方案

高二数学《简单的逻辑联结词且》教学方案设计

时间:2022-10-07 22:03:28 方案 我要投稿
  • 相关推荐

高二数学《简单的逻辑联结词且》教学方案设计

  (一)教学目标

高二数学《简单的逻辑联结词且》教学方案设计

  1.知识与技能目标:

  (1) 掌握逻辑联结词且的含义

  (2) 正确应用逻辑联结词且解决问题

  (3) 掌握真值表并会应用真值表解决问题

  2.过程与方法目标:

  在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.

  3.情感态度价值观目标:

  激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.

  (二)教学重点与难点

  重点:通过数学实例,了解逻辑联结词且的含义,使学生能正确地表述相关数学内容。

  难点:1、正确理解命题Pq真假的规定和判定.2、简洁、准确地表述命题Pq.

  教具准备:与教材内容相关的资料。

  教学设想:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.

  (三)教学过程

  学生探究过程:

  1、引入

  在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.

  在数学中,有时会使用一些联结词,如且或非。在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。下面介绍数学中使用联结词且或非联结命题时的含义和用法。

  为叙述简便,今后常用小写字母p,q,r,s,表示命题。(注意与上节学习命题的条件p与结论q的区别)

  2、思考、分析

  问题1:下列各组命题中,三个命题间有什么关系?

  ①12能被3整除;

  ②12能被4整除;

  ③12能被3整除且能被4整除。

  学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词且联结得到的新命题。

  问题2:以前我们有没有学习过象这样用联结词且联结的命题呢?你能否举一些例子?

  例如:命题p:菱形的对角线相等且菱形的对角线互相平分。

  3、归纳定义

  一般地,用联结词且把命题p和命题q联结起来,就得到一个新命题,记作

  pq

  读作p且q。

  命题pq即命题p且q中的且字与下面命题中的且 字的含义相同吗?

  若 xA且xB,则xB。

  定义中的且字与命题中的且 字的含义是类似。但这里的逻辑联结词且与日常语言中的和,并且,以及,既又等相当,表明前后两者同时兼有,同时满足。说明:符号与开口都是向下。

  注意:p且q命题中的p、q是两个命题,而原命题,逆命题,否命题,逆否命题中的p,q是一个命题的条件和结论两个部分.

  4、命题pq的真假的规定

  你能确定命题pq的真假吗?命题pq和命题p,q的真假之间有什么联系?

  引导学生分析前面所举例子中命题p,q以及命题pq的真假性,概括出这三个命题的真假之间的关系的一般规律。

  例如:在上面的例子中,第(1)组命题中,①②都是真命题,所以命题③是真命题。

  p q pq

  真 真 真

  真 假 假

  假 真 假

  假 假 假

  (即一假则假)

  一般地,我们规定:

  当p,q都是真命题时,pq是真命题;当p,q两个命题中有一个命题是假命题时,pq是假命题。

  5、例题

  例1:将下列命题用且联结成新命题pq的形式,并判断它们的真假。

  (1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。

  (2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;

  (3)p:35是15的倍数,q:35是7的倍数.

  解:(1)pq:平行四边形的对角线互相平分且平行四边形的对角线相等.也可简写成

  平行四边形的对角线互相平分且相等.

  由于p是真命题,且q也是真命题,所以pq是真命题。

  (2)pq:菱形的对角线互相垂直且菱形的对角线互相平分. 也可简写成

  菱形的对角线互相垂直且平分.

  由于p是真命题,且q也是真命题,所以pq是真命题。

  (3)pq:35是15的倍数且35是7的倍数. 也可简写成

  35是15的倍数且是7的倍数.

  由于p是假命题, q是真命题,所以pq是假命题。

  说明,在用且联结新命题时,如果简写,应注意保持命题的意思不变.

  例2:用逻辑联结词且改写下列命题,并判断它们的真假。

  (1)1既是奇数,又是素数;

  (2)2是素数且3是素数;

  (3)22.

  解略.

  例3、判断下列命题的真假;

  (1)6是自然数且是偶数

  (2)是A的子集且是A的真子集;

  解略.

  6.巩固练习 :P20 练习第1 , 2题

  7.教学反思:

  (1)掌握逻辑联结词且的含义

  (2)正确应用逻辑联结词且解决问题

  (3)掌握真值表并会应用真值表解决问题

  p q Pq

  真 真 真

  真 假 假

  假 真 假

  假 假 假

  8.作业:

  P20:习题1.3A组第1、2题

【高二数学《简单的逻辑联结词且》教学方案设计】相关文章:

《集合与简易逻辑》数学教学教案10-09

数学教学方案设计10-08

数学逻辑数学论文10-08

篮球数学教学方案设计10-08

小学数学教学方案设计10-08

数学乘法教学方案设计10-08

数学:圆的教学方案设计10-08

数学中的逻辑趣味10-26

数学《反函数》教学方案设计10-08

数学《变量与函数》教学方案设计10-08