报告

单片机实验报告

时间:2024-09-29 17:46:53 报告 我要投稿
  • 相关推荐

单片机实验报告

  在我们平凡的日常里,报告不再是罕见的东西,报告中提到的所有信息应该是准确无误的。其实写报告并没有想象中那么难,下面是小编为大家整理的单片机实验报告,希望能够帮助到大家。

单片机实验报告

单片机实验报告1

  综合实验报告标题(可与实验名称不同)

  一、实验目的和要求。

  二、实验仪器设备。

  三、实验设计及调试:

  (一)实验内容。

  (二)实验电路:画出与实验内容有关的简单实验电路。

  (三)实验设计及调试步骤:

  (1)对实验内容和实验电路进行分析,理出完成实验的设计思路。(2)列出程序设计所需的特殊标志位、堆栈sp、内部ram、工作寄存器等资源的分配列表,分配列表时注意考虑资源在程序执行过程可能会出现冲突的问题。

  (3)画出程序设计流程图,包括主程序和各子程序流程图。

  (4)根据(2)、(3)的内容写出实验程序。

  (5)调试程序(可以使用模拟仿真器)。

  a、根据程序确定调试目的,即调试时所需观察的内容结果。

  b、根据各调试目的分别选择调试所需的方法,如单步、断点等命令,分别列出各调试方法中所需要关注记录的内容。

  c、调试程序,按各种调试方法记录相应的内容。

  d、分析调试记录的内容和结果,找出程序中可能出错的地方,然后修改程序,继续调试、记录、分析,直到调试成功。

  (四)实验调试过程中所遇到的问题、解决问题的思路和解决的方法。

  四、实验后的经验教训总结。

  【上机实验内容报告格式】

  一、《软件技术基础》上机实验内容

  1、顺序表的建立、插入、删除。

  2、带头结点的单链表的建立(用尾插法)、插入、删除。

  二、提交到个人10m硬盘空间的内容及截止时间

  1、分别建立二个文件夹,取名为顺序表和单链表。

  2、在这二个文件夹中,分别存放上述二个实验的相关文件。每个文件夹中应有三个文件(、c文件、、obj文件和、exe文件)。三、实验报告要求及上交时间(用a4纸打印)

  1、格式:

  《计算机软件技术基础》上机实验报告

  用户名se学号姓名学院

  ①实验名称:

  ②实验目的:

  ③算法描述(可用文字描述,也可用流程图):

  ④源代码:(、c的文件)

  ⑤用户屏幕(即程序运行时出现在机器上的画面):

  2、对c文件的要求:

  程序应具有以下特点:a可读性:有注释。

  b交互性:有输入提示。

  c结构化程序设计风格:分层缩进、隔行书写。四、实验报告内容

  0、顺序表的插入。

  1、顺序表的删除。

  2、带头结点的单链表的插入。

  3、带头结点的单链表的删除。

  注意:

  1、每个人只需在实验报告中完成上述4个项目中的一个,具体安排为:将自己的'序号对4求余,得到的数即为应完成的项目的序号。

  例如:序号为85的同学,85%4=1,即在实验报告中应完成顺序表的删除。

  2、实验报告中的源代码应是通过编译链接即可运行的。

  3、提交到个人空间中的内容应是上机实验中的全部内容。

单片机实验报告2

  有关单片机AD转换的实验报告

  一、实验目的

  1、理解A/D转换的工作原理;

  2、理解掌握ADC0809的A/D转换原理和并行A/D转换器接口的编程方法; 3、学习使用并行模/数转换芯片ADC0809进行电压信号的采集和数据处理。

  二、实验原理

  在设计A/D转换器与单片机接口之前,往往要根据A/D转换器的技术指标选择A/D转换器。A/D转换器的主要技术指标-----量化间隔和量化误差是A/D转换器的主要技术指标之一。量化间隔可用下式表示,其中n为A/D转换器的位数: ?量化间隔

  绝对误差22

  1 相对误差n1100%2

  A/D转换器芯片种类很多,按其转换原理可分为逐次比较式、双重积分式、量化反馈式和并行式A/D转换器;按其分辨率可分为8~16位的A/D转换器芯片。目前最常用的是逐次逼近式和双重积分式。

  A/D转换器与单片机接口具有硬、软件相依性。一般来说,A/D转换器与单片机的接口主要考虑的是数字量输出线的连接、ADC启动方式、转换结束信号处理方法以及时钟的连接等。

  一个ADC开始转换时,必须加一个启动转换信号,这一启动信号要由单片机提供。不同型号的ADC,对于启动转换信号的要求也不同,一般分为脉冲启动和电平启动两种:

  对于脉冲启动型ADC,只要给其启动控制端上加一个符合要求的脉冲信号即可,如ADC0809、ADC574等。通常用WR和地址译码器的输出经一定的逻辑电路进行控制;

  对于电平启动型ADC,当把符合要求的电平加到启动控制端上时,立即开始转换。在转换过程中,必须保持这一电平,否则会终止转换的进行。因此,在这种启动方式下,单片机的控制信号必须经过锁存器保持一段时间,一般采用D触发器、锁存器或并行I/O接口等来实现。AD570、AD571等都属于电平启动型ADC。

  当ADC转换结束时,ADC输出一个转换结束标志信号,通知单片机读取转换结果。单片机检查判断A/D转换结束的方法一般有中断和查询两种:

  对于中断方式,可将转换结束标志信号接到单片机的中断请求输入线上或允许中断的I/O接口的相应引脚,作为中断请求信号; ?对于查询方式,可把转换结束标志信号经三态门送到单片机的某一位I/O口线上,作为查询状态信号。

  A/D转换器的另一个重要连接信号是时钟,其频率是决定芯片转换速度的基准。整个A/D转换过程都是在时钟的作用下完成的。A/D转换时钟的`提供方法有两种:一种是由芯片内部提供(如AD574),一般不许外加电路;另一种是由外部提供,有的用单独的振荡电路产生,更多的则把单片机输出时钟经分频后,送到A/D转换器的相应时钟端。

  ADC0809与单片机接口

  三、实验内容

  略

  四、小结与体会

  在这次的实验中,我成功的理解掌握了ADC0809的A/D转换原理和并行A/D转换器接口的编程方法,也学习了并行模/数转换芯片ADC0809进行电压信号的采集和数据处理的使用方法。

单片机实验报告3

  一、实验目的

  1、了解51单片机的引脚结构。

  2、根据所学汇编语言编写代码实现LED灯的流水功能。

  3、利用开发板下载hex文件后验证功能。

  二、实验器材

  个人电脑,80c51单片机,开发板

  三、实验原理

  单片机流水的实质是单片机各引脚在规定的时间逐个上电,使LED灯能逐个亮起来但过了该引脚通电的时间后便灭灯的过程,实验中使用了单片机的P2端口,对8个LED灯进行控制,要实现逐个亮灯即将P2的各端口逐一置零,中间使用时间间隔隔开各灯的.亮灭。使用rl或rr a实现位的转换。 A寄存器的位经过rr a之后转换如下所示:

  然后将A寄存器转换一次便送给P2即MOV P2,A便将转换后的数送到了P2口,不断循环下去,便实现了逐位置一操作。

  四、实验电路图

  五、通过仿真实验正确性

  代码如下:ORG 0

  MOV A,#00000001B

  LOOP:MOV P2,A

  RL A

  ACALL DELAY

  SJMP LOOP

  DELAY:MOV R1,#255

  DEL2:MOV R2,#250

  DEL1:DJNZ R2,DEL1

  DJNZ R1,DEL2

  RET

  End

  实验结果:

  六、实验总结

  这次试验我通过Proteus仿真实现对流水灯功能的实现。受益匪浅,对80c51的功能和结构有了深层次的了解,我深刻的明白,要想完全了解c51还有一定距离,但我会一如既往的同困难作斗争。在实验中,我遇到了不少困难,比如不知道怎么将程序写进单片机中,写好程序的却总出错,不知道什么原因,原来没有生成hex文件。这些错误令我明白以后在试验中要步步细心,避免出错。

单片机实验报告4

  一、实验目的

  1.了解温度传感器电路的工作原理

  2. 了解温度控制的基本原理

  3. 掌握一线总线接口的使用

  二、实验说明

  这是一个综合硬件实验,分两大功能:温度的测量和温度的控制。 1.DALLAS最新单线数字温度传感器DS18B20简介

  Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持 “一线总线”接口的温度传感器。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。

  DS18B20测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。

  DS18B20内部结构

  DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下:

  DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

  光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

  DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。

  这是12位转化后得到的.12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘以0.0625

  即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘以0.0625即可得到实际温度。

  例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为

  DS18B20温度传感器的存储器

  DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E2RAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。

  暂存存储器包含了8个连续字节,前两个字节是测得的温度信息,第一个字节的内容是温度的低八位,第二个字节是温度的高八位。第三个和第四个字节是TH、TL的易失性拷贝,第五个字节是结构寄存器的易失性拷贝,这三个字节的内容在每一次上电复位时被刷新。第六、七、八个字节用于内部计算。第九个字节是冗余检验字节。

  低五位一直都是1 ,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要去改动。R1和R0用来设置分辨率,如下表所示:(DS18B20出厂时被设置为12位)

  根据DS18B20的通讯协议,主机控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。复位要求主CPU将数据线下拉500微秒,然后释放,DS18B20收到信号后等待16~60微秒左右,后发出60~240微秒的存在低脉冲,主CPU收到此信号表示复位成功。

  2.本实验在读取温度的基础上,完成类似空调恒温控制的实验。用加热电阻代替加热电机。温度值通过LED静态显示电路以十进制形式显示出来,制冷采用自然冷却。

  三、实验内容及步骤

  本实验需要用到单片机最小应用系统(F1区)、串行静态显示(I3区)和温度传感器模块(C3区)。

  1.DS18B20的CONTROL接最小应用系统P1.4,OUT接最小应用系统P2.0,最小系统的P1.0,P1.1接串行静态显示的DIN,CLK端。

  2.用串行数据通信线连接计算机与仿真器,然后将仿真器插到模块的锁紧插座中,请注意仿真器的方向:缺口朝上。

  3.打开Keil uVision2仿真软件,首先建立本实验的项目文件,接着添加TH44_ DS18B20.ASM源程序,进行编译,直到编译无误。

  4.编译无误后,全速运行程序。程序正常运行后,按下自锁开关‘控制’SIC。LED数显为 “XX”为十进制温度测量值, “XX”为十进制温度设定值,按下自锁开关“控制”SIC则加热源开始加热,温度也随着变化,当加热到设定的控制温度时如40度时,停止加热。

  5.也可以把源程序编译成可执行文件,用ISP烧录器烧录到89S52/89S51芯片中。(ISP烧录器的使用查看附录二) 四、源程序

  ;单片机内存分配申明!

  TEMPER_L EQU 29H ;用于保存读出温度的低8位TEMPER_H EQU 28H ;用于保存读出温度的高8位FLAG1 EQU 38H ;是否检测到DS18B20标志位A_BIT EQU 20H ;数码管个位数存放内存位置B_BIT EQU 21H ;数码管十位数存放内存位置LEDBUF EQU 30HTEMPEQU 55HDIN BIT P1.0CLK BIT P1.1

  ORG 0000HLJMP STARTORG 0100H START: SETBP1.4 MAIN:

  LCALL GET_TEMPER;调用读温度子程序

  ;进行温度显示,这里我们考虑用网站提供的两位数码管来显示温度 ;显示范围00到99度,显示精度为1度

  ;因为12位转化时每一位的精度为0.0625度,我们不要求显示小数所以可以抛弃29H的低4位

  ;将28H中的低4位移入29H中的高4位,这样获得一个新字节,这个字节就是实际测量获得的温度

  ;这个转化温度的方法可是我想出来的哦~~非常简洁无需乘于0.0625系数

  MOV A,29H

  MOV C,40H;将28H中的最低位移入CRRC AMOV C,41HRRC AMOV C,42HRRC AMOV C,43HRRC AMOV 29H,A

  LCALL DISPLAYRESULT

  LCALL DISPLAYLED;调用数码管显示子程序LCALL DELAY1 AJMP MAIN

  ; 这是DS18B20复位初始化子程序 INIT_1820:SETB P2.0NOPCLR P2.0

  ;主机发出延时537微秒的复位低脉冲MOV R1,#3 TSR1:MOV R0,#107DJNZ R0,$DJNZ R1,TSR1

  SETB P2.0;然后拉高数据线NOPNOPNOPMOV R0,#25H TSR2:

  JNB P2.0,TSR3;等待DS18B20回应DJNZ R0,TSR2

  LJMP TSR4 ; 延时 TSR3:

  SETB FLAG1; 置标志位,表示DS1820存在LJMP TSR5 TSR4:

  CLR FLAG1 ; 清标志位,表示DS1820不存在

【单片机实验报告】相关文章:

实验报告11-15

实验报告06-21

单片机课程报告03-28

java实验报告12-01

电机实验报告07-10

实验报告格式07-26

关于实验报告07-29

学生实验报告05-29

关于实验报告02-17

化学实验报告11-02