学习技巧

数学思维训练

时间:2022-10-05 20:35:12 学习技巧 我要投稿

数学思维训练

  数学思维是可以训练的,数学思维训练方法有哪些,以下的数学思维训练相关文章,欢迎阅读理解。

数学思维训练

  小学数学思维训练方法集锦【1】

  数学思维的训练是需要一套完成的训练方法的,经过思维的训练,数学成绩一定可以大大提高:

  1.转化型

  这是解决问题遇到障碍受阻时把问题由一种形式转换成另一种形式,使问题变得更简单、更清楚,以利解决的思维形式。在教学中,通过该项训练,可以大幅度地提高学生解题能力。

  如:某一卖鱼者规定,凡买鱼的人必须买筐中鱼的一半再加半条。照这样卖法,4 人买了后,筐中鱼尽,问筐中原有鱼多少条?该题对一些没有受过转化思维训练的学生来说,会感到一筹莫展。即使基础较好的学生也只能复杂的方程。

  但经过转化思维训练后,学生就变得聪明起来了,他们知道把买鱼人转换成1人,显然鱼1条;然后转换成2人,则鱼有3条;再3人,则7条;再4人,则15条。

  2.系统型

  这是把事物或问题作为一个系统从不同的层次或不同的角度去考虑的高级整体思维形式。在高年级除结合综合应用题以外还可编制许多智力训练题来培养学生系统思维能力。

  如:1 2 3 4 5 6 7 8 9在不改变顺序前提下(即可以将几个相邻的数合在一起成为一个数,但不可以颠倒),在它们之间划加减号,使运算结果等于1OO。象这道题就牵涉到系统思维的训练。

  教师可引导学生把10 个数看成一个系统,从不同的层次去考虑、第一层次:找100 的最接近数,即89 比100 仅少11。第二个层次:找11 的最接近数,很明显是前面的12。

  第三个层次:解决多l 的问题。整个程序如下:12+3+4+5-6-7+89=100

  3.激化型

  这是一种跳跃性、活泼性、转移性很强的思维形式。教师可通过速问速答来训练练学生。如问:3 个5 相加是多少?学生答:5+5+5=15 或5×3=15。

  教师又问:3 个5 相乘是多少?学生答:5×5×5=125。紧接着问:3 与5 相乘是多少?学上答:3×5=15,或5×3=15。通过这样的速问速答的训练,发现学生思维越来越活跃,越来越灵活,越来越准确。

  4类比型

  这是一种对并列事物相似性的个同实质进行识别的思维形式。这项训练可以培养学生思维的准确性。如:

  ①金湖粮店运来大米6吨。比运来的面粉少1/4吨、运来面粉多少吨?

  ②金湖粮店运来大米6吨,比运来的面粉少1/4,运来面粉多少吨?

  以上两题,虽然相似,实质不同,一字之差,解法全异,可以点拨学生自己辨析。通过训练,学生今后碰到类似的问题便会仔细推敲,这样就大大地提高了解题的准确性。

  六种解决数学思维训练题的有效方法【2】

  1、直观画图法:解数学思维训练题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。

  2、倒推法:从题目所述的最后结果出发,利用已知条件一步一步向前倒推,直到题目中问题得到解决。

  3、枚举法:数学思维训练题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的答案。

  4、正难则反:有些数学问题如果你从条件正面出发考虑有困难,那么你可以改变思考的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。

  5、巧妙转化:在解数学思维训练题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。

  6、整体把握:有些数学思维训练题,如果从细节上考虑,很繁杂,也没有必要,如果能从整体上把握,宏观上考虑,通过研究问题的整体形式、整体结构、局部与整体的内在联系,“只见森林,不见树木”,来求得问题的解决。

  小学数学思维训练12题 (有答案)【3】

  1、父亲和儿子今年共有60负,又知4年前,父亲的年龄正好是儿子的3倍,儿子今年是多少岁?

  分析与解答:4年前,父子的年龄和是:60-4×2=52岁,4年前儿子的岁数为52÷(1+3)=13岁,那么儿子今年的岁数是13+9=17岁。

  2、快车与慢车从甲乙两地相对开出,如果慢车先开2小时,两车相遇时慢车超过中点24千米,若快乐先开出2小时,相遇时离中点72千米处,如果同时开出,4小时可以相遇,快车比慢车每小时多行多少千米?

  分析与解答:设全程的一半为x,两次行驶中快车行驶的路程为:x+72+x-24=2x-48,慢车行驶的路程为:x+24+x-72=2x-48,快车比慢车多行驶的路程:2x+48-(2x-48)=96千米,把两次行驶可以看作两车同时出发行驶全程,则时间是4×2=8小时,那么快车比慢车每小时多行的千米数为96÷8=12千米。

  3、有三堆棋子,每堆棋子数一样多,并且都只有黑白两色,第一堆的黑子数和第二堆里的白子数一样多,第三堆的黑子占全部黑子的 ,把这三堆棋子集中在一起,白子占全部棋子数的几分之几?

  分析与解答:第三堆黑子占全部黑子的,那么,第一、二堆里的黑子占全部黑子的,又因为第一堆里黑子数和第二堆里的白子数相同,则第一、二堆里的黑子数正好等于第一堆棋子数,把每堆棋子数看作3,三堆棋子总数则是9,黑子有5份,那么白子有9-5=4份,所以白子占全部棋子数的

  4、早晨8时多钟,有甲、乙两辆汽车先后从化肥厂开往县城,两车的速度都是每小时行驶48千米,8时32分,甲车离化肥厂的距离是乙车离化肥厂距离的5倍,到了8时44分,甲车离化肥厂的距离恰好是乙车离化肥厂距离的2倍,那么甲车是8时几分由化肥厂开出的?

  分析与解答:

  12÷3×(3+5)=32分钟,8:44-32分=8:12分,故甲车是8时12分由化肥厂开出的。

  5、有60个不同的约数的最小自然数是多少?

  分析与解答:60=2×2×3×5=(1+1)×(1+2)×(2+1)×(4+1),这个自然数最小是29×32×5×7=5040

  6、1!+2!+3!+……+100!的个位数字是( )

  分析与解答:1!=1 2!=2 3!=6 4!=24 ,而5! 6! 7!……100!的个位数字全是0,1+2+6+4=13,所以1!+2!+3!+……+100!的个位数字是3

  7、一间屋子里有1小学数学思维训练题00盏灯排成一行,按从左到右的顺序编上号1、2、3、4、5……99、100,每盏灯都有一个开关,开始全都关着,把100个学生排在后面,第1个学生把1的倍数的灯全都拉一下,第2个同学把2的倍数的灯全都拉一下……第100个学生把100的倍数的灯都拉一下,这时有多少盏灯是开着的?

  分析与解答:一盏灯被拉的次数是奇数,则灯是开着的,被拉的次数是偶数次,则灯是关着的,在1至100中,只有10个完全平方数的约数的个数是奇数个,其余的约数都是偶数个,所以有10盏灯是开着的,即12、22、32、42、52、62、72、82、92、102

  8、一游客划着小船逆流而上,船上一只皮球掉入河里,2分钟后游客发现,立即掉头追皮球,问游客几分钟追上皮球?

  分析与解答:2分钟游客与皮球的距离为:(球速+游客速度)×2=(水速+船速-水速)×2=2个船速追的时间

  2个船速÷(顺速-水速)=2个船速÷船速=2分钟即游客2分钟追上皮球。

  9、饲养场的白兔是黑兔的5倍,后来卖掉了10只黑兔,买回来20只白兔,现在白兔的只数是黑兔的7倍,原来白兔、黑兔各有多少只?

  分析与解答:卖掉10只黑兔,也应卖掉50只白兔,这样白兔只数正是黑兔的5倍,而现在却买回20只白兔,相关20+50=70只,现在白兔是黑兔的7倍,相关7-5=2倍,一倍差是70÷2=35只,原来黑兔只数为35+10=45只,白兔只数为45×5=225只

  10、有四个不同的自然数,这四个数字总和是1001,如果让这四个数的公约数尽可能大,那么,这四个数中最大的一个数是多少?

  分析与解答:1001=7×11×13,要使公约数最大,首先考虑它是“11×13”,但“7”不能拆成四个不同的数,再考虑“7×13”,而11=1+2+3+5,所以最大的公约数是7×13=91,不同的四个数分别是91×1,91×2,91×3,91×5,最大的数是91×5=455

  11、一种彩电按定价卖出可得利润960元,如果按定价的八折出售,则亏832元,该彩电购入价是多少元?

  分析与解答:把定价看作单位“1”,按定价的八折出售,则亏832元,则定价为(960+832)÷(1-80%)=8960元 ,所以购入价为8960-960=8000元

  12、有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗?”

  司机答道:“10分钟前我超过一辆自行车”,这人继续走10分钟,遇到自行车,已知自行车速度是步行速度的3倍,汽车速度是步行速度的( )倍

  分析与解答:把步行者速度看作1,自行车速度看作3,汽车和自行车同时在A点,人在B点10分钟后,人、汽车相遇在C点,则自行车在10分钟前到达D点,再过10分钟后,人自行车相遇CD的长为(1+3)×10=40,AD的长为3×10=30,AC是汽车10分钟走的路程,AC=AD+CD=40+30=70.

  汽车速度为70÷10=7

  汽车速度是步行速度的7 倍

【数学思维训练】相关文章:

数学思维训练教案10-05

数学思维训练的好处10-06

数学思维训练作用08-23

儿童数学思维训练10-05

什么是数学思维训练10-05

数学思维训练汇编10-05

小学数学思维训练10-05

数学思维训练题10-05

数学思维训练教程10-05