物理学毕业论文

量子力学教学方法

时间:2022-10-07 05:45:40 物理学毕业论文 我要投稿

量子力学教学方法

  量子力学教学方法【1】

量子力学教学方法

  摘要:量子力学是物理本科专业一门重要的理论课程,但由于其抽象、深奥、难学也难教,对于学生的学习增加了难度。

  文章介绍了大学物理老师在讲授量子力学中的一些心得,以及如何使学生掌握基本知识的同时,提高学生的思维能力和对量子力学的兴趣。

  关键词:量子力学;教学方法;教学改革

  量子力学是近代物理的两大支柱之一,它的建立是20世纪划时代的成就之一,可以毫不夸张地说没有量子力学的建立,就没有人类的现代物质文明[1]。

  大批优秀的物理学家对原子物理的深入研究打开了量子力学的大门,这一人类新的认知很快延伸并运用到很多物理学领域,并且,导致了很多物理分支的诞生,如:核物理、粒子物理、凝聚态物理和激光物理等[2]。

  量子力学在近代物理中的地位如此之重,所以成为物理专业学生最重要的课程之一。

  但在实际教学过程中,学生普遍感到量子力学太过抽象、难以掌握。

  如何改革教学内容,将量子力学的基本观点由浅入深,使学生易于理解;如何改革教学手段,培养学生兴趣,使学生由被动学习变为主动学习。

  这是量子力学教学中遇到的主要问题。

  作者从几年的教学中摸索到一些经验,供大家参考。

  一、教学内容和方法的改革

  传统的本科量子力学教学一般包括了三大部分:第一部分是关于粒子的波粒二象性,正是因为微观粒子同时具有波动性和粒子性,才造成了一些牛顿力学无法解释的新现象,例如测不准关系、量子隧道效应等等;第二部分是介绍量子力学的基本原理,这部分是量子力学的核心内容,如波函数的统计解释、态叠加原理、电子自旋等;第三部分是量子力学的一些应用,如定态薛定谔方程的求解,微扰方法。

  以上三个部分相互联系构成了量子力学的整体框架[3]。

  随着量子力学的进一步发展,产生了很多新的现象和成果。

  例如量子通讯、量子计算机等等。

  许多学生对量子力学的兴趣就是从这些点点滴滴的新成果中得到的。

  如果我们仍按传统的内容授课,学生学完了这门课程发现感兴趣的那点东西完全没有接触到,就会对所学的量子力学感到怀疑,而且极大地挫伤了学习自然科学的兴趣。

  所以作者建议在教学过程中适当添加一些量子力学的新成果和新现象,来激发学生的学习兴趣[4]。

  在教学方法上也应该按照量子力学的特点有所改革。

  由于量子力学的许多观点和经典力学完全不同,如果我们还是按照经典力学的方法来讲,就会引起学生思维上的混乱,所以建议从一开始就建立全新的量子观点。

  例如轨道是一经典概念,在讲授玻尔的氢原子模型时仍然采用了轨道的概念,但在讲到后面又说轨道的概念是不对的,这样学生就会怀疑老师讲错误的内容教给了他们,形成逻辑上的混乱。

  我们应该从一开始就建立量子的观点,淡化轨道的概念,这样学生更容易接受。

  二、重视绪论课的教学

  兴趣是最好的老师。

  作为量子力学课程的第一节课,绪论课的讲授效果对学生学习量子力学的兴趣影响很大,所以绪论课直接影响到学生对学习量子力学这门课程的态度。

  当然很多学生非常重视这门课程,但学这门课的主要目的是为将来参加研究生入学考试,仅仅只是在行动上重视,而没有从思想上重视起来。

  如何使这部分学生从被动的学习量子力学变为主动地学习,这就要从第一节课开始培养。

  在上绪论课时作者主要通过以下几点来抓住学生的兴趣。

  首先列举早期与量子力学相关的诺贝尔物理学奖。

  诺贝尔奖得主历来都是万众瞩目的人物,学生当然也会有所关心,而且这些诺贝尔奖获得者的主要工作在量子力学这门课程中都会一一介绍,这样一方面通过举例子的方法强调了量子力学在自然科学中的重要地位,另一方面为学生探索什么样的工作才可以拿到诺贝尔奖留下悬念。

  抓住学生兴趣的第二个主要方法是列举一些量子力学中奇特的现象,激发学生探索奥秘的动力,例如波粒二象性带来的“穿墙术”、量子通讯、如何测量太阳表面温度等等,这些都很能激发学生学习量子力学的兴趣。

  综上所述,绪论课的教学在整个教学过程中至关重要,是引导学生打开量子力学广阔天地的一把钥匙。

  三、重视物理学史的引入

  随着量子力学学习的深入,学生会接触到越来越多的数学公式以及数学物理方法的内容,虽然学生会对量子力学的博大精深以及人类认知能力惊叹不已,但在学习过程中感觉越来越枯燥乏味。

  并且,学生学习量子力学的兴趣和信息在这个时候受到很大的考验,想要把丰硕的量子力学成果以及博大精深的内涵传达给学生,就得在适当的时候增加学生的学习兴趣。

  实际上,很多学生对量子力学的发展史有很浓厚的兴趣,甚至成为学生闲聊的素材,因此,在适当的时候讲述量子力学发展史可以增加学生学习量子力学的学习兴趣和热情。

  在讲授过程中,可以结合教学内容,融入量子力学发展史中的名人逸事和照片,如:索尔维会议上的大量有趣争论和物理学界智慧之脑的“明星照”,或用简单的方法用板书的形式推导量子力学公式。

  例如在讲到黑体辐射时,作者讲到普朗克仅仅用了插值的方法,就给出了一个完美的黑体辐射公式。

  而插值的方法普通的本科生都能熟练掌握,这一方面鼓励学生:看起来很高深的学问,其实都是由很简单的一系列知识组成,我们每个人都有可能在科学的发展过程中做出自己的贡献;另一方面教导学生,不要看不起很细微的东西,伟大的成就往往就是从这些地方开始。

  在讲到普朗克为了自己提出的理论感到后悔,甚至想尽一切的办法推翻自己的理论时,告诉学生科研的道路并不是一帆风顺的,坚持自己的信念有时候比学习更多的知识还要重要。

  在讲到德布罗意如何从一个纨绔子弟成长为诺贝尔奖获得者;在讲到薛定谔如何在不被导师重视的条件下建立了波动力学;在讲到海森堡如何为了重获玻尔的青睐,而建立了测不准关系;在讲到乌伦贝尔和古兹米特两个年轻人如何大胆“猜测”,提出了电子自旋假设,这些学生都听得津津有味。

  这些小故事不仅让学生从中掌握的量子力学的基本观点和发展过程,而且对培养学生的思维方法和科研品质都有很大帮助。

  四、教学手段的改革   量子力学中有很多比较抽象原理、概念、推导过程和现象,这增加了学生理解的难度。

  而且在授课过程中有大量的公式推导过程,非常的枯燥。

  所以在教学过程中穿插一些多媒体的教学形式,多媒体的应用能够弥补传统教学的不足,比如:把瞬间的过程随意地延长和缩短,把复杂的难以用语言描述的过程用动画或图片的形式分解成详细的直观的步骤表达清楚[5]。

  相对于经典物理来说,量子力学课程的实验并不多,在讲解康普顿散射、史特恩-盖拉赫等实验时,可以运用多媒体技术,采用图形图像的形式模拟实验的全过程。

  用合适的教学软件对真实情景再现和模拟,让学生多册观察模拟实验的全过程。

  量子力学的一些东西不容易用语言表达清楚,在头脑中想象也不是简单的事情,多媒体的应用可以弥补传统教学的这块短板,形象地模拟实验,帮助学生理解和记忆。

  比如电子衍射的实验,我们不仅可以用语言和书本上的图片描述这个过程,还可以通过多媒体用动画的形式表现出来,让电子通过动画的形式一个一个打到屏幕上,形成一个一个单独的点来显示出电子的粒子性;在快进的形式描述足够长时间之后的情况,也就是得出电子的衍射图样,从而给出电子波动性的结论和波函数的统计解释,经过这样的教学形式,相信学生能够更加深刻地理解微观粒子的波粒二象性[6]。

  但在具体授课过程中不能完全地依赖于多媒体教学,例如在公式的推导过程中,传统的板书就非常接近人本身的思维模式,容易让学生掌握,如果用多媒体一带而过,往往效果非常的不好。

  所以教学过程中应该传统教学和多媒体教学并重,对于一些现象的东西多媒体表现更为出色;而一些理论方面的东西传统的板书更为有利,两者相互结合可以大大提高教学效率,增强课堂教学效果和调动学生的学习积极性[7]。

  五、加强教学过程的管理

  教学过程包括课前、课上和课后,在学生学习量子力学的过程中可以重点利用课堂上的引导和启发,促进学生课前和课后对量子力学的学习。

  预习是对于学习任何一门学科都很重要,当然,量子力学也不例外,预习是一个提前自我学习的过程,能够大概了解将要学习内容的大概,这样不仅能够更正理解有偏差的部分和加强正确理解部分的记忆,还能够有重点地听课,对于学习量子力学是很重要的。

  预习也是一个学生独立学习思考的过程,对于增强学生接受新事物的能力、形成自己的观点以及以后学生的终身事业的建立都是很重要的[8]。

  由于量子力学在理解上难度较大,很难激起学生的学习兴趣,这就要求课堂上教师用更好的上课方式对学生加以引导和启发。

  活跃的课堂教学气氛和充分的讨论在教学中是必须的,量子力学的课堂一定要避免成为一言堂,要适当地引导和鼓励学生提出问题,这样有助于激发学生的思维能力,帮助学生形成新的思维方式,比如:逆向思维和非规范性思维等,然后在教师的引导下结合实际进行讨论,让学生充分意识到量子力学与我们的生活息息相关。

  因此,教师可以多介绍一些近代物理、生命科学、化学、现代分析技术和材料科学等学科中量子力学的应用部分,让学生可以真切地感受到量子力学对我们生活的影响,此外,课上可以分配小组每节课前讲述量子力学的最新发展动态,分组的时候可以根据不同基础和不同学习能力的学生来分组,这样增强学生探索性学习的能力和搜集信息的能力[9]。

  另外,作者建议,引入商业上的PK机制,下课之前教师分配章节,并且对学生加以引导,让相同程度的学生之间进行量子力学认知上的小竞赛,对赢的同学进行奖励,或者输的同学上讲台唱歌,这样做不仅能够活跃课堂氛围,效果好的话能够激发学生对量子力学的极大兴趣。

  量子力学的教学不仅仅只是因为它是近代物理的一大基础,更主要的价值是在学习过程中培养出来的从事科学研究的方法和对自然科学的兴趣,这些是其他课程所不能替代的。

  希望能通过我们广大物理教师的不断摸索,对教学的内容和方法进行改革,使学生更好地掌握这门认识世界和改造世界的武器。

  参考文献:

  [1]周世勋.量子力学教程[M].高等教育出版社,1979.

  [2]沈�.量子力学的光辉八十年[J].世界科学,2006,11(5):12-171.

  [3]曾谨言.量子力学:卷I[M].第4版.科学出版社,1997:35-278.

  [4]雷奕安.新量子世界[M].长沙:湖南科学技术出版社,2005:75-85.

  [5]邹艳.浅谈量子力学的教学改革[J].物理与工程,2009,19(4):40-41.

  [6]游善红,王明湘.工科专业的量子力学教学方法探索[M].大学物理,2012,31(3):60-65.

  [7]陈鹏,罗楚新,薛运才.工科物理专业量子力学教学特点分析[J].新乡学院学报,2009,26(6):88-89.

  [8]刘中利,杨数强.《量子力学》教学模式初探[J].中国科技信息,2011,(16):109.

  [9]金桂,黄小益,蒋纯志,陈亚琦.量子力学教学方法探索与实践[J].高等理科教育,2011,(2):100-103.

  量子力学的教学方法改革【2】

  摘 要: 作者针对在量子力学课堂教学中遇到的实际问题,开展了关于量子力学教学改革的研究。

  关键词: 量子力学 教学方法改革 创新思维

  量子力学是研究微观粒子运动规律的科学,自诞生以来它就成功地说明了原子及分子的结构、固体的性质、辐射的吸收与发射、超导等物理现象。

  作为物理学专业的专业理论课,量子力学在物理学专业中具有极其重要的地位。

  现代物理学的各个分支,如高能物理、固体物理、核物理、天体物理和激光物理等都是以量子力学为基础,并且已经渗透到化学和生物学等其他学科。

  同时量子理论还具有巨大的实用价值,半导体器件和材料、激光技术、原子能技术和超导材料等都是以量子力学原理为基础的。

  通过对量子力学的学习,学生可以掌握现代科学技术最重要的基础理论,还可以提高科学素质和思想素质,但是量子力学中的概念和解决问题的方法与经典物理有着本质的不同。

  学生普遍反映量子力学抽象、枯燥、难理解、抓不住重点,学习起来非常困难。

  针对以上问题,我对教学进行了思考和探讨,采用了一些切实可行的措施,提高了学生的学习兴趣,使学生更好地掌握了量子力学知识,同时培养了学生的创新思维。

  一、教学过程中存在的问题

  在量子力学的教学过程中,我发现以下几个问题。

  1.量子力学是一门十分抽象的课程,其中许多概念、原理都不好理解,并且量子力学从概念到解决问题的方法跟经典物理有着根本性的区别,但是很多学生习惯性地用经典的思想去理解量子力学,这样就不自觉地增加了难度。

  比如“波粒二象性”,经典物理认为波动性和粒子性是互不相关的、相互独立的,而量子力学认为波动性和粒子性是微观粒子同时具备的两种属性。

  2.学习量子力学,数学知识是必不可少的。

  量子力学中有着繁杂的数学知识,例如,数学分析中的微积分,代数学中的矩阵论,数学物理方程的微分方程,复变函数,等等。

  在教学过程中发现,不少学生对已学过的数学知识掌握得不是很牢固,在推导公式的过程中忘记了公式所描述的物理内涵,影响了对量子力学知识的理解。

  3.由于量子力学的课时紧张,教学过程中采用了传统的教学模式,由教师到学生的“单向传授”的教学形式。

  学生失去了主体地位,只能被动地接受知识,学习的兴趣和积极性不高,导致教学效率降低。

  二、量子力学的教学方法改革

  1.采用多种教学手段相结合的教学模式。

  由于量子力学的内容抽象难懂,又是建立在一系列基本假定的基础之上,不少学生很难接受,甚至认为这门课程没有用处。

  在量子力学的教学过程中,由单一的教师讲授过渡到板书、录像、课件、演示实验等各种手段相结合的教学模式,将图、文、声、像等信息有机地组合在一起,形象、直观、生动,容易激发学生的学习兴趣。

  同时,通过网络技术,学生可以享受到本校的教学资源,还可以突破空间的限制,享受到全国高水平的教学资源,从而丰富学生的资料库,也为各学校的师生讨论交流提供一个很好的平台。

  随着科学技术的迅速发展,知识更新非常快。

  在教学中,教师应及时将与量子力学相关的科技前沿和高新技术引入教学中,介绍与量子力学密切相关的课题,阐明科学技术中所蕴含的量子力学原理。

  如我们在讲解一维无限深势阱时,将其与半导体量子阱和超晶格这一科学前沿相联系;在讲解隧道效应时,将其与扫描隧道显微镜相联系,进而介绍扫描探针操纵单个原子的实验。

  同时在教学中,我们理论联系实际,多介绍量子力学知识与材料科学、生命科学、环境科学等其他学科之间的密切联系,重点介绍在材料科学中的广泛应用,包括新材料设计、开发新材料、材料成分和结构分析技术等。

  通过这种方式,学生对这一部分的知识有了直观的认识,从而不再感到量子力学的学习枯燥无味,同时也提高了接受新知识、学习新知识的意识和能力。

  2.结合数学知识,把物理情境的建立作为教学的重点。

  量子力学可以说无处不数学,这门学科对高级数学语言的成功运用,正是它高深与完美的体现。

  数学虽然加深了物理问题的难度,却维护了理论的严谨性和科学性。

  当然这不是要求老师从头到尾、长篇冗重地推演计算,合理地修剪枝杈既能让学生抓住重点,又免使学生感到量子力学只是数学公式的推导。

  对于学习量子力学的同学,可以着重于对物理概念的剖析和物理图像的描绘,绕过数学分析难点,通过简化模型、对称性考虑、极限情形和特例、量纲分析、数量级估计、概念延拓对比等得出结论。

  定量分析尽量只用简单的高数和微积分、常见的常微分方程,对复杂的数学推导可以不做讲解,只对少数优秀生或感兴趣的同学个别辅导。

  例如,在求解本征方程时,只介绍动量、定轴转子能量本征值的求解;对无限深势阱情况,薛定谔方程可类比普通物理中的简谐振动方程;对氢原子和谐振子的能量本征值问题,只重点介绍思路、方法和结论,不作详细推导。

  3.充分应用类比法,讲述量子力学。

  经典力学是量子力学的极限情况,在教授过程中,应尽可能找到“经典”对应,应用类比方法讲述量子力学中抽象的概念和物理图像,有助于正确理解量子力学的物理图像。

  用光的单缝、双缝衍射、干涉说明光的波动性,用光电效应、康普顿散射说明光的粒子性,运用这种方法有利于学生掌握光的波粒二象性。

  在将量子力学与经典力学类比的同时,还要清楚量子力学与经典力学在观念、概念和方法上的区别。

  例如,经典力学用位矢、速度描述物体的状态,而量子力学用波函数描述系统状态;经典力学用牛顿第二定律描述状态变化,量子力学用薛定谔方程描述状态的变化。

  另外对于量子力学中的波粒二象性、态迭加原理、统计原理等都要与经典力学中的相关概念区分开来,类比说明,阐明清楚其真正内涵。

  4.改变传统教学模式,采用以学生为主体的教学模式。

  量子力学的现代教学多以“教师讲授”为主,同时配合多媒体课件辅助教学,教学模式较传统教学有所变化,多媒体课件教学虽然能够在一定程度上激发学生的学习兴趣,但仍然是“填鸭式”的教学法,没能真正地改变传统教学的弊端。

  因此在教学过程中,要避免课堂成为教师的一言堂,鼓励学生提问,激发学生的逆向思维和非规范性思维等,通过创设问题情境使师生互动起来,提高学生学习量子力学的积极性,加深学生对这门课程的理解。

  还要组织学生开展相关课题讨论,引导学生自主能动地思考,激发学生的学习兴趣。

  三、结语

  “量子力学”是物理类专业基础课程中教学的难点和重点,建立新的教学模式,有利于学生学习、理解和掌握这门课程。

  参考文献:

  [1]曾谨言.量子力学[M].科学出版社,1997.

  [2]周世勋.量子力学教程[M].高等教育出版社,1979.

  [3]胡响明.浅谈量子概念的理解[J].高等函授学报(自然科学版),2004,(2):29.

  [4]刘汉平,杨富民,陈冰泉.关于态叠加原理的认同与争议[J].大学物理,2005,1.

  [5]赵辉.量子力学中几个基本概念的教学.甘肃教育学报院学报,1999,1:75-76.

【量子力学教学方法】相关文章:

量子力学的教学方法改革10-26

材料物理专业量子力学教学方法探索与实践10-26

“量子力学”教学浅谈10-26

论量子力学中的波动学10-26

探究物理专业中量子力学10-26

探究量子力学模块化教学10-26

关于工科物理专业“量子力学”教学改革探析10-05

幼儿园教学方法11-15

超流与超导理论及对应量子力学理论的比较研究10-26

物理学之数值计算在量子力学教学中的应用及优势10-26