、 3 师:巡视个别指导,订正答案。 六、小结 有理数减法法则: 减去一个数,等于加上这个数的相反数。 作业书P50、515、6(作业本上) 板书 25有理数的减法(一) 有理数减法法则: 减去一个数,等于加上 这个数的相反数。 例1:先做笔算,再用计数器检验。 (1)(-34)-(+56)-(-28); (2)(+25)-(-293)-(+472) 第1课时 三维目标 一、知识与技能 (1)理解并掌握有理数的减法法则,能进行有理数的减法运算. (2)通过把减法运算转化为加法运算,让学生了解转化思想. 二、过程与方法 经历探索有理数的加法运算律的过程,培养学生的观察能力和思维能力. 三、情感态度与价值观 体会有理数加法运算律的应用价值. 教学重、难点与关键 1.重点:掌握有理数减法法则,能进行有理数的'减法运算. 2.难点:探索有理数减法法则,能正确完成减法到加法的转化. 3.关键:正确完成减法到加法的转化. 四、教学过程 一、复习提问,新课引入 1.计算. (1)(-2.6)+(-3.1)(2)(-2)+3 2.填空. (1)__+6=20(2)20+______=17 (3)___+(-2)=5(4)(-20)+___=-6 五、新授 实际问题中有时还要涉及有理数的减法,例如,某地一天的气温是-3℃~4?℃,这天的温差(最高气温减最低气温,单位:℃)就是4-(-3),?这里用到正数与负数的减法,你会计算它吗?(鼓励学生探索) 可以先从温度计看出4℃比-3℃高7℃. 另外,我们知道减法和加法是互为逆运算.计算4-(-3),?就是要求出一个数x,使x与-3的和等于4,因为7+(-3)=4,所以 4-(-3)=7① 另外4+(+3)=7,② 比较①、②两式,你发现了什么? 发现:4-(-3)=4+(+3). 这就是说减法可以转化为加法,如何转化呢? 减-3相当于加3,即加上“-3”的相反数. 比较上面的式子,计算下列各式: 50-20=50+(-20)= 50-10=50+(-10)= 50-0=50+0= 50-(-10)=50+10= 50-(-20)=50+20= 这些数减-3的结果与它们加+3的结果仍然相同. 归纳:通过上述讨论,得出: 有理数的减法可以转化为加法来进行.“相反数”是转化的桥梁.有理数减法法则: 减去一个数,等于加上这个数的相反数. 用式子表示为:a-b=a+(-b). 注意:减法在运算时有2个要素要发生变化。 1减号变加号 2减数变相反数 例4:计算: (1)-3-(-5)(2)7.2-(-4.8) (3)0 – 8(4)(-5)-0 分析:以上是有理数的减法,按减法法则,把减法转化为加法. 11-3(--5)2411113例3:计算:(1) -0.257-4.47(4)(-3)-5=(-3)+(-5)=-8 24244例2:计算:(1) (-2.5) – 5.9(2) 强调:减号变加号、减数变相反数,必须同时改变,(4)?题中减数的符号为“+”号,省略没有定. 综合运用:课本25页,6题 六、课堂练习 1:计算: (1) 6-9(2)(+4)-(-7) (3)(-5)-(-8)(4)0-(-5) (5)(-2.5)-5.9(6)1.9-(-0.6) 2、列式计算: (1)比2 ℃低8 ℃的温度 (2)比-3 ℃低6 ℃的温度 3、课本26页7、8、10题略 2.差数一定比被减数小吗? 提示:不一定,例如(-7)-(-5)=(-7)+(+5)=-2,-2>-7. 七、课堂小结 引进负数后,任意两个有理数都可以求出它们的差,结果可能为正数(大数减去小数),也可能为负数(小数减去大数),还可能为0(相等的两数相减),?学习有理数减法,关键在于处理好两个“变”字;(1)?改变运算符号──即把减法转化为加法.(2)改变减数的符号──即减数变为它的相反数,?这两个“变”要同时进行,而被减数不变. 八、作业布置 1.课本第25页至第26页,习题1.3第3、4、11、12题. 九、板书设计: 教学目标 1.知识与技能 使学生会使用计算器进行有理数的加减运算. 2.过程与方法 尝试从不同角度寻求解决问题的方法,并能有效地解决问题. 3.情感、态度与价值观 有克服困难和运用知识解决问题的成功体验. 教学重点难点 重点:记清计算器中常用功能键的用法,多进行实际操作,逐步熟悉计算器的用法. 难点:准确地用计算器进行加减运算. 教与学互动设计 观察体验 大家看这样一个算式:-15.13+4.85+(-7.69)-(-13.38)要计算出它的值,你能有什么方法吗? 引导 使用计算器、电子计算器,简称计算器,具有运算快,操作简便,体积小,功能多等特点,既可帮助我们进行各种复杂的`数学计算,还可以帮助我们理解数学概念,有时计算器还可以编程序或绘制各种图形.在信息高速发展的时代,它已成为人们广泛使用的计算工具。 教学目标 1. 会把有理数的加减法混合运算统一为加法运算; 2. 会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算; 3.进一步感悟“转化”的思想. 教学重点 把有理数的加减法混合运算统一为加法运算. 教学难点 省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变. 教学过程 根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算. 1.完成下列计算: (1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4). 归纳: 根据有理数的减法法则,有理数的加减混合运算可以统一为 运算; (2)式统一成加法是________________________________; 省略负数前面的.加号和( )后的形式是______________________; 读作____________________ 或 _______________________. 展示交流 1.把下列运算统一成加法运算: (1)(-12)+(-5)-(-8)-(+9)=_____________________________; (2)(-9)-(+5)-(-15)-(+9)=_____________________________; (3) 2+5-8=_________________________________; (4) 14-(-12)+(-25)-17=_____________________________________. 2. 将下列有理数加法运算中,加号省略: (1)12+(-8)=________________; (2)(-12)+(-8)=_________________________________; (3)(-9)+(-5)+(+15)+(-20)= ____________________________. 3.将下列运算先统一成加法,再省略加号: (-15)-(+63)-(-35)-(+24)+(-12)=_________________________ =_________________________. 4. 仿照本P37例6,完成下列计算: (1) -4-5+6 ; (2) -23+41-24+12-46. 5. 仿照本P38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了12.5 km,此时他在住地的什么方向?与驻地的距离是多少? 盘点收获 个案补充 课堂反馈 1.计算: 2.早晨6:00的气温为 ℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少? 迁移创新 一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米? 课堂作业 本P39 习题2 .5第6题(1)、 (3)、(5), 第7题 . 教学目标: 1、知识与技能:(1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。 (2)能熟练进行有理数的减法法则。 2、过程与方法 通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。 重点、难点 1、重点:有理数减法法则及其应用。 2、难点:有理数减法法则的应用符号的改变。 教学过程: 一、创设情景,导入新课 1、有理数加法运算是怎样做的?(-5)+3= —3+(—5)= —3+(+5)= 2、-(-2)= -[-(+23)]=,+[-(-2)]= 3、20xx的某天,北京市的最高气温是-20C,最低气温是-100C,这天北京市的温差是多少? 导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。(出示课题) 二、合作交流,解读探究 1(-2)-(-10)=8=(-2)+8 2:珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米? 3、通过以上列式,你能发现减法运算与加法运算的`关系吗? (学生分组讨论,大胆发言,总结有理数的减法法则) 减去一个数等于加上这个数的相反数 教师提问、启发:(1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?(2)法则中的“加上这个数的相反数”“加上”两字怎样理解?“这个数的相反数”又怎样理解?(3)你能用字母表示有理数减法法则吗? 三、应用迁移,巩固提高 1、P.24例1 计算: (1) 0-(-3.18)(2)(-10)-(-6)(3)- 解:(1)0-(-3.18)=0+3.18=3.18 (2)(-10)-(-6)=(-10)+6=-4 (3)-=+=1 2、课内练习:P.241、2、3 3、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。每人每次出一张牌,两人轮流先出(先出者为被减数),先求出这两张牌点数之差者获胜,直至其中一人手中无牌为止)。 四、总结反思 (1) 有理数减法法则:减去一个数,等于加上这个数的相反数。 (2) 有理数减法的步骤:先变为加法,再改变减数的符号,最后按有理数加法法则计算。 五、作业 P.27习题1.4A组1、2、5、6 备选题 填空:比2小-9的数是 。 а比а+2小 。 若а小于0,е是非负数,则2а-3е 0。 学习目标: 1、理解加减法统一成加法运算的意义。 2、会将有理数的加减混合运算转化为有理数的加法运算。 3、培养学习数学的兴趣,增强学习数学的信心。 学习重点、难点:有理数加减法统一成加法运算 教学方法:讲练相结合 教学过程 一、学前准备 1、一架飞机作特技表演,起飞后的高度变化如下表: 高度的变化 上升4。5千米 下降3。2千米 上升1。1千米 下降1。4千米 记作 +4。5千米 3。2千米 +1。1千米 1。4千米 请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米。 2、你是怎么算出来的.,方法是 二、探究新知 1、现在我们来研究(20)+(+3)(5)(+7),该怎么计算呢?还是先自己独立动动手吧! 2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。 3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 。再把加号记在脑子里,省略不写 如:(—20)+(+3)—(—5)—(+7) 有加法也有减法 =(—20)+(+3)+(+5)+(—7) 先把减法转化为加法 = —20+3+5—7 再把加号记在脑子里,省略不写 可以读作:负20、正3、正5、负7的 或者负20加3加5减7。 4、师生完整写出解题过程 三、解决问题 1、解决引例中的问题,再比较前面的方法,你的感觉是 2、例题:计算—4。4—(—4 )—(+2 )+(—2 )+12。4 3、练习:计算 1)(7)(+5)+(4)(10) 三、巩固 1、小结:说说这节课的收获 2、P241、2 3、计算 1)2718+(7)32 2) 四、作业 1、P255 2、P26第8题、14题 教学目标: 1. 知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算, 2. 过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的应用 3. 情感、态度与价值观:渗透用转化的思想看问题以及解决问题,鼓励学生依据法则简化运算 教学重点:能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算, 教学难点:准确、熟练地进行加减混合运算 教学过程 一、课前预习 1、有理数的加法法则是什么? 2、有理数的减法法则是什么? 3、有理数的加法有什么运算律?具体内容是什么? 4、计算下列各题 (1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12 二、自主探索 根据有理数减法法则,有理数的加减混合运算可以统一为加法运算 例1、计算 (1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ ) 解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------统一为加法 = 26+(-42)---------------------------------------运用运算律 =-16 (2) (3)(4) (5) 算式(-6)-(-13)+(-5)-(+3)+(+6)是有理数的`加减混合运算,我们还可以按下列步骤进行计算: 解:(-6)-(-13)+(-5)-(+3)+(+6) =(-6)+(+13)+(-5)+(-3)+(+6)------------统一加号 =-6+13-5-3+6----------------------------------------省略加号 =-6-5-3+13+6-----------------------------------------运用运算律=-14+19=5 说明: 省略加号的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6这五个数的和。 例2.计算: (1) -3-5+4 (2)-26+43-24+13-46 解:(1) (2) 例4、若a=-2,b=3,c=-4,求值 (1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c 解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [ 数据代入时,注意括号的运用] (2) (3)(4) 例5、在伊拉克的战争中,谋生化小组沿东西方向路进行检查, 约定向东为正,某天从A地到B地结束时行走记录为(单位:km) +15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 问:(1)B地在A地何方,相距多少千米? (2)这小组这一天共走了多少千米 三、学习小结 这节课你学会了哪几种运算? 四、随堂练习 A类 1、计算: (1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3) (3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48 (5)21-12+33+12-67 (6)-3.2+5.8-8.6+12 2 计算 (1) 1+2-3-4+5+6-7-8++97+98-99-100 (2) 66-12+11.3-7.4+8.1-2.5 (6)-2.7-[3-(-0.6+1.3)] B类 3. 计算 (1) + + ++ (2) + + ++ 【有理数的减法教案】相关文章: 有理数的减法教案优秀10-27 【经典】有理数的加法教案08-08 有理数的乘法的教案07-23 有理数的加法教案07-31 0的减法教案03-01 小学减法的教案11-28 有理数的加法教案优秀11-23 有理数乘方教案优秀01-23 《有理数》教案设计10-26有理数的减法教案3
有理数的减法教案4
有理数的减法教案5
有理数的减法教案6
有理数的减法教案7
有理数的减法教案8
有理数的减法教案9
有理数的减法教案10
有理数的减法教案11
有理数的减法教案12
有理数的减法教案13
有理数的减法教案14
有理数的减法教案15