- 相关推荐
(通用)初中数学学习方法15篇
在学习、工作或生活中,学习对大家来说都非常重要,不过,学习也是讲究方法的,那么,应该怎样学习呢?下面是小编帮大家整理的初中数学学习方法,欢迎阅读,希望大家能够喜欢。
初中数学学习方法1
1归类记忆法就是根据识记材料的性质、特征及其内在联系,进行归纳分类,以便帮助学生记忆大量的知识。比如,学完计量单位后,可以把学过的所有内容归纳为五类:长度单位;面积单位;体积和容积单位;重量单位;时间单位。这样归类,能够把纷纭复杂的事物系统化、条理化,易于记忆。
2.规律记忆法。即根据事物的内在联系,找出规律性的东西来进行记忆。比如,识记长度单位、面积单位、体积单位的化法和聚法。化法和聚法是互逆联系,即高级单位的数值x率=低级单位的数值,低级单位的数值÷进率=高级单位的数值。掌握了这两条规律,化聚问题就迎刃而解了。规律记忆,需要学生开动脑筋对所学的`有关材料进行加工和组织,因而记忆牢固。
3.列表记忆法就是把某些容易混淆的识记材料列成表格,达到记忆之目的。这种方法具有明显性、直观性和对比性。比如,要识记质数、质因数、互质数这三个概念的区别,就可列成表来帮助学生记忆。
4.歌诀记忆法就是把要记忆的数学知识编成歌谣、口诀或顺口溜,从而便于记忆。比如,量角的方法,就可编出这样几句歌诀:“量角器放角上,中心对准顶点,零线对着一边,另一边看度数。”再如,小数点位置移动引起数的大小变化,“小数点请你跟我走,走路先要找准‘左’和‘右’;横撇带口是个you,扩大向you走走走;横撇加个zuo,缩小向zuo走走走;十倍走一步百倍两步走,数位不够找“0”。
初中数学学习方法2
数学是研究数量结构、变化、以及空间模型等概念的科学.它是物理、化学等学科的基础,而且与我们的生活息息相关.所以说,学好数学对于我们每个同学来说都是非常重要的。初中阶段,我们就逐渐开始接触比较难的数学知识了,但是这个过程是循序渐进的,所以只要一步一步的学好每一阶段的知识,学好数学是并不难的。
进入初中后,在数学课的平时学习中,要做到以下几点,能够保证将所学的知识掌握牢固。
课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题
1.预习还可以使听课的整体效率提高.
具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完。
2.让数学课学与练结合.
在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”。
3.课后及时复习.
写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课。
4.单元测验是为了检测近期的学习情况.
其实分数代表的是你的过去,关键的是对于每次考试的'总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”。
期中期末阶段的学习中要将平时的单元检测卷整理整齐,并且将错题再做一遍.如果整张试卷考得都不好,那么可以复印将试卷重做一遍.除试卷外,还可以将作业上的错题、难题、易错题重做一遍。
如果想得高分,在选择、填空、计算题上是不能丢分的。在考数学的时候思想不能开小差,而且遇到难题时不能想“没考好怎么办啊”等内容。在通常情况下,期末考试的难题都是不知道怎么做,但有可能突然明白的那种。遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析。在期中、期末考试中有充足的时间,将自己的速度压下来,不是越快越好,争取一次做成功.大概留35分钟的时间检查。
最终提醒大家:多做题有一定作用,但上课听讲、认真答题及提高准确率、总结经验才是最重要的。还要将所学的知识用到生活中去,做到学以致用。当你运用数学知识解决了生活中实际问题的时候,你就会感受到学习数学的快乐。
初中数学学习方法3
纵观近五年的数学中考试题,我们不难发现,数学综合题的重点都放在重要的函数问题上。
函数型综合题
这通常是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。
初中已知函数有①一次函数 (包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。
函数型综合题在中考中往往有起点不高、但要求较全面的特点。
下面是对数学常用的公式的讲解,同学们认真学习哦。
对于常用的公式
如数学中的乘法公式、三角函数公式,常用的数字,如11~25的`平方,特殊角的三角函数值,化学中常用元素的化学性质、化合价以及化学反应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。
总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。
初中数学学习方法4
(一)注重数学前提。尽管语文和数学都是基础课程,但是与学习语文不同,学习数学必须按具体的顺序进行。有许多同学数学成绩很差,这是因为没有理解基本的概念,没有掌握学习数学的前提技能。当这些同学接受的数学教学不适合他们自己的学习风格时,就一定不利于发展他们的学习技能或整合所学的概念,这时他们在数学学习上就失败了。不幸的是,一般的数学教学完全出自课本或教学大纲,而不去关注学生是否掌握了所学的概念。例如,一个学生只学会了某一章的60%的内容,但在学习下一章时安排的问题与其它同班同学一样多,如果不能掌握前提性的基本技能,这些学生还必将继续失败。怎么才能使学习数学困难的同学学好数学呢?只有一个办法,从头来,掌握数学学习的前提技能和概念。
(二)评价理解与多做练习平衡发展。现在有些国家“新数学”风行一时,它强调用问题解决法教学,不再强调反复练习,而是强调评价,确定答案的合理性,研究关系和模式。换种说法,较少强调信息加工技能,更多强调思维的理解和运用能力。在计算机已经十分普及的今天,这种方法是应当提倡使用的,但是我们也应当清醒地看到它的局限性。因此我们主张平衡发展,即强调学生的理解和运用能力,也强调学生信息加工能力的提高。换言之,我们既要要求同学们学会评价、确定答案的`正确性,研究探讨数学概念之间的关系,也要提倡适当的动手进行练习。要巩固数学知识并达到掌握的程度,不做一些习题是不行的。因为通过做题不但能使自己掌握的知识更牢固、更熟练,还可以提高解题的准确率。毕竟数学解题的过程是一种程序性知识的学习,仅仅理解明白,而不去做题,是无法学好数学的。有些同学买了许多参考书,埋头苦干,采用题海战术,甚至连《五星
初中数学学习方法5
要学好数学,选好学习方法是关键。在数学课上要坚持做到“五到”即耳到、眼到、口到、心到、手到。
耳到:要专心听,要认真听。听老师或同学讲的知识重点和难点。
眼到:要睁大眼睛,把书上知识与课堂讲的知识联系起来。
口到:要我口表我心,积极回答问题,把自己预习时没有掌握的.和课堂上新生成的疑问,提出来。
心到:要一心一意,课堂上要认真思考,注意理解课堂的知识,并主动积极的把知识进行拓展。
手到:就是在听,看,思的同时,要适当地动手做一些笔记。
初中数学学习方法6
提倡学优生争当小老师,在帮助中差生学习中锻炼自己的思维。
学优生既然在各方面表现都比较优秀,那么我们可以通过他们开展中差生的个别辅导工作,将学优生的优秀的学习经验和好的学习方法介绍给其他同学。我们可以将全班分成十多个小组,每一个小组由一个优生任小组长,这个小组长我们称为导生。导生是从学生中选拔出来的学习带头人,他既是学生,又要给别的同学当小老师,他自己既要带头学习,但又要帮助其他同学一起进步。
导生也是我们教学改革中的先“富起来”的.人,在班上,他们首先在老师的指导下明白了如何学习?懂得了如何看书,如何自学,如何听课,如何总结,如何预习,如何积极主动地去学,然后,他们又将这种学习经验教给其他同学,最终达到全班同学的共同进步的目的。利用导生展开辅导、评比、讨论以及学习方法的互嗟活动,可以解决班级授课制的许多突出问题。此外,导生也在这些活动中得到锻炼,因为能够对一个问题进行顺利的讲解,可大大地加深印象,许多含糊的问题条理化清晰化了,对浅显的问题理解得更深刻了。
初中数学学习方法7
[摘要]现代教育注重以人为本,学生的主体地位逐渐得到重视,在教师的指导之下,把探究性学习方法应用到数学课堂教学当中,更有利于学生的学习能力的培养,发挥学生的潜能,增强学生学习实践活动的体验,提高教师课堂教学的质量的效率。
探究性学习初中数学教学实践
当代的教育对教学的基本要求里,突出强调了课堂教学应该重视和开发学生的智力,锻炼学生的创造性思维能力的养成,培养学生自主学习,分析问题,解决问题的能力,引导学生掌握科学的方法,为终身学习打下良好的基础。
一、如何在初中数学教学中应用探究性学习
为了更好的让数学探究学习方法广泛应用,首先要了解其内涵,以及数学课堂教学如何创设探究性的问题。
(一)探究性学习的内涵
探究性学习是学生在教师的指导下,自主合作探究,通过尝试,体验,实践等一系列学习过程,培养学生主动的发现问题,分析问题,解决问题,形成学习兴趣和学习能力。使学生掌握基本的数学知识,掌握基本学习技能和基本的数学思维方式。
数学探究性学习方法是以探究数学问题为主的教学方法,教师依据新的课程标准,把现行的数学教材作为探究性学习的基本内容,教师在课堂教学过程中起指导作用,发挥学生主体地位,让学生自主的结合实际生活经验,表达自己的看法探究问题,利用自己的数学知识解决实际问题。
(二)初中数学探究性学习的教学情境设置
探究是从问题的产生而开始的,而问题又不能脱离情境的创设。在数学学习过程中,学生通过仔细观察来发现问题,运用比较,分析,结合已经掌握数学知识,探究合作交流,使学生的数学思维得到锻炼。
教师在课堂教学设计中多设置这样的问题,以此增加学生探究学习的机会。
例如,在“平行四边形的特征”教学中,教师若先让学生先通过折纸(给每位学生一张长方形纸,裁剪成一个平行四边形)猜想平行四边形的特征,学生一旦提出猜想,就非常迫切的`想知道自己的猜想是否正确,从而激发了学生自主学习和探究的热情。以此形成学习交流的小组,自主分析,得出结论。教师加以引导,学生积极主动的思考,师生合作交流,培养和发展学生的能力。类似问题的创设,应用于数学教学当中,创造良好的教学环境有利于学生自身发展,养成探究学习的习惯,同时也提高了数学教学的质量。
二、在初中数学教学中应用探究性学习的重要性
探究性学习方法不仅仅是一种先进的教学理念,更是作为新课程标准的建议,更好的实现教学目标和完成教学任务,其重要性体现在以下三个方面:
(一)探究性学习法符合新教材的教学要求
新课标重视探究性学习的教育功能,“学生是学习的主人,教师是学习的组织者、引导者”,“教学中要培养学生的学习兴趣和愿望,鼓励他们发现问题和提出问题,指导他们学会合适的学习方法,为学生的终身学习打下良好的基础。”强调学习过程和方法的学习。在学生学习知识的过程中,掌握获取知识的方法,培养学习的兴趣,增加探究能力。
(二)符合学生自身发展的需要
教育学家陶行知曾说过:“创造力最能发挥的条件是民主”。说明现代教育教学方法把探究性学习运用到教学当中,为学生享有自由创造,探究学习提供了民主和谐的教学环境。而且培养学生的创新精神是我国当前教育教学改革的首要任务。也满足学生自身发展的要求。
(三)学习方式的革新
随着社会的不断进步,将来社会所需的人才类型的转变,需要数学教育从“为了获得数学知识”,转向“为了获得数学能力和数学态度”,即鼓励学生主动探究问题,加深数学基础知识的掌握,解决数学学习中的问题。初中数学教学实施以探究性学习为主,才能真正改进学生学习方式和方法的革新,形成“自主、合作、探究”的学习方式。
三、初中数学探究性学习的教学评价
(一)探究性学习是学生应该掌握的学习基本形式,学生通过不断地探索,发现,在这个过程中获得自身发展。传统教学里学生知识的接受是被动,消极的,对数学的知识的认识不深,课堂教学枯燥乏味,而开展探究性学习,把学生培养成主动、积极获取知识的探究者。学生通过课堂教学主体实践活动,在探究中学,在学中探究,教、学、探究为一个有机整体,直接经验和间接经验相互交流,知识理论与实践活动相统一。
(二)探究性学习方法的运用,也对教师提出了新的要求和挑战,要求教师要了解一般性数学教学的探究形式,改变传统的教学观念,深入开展探究性教学,创设开放性的教学情境,多样的探究性问题的创设,是教学课堂不再是教师的一言堂,通过学生对问题的不断探究,确立了学生在课堂教学中的主体地位,使学生从被动的,接受性的,机械式学习方式向主动的,探索性的发现式学习方式转变,让学生体会到学习数学的乐趣,体验数学探究性学习的过程以及掌握数学探究的方法。
(二)评价数学教学的内容,是教师教学方法和教学手段的选择与运用。教学方法,是指教师在教学活动过程中,为达成教学目的和教学任务,而采取的活动方式。包括学生通过教师指导,如何“学”的方式,如何把“教”的方法与“学”的方法两者统一,使学生充分展示自己的个性,把所学的数学知识应用实际生活中,全面提高学生数学知识结构的构建及良好思维方式的培养。
四、总结
在初中数学教学过程中,教师通过问题情境的创设、探索研究的开展、学生小组合作交流、反思总结教学经验、数学知识的课外延伸等多个环节,让学生学会自主获得数学基础知识的方法,使学生在数学学习过程里处于积极主动参与的状态促使学生自主发展,培养独立实践的能力。探究性学习方法应用于课堂教学之中,更好的体现出数学教学的价值和意义。
初中数学学习方法8
初一在整个初中阶段很重要,有扎实的基础,会使学习更加轻松。下面就为您推荐内容初中数学概念学习方法。希望您学习成绩突飞猛进。
初中数学概念学习方法
在数学学习中,数学概念的学习毫无疑问是重中之重,概念不清,一切无从谈起。那么对干巴巴的.数学概念如何学好呢。为此,提供一套行之有效的数学概念学习法。具体地说,有以下几种方法:
一、温故法
学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。
二、操作法
对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的发生和发展过程。
三、类比法
这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。
四、喻理法
为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念.
初中数学学习方法9
第一、对课本知识扎实的基础
当然,上课认真听讲,下课认真做作业这都是必不可少的,有了这一点,我们才能学习更深一层的知识。要做到这一点,就要想学习,主动学习,不要被困难吓倒,这正是拿破仑所说的一句话:“一个人想什么并相信什么,他就能得到什么”。
第二、时时刻刻都要学习,学习之后,必须练习和复习
要学好数学,最重要的是积累,平时做练习,就要做一道弄懂一道认真记住这些题的题型,千万不要贪多求快,这样反而得不到十分好的效果,平时练习所做的题型要会灵活运用,数学题百变不离其题型。一些定理、公式、概念不要一味的`死记硬背而是要联系课本的例题来记,这样会轻松许多的。顺便提一下,数学题不要在某一天做很多,而某一天一道也不做,这样下来十分容易遗忘,而是应该每天按量均匀地分配。做题不要太多,这样的效果十分好。
第三、学会互动,多学,多问
多问老师或同学,平时同学们在学习过程中,遇到了难题,难懂之处,一定要记住请教老师。因为,在你一个人看书的情况下,非常容易造成你对知识的遗漏或理解不完全,从而造成没有弄懂一些重点知识的现象,而立刻影响你以后的学习。
第四、要有竞争意识,永远不服输
平时在学习过程中大家要认定一个竞争对手在学习上和他决一高下,同学们,也许在你和你的对手之间,成功和失败会反复上演,但是,只要你不服软,每次倒下了又勇敢的站起来,你总将成为一个成功者。
初中数学学习方法10
初中数学的学习方法讲解
例题的学习,对数学的学习很重要,希望同学们多看一下例题,可以很好的帮助同学们对数学知识的学习哦。
多看一些例题。
细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大
忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:
1。不能只看皮毛,不看内涵。
我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的.印象,做起来也就容易
了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。
2。要把想和看结合起来。
我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。
3。各难度层次的例题都照顾到。
看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显著的好处:例题有现成的解答,思路清晰,只需我们循着它的思路走,就会得出结论,所以我们可以看一些技巧性较强、难度较大,自己很难解决,而又不超出所学内容的例题,例如中等难度的竞赛试题。
这样可以丰富知识,拓宽思路,这对提高综合运用知识的能力很有帮助。
学好数学,看例题是很重要的一个环节,切不可忽视。希望同学们考试成功哦。
中小学数学公式大全之追及问题
同学们认真看看,下面是老师对数学中关于追及问题公式的讲解,希望同学们很好的掌握。
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
相信上面对数学中追及问题的相关公式知识已经很好的掌握了吧,希望同学们在考试中取得优异成绩哦,加油吧!
中小学数学公式大全之流水问题
下面是对数学中,关于流水问题的公式内容讲解,相信同学们会从中学习的更好的吧。
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
以上对数学中流水问题知识的内容讲解学习,希望可以给同学们的学习很好的帮助,预祝大家在考试中取得优异成绩哦。
中小学数学公式大全之浓度问题
关于数学中浓度问题的知识,希望同学们很好的完成下面的公式讲解内容哦。
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
初中数学学习方法11
1、按部就班,环环相扣
数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题,一定要把每一个环节都学牢。
2、概念记清,基础夯实
千万不要忽视最基本的概念、公理、定理和公式,每新学一个定理或者定义的时候,都要在理解的基础上去深挖每一个字眼,有时候少说一两个字,都可能导致结果的不同。要在刚开始学概念的时候就弄清楚,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。
3、适当做题,巧做为主
学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉中考的题型,训练要做到有的.放矢。有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。数学需要实践,需要大量做题,但要"埋下头去做题,抬起头来想题",在做题中关注思路、方法、技巧,要"苦做"更要"巧做"。考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。
4、记录错题,避免再犯
俗话说,"一朝被蛇咬,十年怕井绳",可是同学们常会一次又一次地掉入相似甚至相同的"陷阱"里。因此,建议大家在平时的做题中就要及时记录错题,更重要的是还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。毕竟,中考或者在平时考试当中是"分分必争",一分也失不得。这样复习时,这个错题本也就成了宝贵的复习资料。
5、集中兵力,攻下弱点
每个人都有自己的"软肋",如果试题中涉及到你的薄弱环节,一定会成为你的最痛。因此一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成"瘸腿"。
初中数学学习方法12
数学是一门基础学科,对于广大中学生来说,数学水平的高低,直接影响到物理、化学等学科的学习成绩,数学的重要地位由此可见。
怎样才可以学好数学呢?下面教育和你一起来探索初中数学学习方法大揭密。
第一点,深刻理解概念。概念是数学的基石,学习概念(包括定理、性质)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,我们必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能
更好地运用它来解决问题。
深刻理解概念,还需要多做一些练习,什么是“多做多练习”,怎样“多做练习”呢?
第二点,多看一些例题。细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:
1。不能只看皮毛,不看内涵。
我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。
2。要把想和看结合起来。
我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。
3。各难度层次的例题都照顾到。
看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显著的好处:例题有现成的解答,思路清晰,只需我们循着它的思路走,就会得出结论,所以我们可以看一些技巧性较强、难度较大,自己很难解决,而又不超出所学内容的例题,例如中等难度的竞赛试题。
这样可以丰富知识,拓宽思路,这对提高综合运用知识的能力很有帮助。
学好数学,看例题是很重要的一个环节,切不可忽视。
第三点,多做练习。要想学好数学,必须多做练习,但有的同学多做练习能学好,有的同学做了很多练习仍旧学不好,究其因,是“多做练习”是否得法的问题,我们所说的“多做练习”,不是搞“题海战术”。后者只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广,等等,还要真正掌握方法,切实做到以下三点,才能使“多做练习”真正发挥它的作用。
1。必须熟悉各种基本题型并掌握其解法。
课本上的每一道练习题,都是针对一个知识点出的,是最基本的题目,必须熟练掌握;课外的'习题,也有许多基本题型,其运用方法较多,针对性也强,应该能够迅速做出。许多综合题只是若干个基本题的有机结合,基本题掌握了,不愁解不了它们。
2。在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。
数学是思维的世界,有着众多思维的技巧,所以每道题在命题、解题过程中,都会反映出一定的思维方法,如果我们有意识地注重这些思维方法,时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时在解这一类的题目时就易如反掌了;同时,掌握了更多的思维方法,为做综合题奠定了一定的基础。
3。多做综合题。
综合题,由于用到的知识点较多,颇受命题人青睐。
做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。“多做练习”要长期坚持,每天都要做几道,时间长了才会有明显的效果和较大的收获。
最后一点,我要说一说如何对待考试的问题。学数学并非为了单纯的考试,但考试成绩基本上还是可以反映出一个人数学水平的高低、数学素质的好坏的,要想在考试中取得好的成绩,以下几个方面的素质是必不可少的。
首先,功夫用在平时,考前不搞突击,考试中需要掌握的内容应该在平时就掌握好,考试前一天晚上不搞疲劳战,一定要休息好,这样,在考场上才能有充沛的精力,考试时还要放下包袱,驱除压力,把注意力集中在试卷上,认真分析,严密推理。
其次,应试需要技巧,试卷发下来后,应先大致看一下题量,大概分配一下时间,做题时若一道题用时太多还未找到思路,可暂时放过去,将会做的做完,回头再仔细考虑,一道题目做完之后不要急于做下一道,要再看一遍,因为这时脑中思路还比较清晰,检查起来比
较容易,对于有若干问的解答题,在解答后面的问题时可以利用前面问题的结论,即使前面的问题没有解答出来,只要说清这个条件的出处(当然是题目要求证明的),也是可以运用的,另外,对于试题必须考虑周全,特别是填空题,有的要注明取值范围,有的答案不只一个,一定要细心,不要漏掉。
最后,考试时要冷静,有的同学一遇到不会的题目,脑袋立刻热了起来,结果,心里一着急,自己本来会的也做不出来了,这种心理状态是考不出好成绩的,我们在考试时不妨用一用自我安慰的心理:我不会的题目别人也不会,(俗称精神胜利法)或许可以使心情平静,从而发挥出自己的最好水平,当然,安慰归安慰,对于那些一下子做不出的题目,还是要努力思考,尽量能做出多少就做多少,一定的步骤也是有分的。
初中数学学习方法13
部分学生在课堂上没有或很少有适合自己的内容,还有部分学生想学习,但遇到困难后无法克服而畏惧不前,当然不排除某些教师备课不充分,课堂教学内容安排不当,造成部分学生“无事做”,不听讲,不思考,怕作业,为应付教师的检查而抄袭作业,学无所得,逐渐无兴趣,日长地久下去,成绩就愈来愈差,这部分学生就“无事做”,因而学习无兴趣可言。
在实施义务教育的今天已普及初中教育,学生水平不齐等差距逐渐扩大,用老一套办,来对学生进行同步教育,而不能兼顾不同层次的学生需求是行不通的,因此,兼顾不同层次的学生需求是提高课堂教学质量的关键所在,减轻学生课外负担,变学生“无事做”为“有事做”就显得尤为重要,数学学科的`学习,对原有的基础有极大的依赖性,学生学不好前面的知识是不可能学好后面的知识的,如果对学生教以同一内容,讲同一例题布置同样的作业,就有部分学生听不懂而“吃不了”,部分基础好的学生“吃不饱”,要改变这种状况,教者需根据不同层次的学生制定不同的教学目标,确定不同层次的教学内容与教学要求,使各层次的学生都能学习到实质性的东西,使各层次的学生都“有事做从而提高全体学生学习初中数学的兴趣。
初中数学学习方法要求学生做到主动做,相信同学们看过以后感触颇多吧。
初中数学学习方法14
初中数学知识点总结及解法
基本知识
数与代数A、数与式:
1、有理数
有理数:
①整数正整数/0/负整数
②分数正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:
①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数
无理数:无限不循环小数叫无理数
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:
①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:
① 同底数幂相乘:a^ma^n=a^(m+n)
② 幂的乘方:(a^m)n=a^mn
③ 积的乘方:(ab)^m=a^mb^m
④ 同底数幂相除:a^ma^n=a^(m-n) (a0)
这些公式也可以这样用:⑤a^(m+n)= a^ma^n
⑥a^mn=(a^m)n
⑦a^mb^m=(ab)^m
⑧ a^(m-n)= a^ma^n (a0)
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:
①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:
①同分母分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:
①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
方程与不等式
1、方程与方程组
一元一次方程:
①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的'项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
1、一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对它也有很深的了解,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了。
2、一元二次方程的解法
大家知道,二次函数有顶点式(,),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解。
(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解。
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解。
(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+[b2-4ac)]}/2a,X2={-b-[b2-4ac)]}/2a
3、解一元二次方程的步骤:
(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。
(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。
4、韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=,二根之积=
也可以表示为x1+x2=,x1x2=。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。
5、一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为△,读作diao ta,而△=b2-4ac,这里可以分为3种情况:
I当△0时,一元二次方程有2个不相等的实数根;
II当△=0时,一元二次方程有2个相同的实数根;
III当△0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)。
2、不等式与不等式组
不等式:
①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:
①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向:
在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:AB,A+CB+C
在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:AB,A-CB-C
在不等式中,如果乘以同一个正数,不等号不改向;例如:AB,A*CB*C(C0)
在不等式中,如果乘以同一个负数,不等号改向;例如:AB,A*C
如果不等式乘以0,那么不等号改为等号
所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
函数
变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:
①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。
②当B=0时,称Y是X的正比例函数。
一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
空间与图形
图形的认识
1、点,线,面
点,线,面:
①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:
①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:
①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。
角
线:
①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。射线只有一个端点。
③将线段的两端无限延长就形成了直线。直线没有端点。
④经过两点有且只有一条直线。
比较长短:
①两点之间的所有连线中,线段最短。
②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:
①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。
角的比较:
①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。
③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:
①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:
①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:
1、对角线相等的菱形
2、邻边相等的矩形
基本方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个**的任一元素到同一**的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:
(1)平移;
(2)旋转;
(3)对称。
10、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。
初中数学学习方法15
1、相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。互为相似形的三角形叫做相似三角形
2、相似三角形的判定方法:
根据相似图形的特征来判断。(对应边成比例,对应角相等)
1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;
2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;
3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;
4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
3、直角三角形相似判定定理:
1.斜边与一条直角边对应成比例的两直角三角形相似。
2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的`两个直角三角形也相似。
4、相似三角形的性质:
1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
2.相似三角形周长的比等于相似比。
3.相似三角形面积的比等于相似比的平方。
【初中数学学习方】相关文章:
[经典]如何学习初中数学06-21
如何学习初中数学11-23
如何学习初中数学10-22
如何学习初中数学06-20
学习初中数学的技巧04-01
初中数学学习总结03-26
如何学习初中数学(热门)06-20
如何学习初中数学【优】06-20
(优)如何学习初中数学06-21
初中数学听课学习总结01-06