教案

圆和圆的位置关系教案

时间:2024-05-22 10:55:30 教案 我要投稿

圆和圆的位置关系教案

  作为一名优秀的教育工作者,可能需要进行教案编写工作,借助教案可以让教学工作更科学化。如何把教案做到重点突出呢?下面是小编精心整理的圆和圆的位置关系教案,欢迎阅读,希望大家能够喜欢。

圆和圆的位置关系教案

圆和圆的位置关系教案1

  目标:

  知识目标:经历探索两个圆之间位置关系的过程;了解圆与圆之间的几种位置关系;了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系

  重点和难点

  重点:圆与圆之间的几种位置关系

  难点:两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系

  教学过程设计

  一、从学生原有的'认知结构提出问题

  1)复习点与圆的位置关系;2)复习直线与圆的位置关系。

  二、师生共同研究形成概念

  1.书本引例

  ☆ 想一想 P 125 平移两个圆

  利用平移实验直观地探索圆和圆的位置关系。

  2.圆与圆的位置关系

  每一种位置关系都可以先让学生想想应该用什么名称表达。在讲解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系时,可先让学生探索,老师不要生硬地把答案说出

  ☆ 巩固练习 若两圆没有交点,则这两个圆的位置关系是 相离 ;

  若两圆有一个交点,则这两个圆的位置关系是 相切 ;

  若两圆有两个交点,则这两个圆的位置关系是 相交 ;

  ☆ 想一想 书本P 126 想一想

  通过实际例子让学生理解圆与圆的位置关系。

  3.圆与圆相切的性质

  ☆ 想一想 书本P 127 想一想

  旨在引导学生思考两圆相切的性质:如果两圆相切,那么两圆的连心线经过切点,这一性质是下面议一议的基础。学生容易看出两圆相切图形的轴对称性及对称轴,但要说明切点在连心线上则有一定困难。

  如果两圆相切,那么两圆的连心线经过切点

  4.讲解例题

  例1.已知⊙ 、⊙ 相交于点A、B,∠A B = 120°,∠A B = 60°, = 6cm。求:(1)∠ A 的度数;2)⊙ 的半径 和⊙ 的半径 。

  5.讲解例题

  例2.两个同样大小的肥皂泡粘在一起,其剖面如图所示,分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小。

  三、随堂练习

  1.书本 P 128 随堂练习

  2.《练习册》 P 59

  四、小结

  圆与圆的位置关系;圆心距与两圆半径和两圆的关系。

  五、作业

  书本 P 130 习题3.9 1

  六、教学后记

圆和圆的位置关系教案2

  这课节主要是引导学生进行“回顾与整理”,完成第74—75也“练习与应用”第1—5题。回顾与整理时要组织学生交流本单元的学习体会,交流对小数点位置移动引起小数大小变化的规律的理解。

  教学目标。

  1、通过回顾与整理以及练习与应用活动,让学生进一步巩固以学过的小数乘除法的计算方法,加深对小数点位置移动引起小数大小变化的规律的理解。

  2、培养学生乐于学习,乐于与同伴合作并分享学习成果的良好学习品质。

  教学重点。

  与难点加深对小数乘除法计算方法,以及数学规律的认识。

  教具多媒体课件。

  根据学生学习情况随机板书。

  教学过程。

  师生双边活动。

  改进意见。

  一、回顾与整理。

  这一单元,你了解了什么规律?学会了哪些计算?

  学生小组交流,集体汇报。

  二、练习与应用。

  1、口算练习。

  学生独立口算,集体订正。

  2、第2题。

  引导学生将后面六栏中的两个因数分别与第一栏进行比较,明确当一个因数不变时,另一个因数乘或除以几,那么积也随着乘或除以几,从而初步体会积的变化规律。

  3、用竖式计算。

  学生独立计算,师计时,并巡视指导,集体交流,指名说说计算方法。

  4、第4题。

  让学生根据题目的特点,判断哪几题的商小于1,再通过计算验证开始的判断是否正确。

  5、第5题。

  让学生说说每道题的改写方法,弄清是乘进率还是除以进率,再决定小数点是向右移动还是向左移动。

  三、全课小结。

  通过今天的整理与复习,你有哪些收获?你觉得在计。

  教学过程。

  师生双边活动。

  改进意见。

  算小数乘、除法时应注意些什么?

  学生自由发表意见,全班交流。

  四、作业。

  完成《学习与探究》。

  课后小记:

  点与圆的位置关系教学反思

  本节课的教学设计本着这样的一个目的,在动眼、动手、动脑中创设轻松、自主的课堂气氛,使学生掌握获得知识的方法,体验学习的快乐。

  在整个课堂教学设计中,我做到了四个重视。第一,重视培养学生的创新意识和初步的探索教学内容的能力。具有探索性、开放性,能给学生创设自主探索的机会;第二,重视数学知识与实际应用的紧密联系,能引导学生联系自己的生活经验和已有的知识学习数学,并能把学到的数学知识应用到实践中去;第三,重视发挥学生的主体作用,指导学生从各种数学活动中学习数学,通过自己的动手、动脑实践,不断探索来获得知识并应用知识;第四,重视激发学生学习数学的兴趣,培养喜爱数学的情感,树立学好数学的信心,发扬敢想、敢说、敢争论的精神。

  在实际教学过程中,为了让学生清楚感知圆和圆的五种位置关系,让学生分组摆一摆,再进行组间比一比。讨论后逐一归纳出五种位置关系及数学定义。并进行篮球赛标设计,使学生在紧张热烈竞争中巩固了知识。课堂中轻松的量一量,让学生在验证中直观地认识到两圆的半径、圆心距间的关系。在动眼、动手、动脑中再一次巩固了知识。

  纵观整个课堂教学过程,动手与动脑的结合不仅让学生收获颇多,而且教者也回味无穷。使我更加感受到“四个重视”的重要性。但在本节课的教学中还存在着一定的不足。如:时间安排不够合理,前松后紧。虽也能按时完成教学任务,但总觉得有点姗姗开场却草草收尾的意味。在以后的教学中,我将继续努力,让我和学生在课堂中都能时刻享受到知识带来的快乐。

  直线和圆的`位置关系教学反思

  并深刻剖析直线是圆的切线的判定条件和直线与圆相切的性质;对重要的结论及时。

  (2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学。

  新课程理念及新基础教育理念都提倡“把课堂还给学生,让课堂充满生命活力”,让学生真正“动起来”,动不应当是表面的、外在的,而应当使学生的思维处于活跃状态,积极思考问题,这种内在的、深层的动,更要落实,动静结合,收放适度,动得有序,动而不乱。课堂教学要的不是热闹场面,而是对问题的深入研究和思考。首先要设计好问题,针对不同意见和问题引导学生展开讨论、辩论,抓住学生发言中的问题,及时给以矫正。当教师提出问题让学生探索时,学生自己寻找答案时,要放手让学生活动,但要避免学生兴奋过度或活动过量。今后再教学本节课仍应倡导提高学生的问题意识,以对问题的探究来构筑本节课教学的主题。但是,教师待学生的问题提完后,与学生一道对问题进行归类,找出学生思维和知识的核心问题,以此组织课堂教学,并相机解决其他问题。仍应放权给学生,给他们想、做、说的机会,让他们讨论、质疑、交流,围绕某一个问题展开辩论。教师应当给学生时间和权利,让学生充分进行思考,给学生充分表达自己思维的机会。但是,应关注学生的参与程度,有的学生的参与只是一种表面上的行为参与。要看学生的思维是否活跃,关键是学生所回答的问题、提出的问题,是否建立在一定的思维层次上,是否会引起其他学生的积极思考,还是学生的自我需要。也就是说我们要关注学生思维的状态与学习互动的状态。

  点和圆的位置关系教学设计

  本节课的教学内容是点和圆的位置关系,看似内容少而简单,但让学生真正理解如何由图形关系得出数量关系,以及从数量关系联想到图形的位置关系,却并非简单。如果忽略了这一过程,学生会做题,却无法体验数学的本质,无法体验数形结合思想。所以本节课中引导学生由图形联想到数量关系,即有点和圆的位置关系联想到点到圆心的距离与半径的大小关系。我是分两步的得出的:

  第一步让学生从图形上直观的认识点和圆的三种位置关系,第二步引导学生从数量上判断图形位置,是为了让学生更好的体验数形结合思想。数量关系的探索是这节课的一个重点内容,也是这节课的难点所在。为解决这个问题,在课前布置了学生进行预习,预习内容为以下6点:

  2、经过一个点可以作几个圆?

  3、经过两个点可以作几个圆?圆心有什么特点?

  4、经过不在同一直线上的三点可以作几个圆?

  5、过在同一直线上的三点能作圆吗?如果不能如何证明。

  6、过在不在同一直线上的三点能作圆吗?如果能,能做几个,如果不能,请说明理由。

  通过课堂上的提问反馈,可以感受到学生通过预习,在自主学习的基础上能更好的理解知识,从而进一步提高课堂听课的效率。

  新课标指出,自主探究、动手实践、合作交流应成为学生的主要学习方式,教师应引导学生主动的从事观察、实验、猜测、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。本节课中“不在同一直线上的三点可以确定一个圆”让学生经历了循序渐近的探究过程,即通过画图、观察、分析、发现经过一个已知点可以画无数个圆,经过两个已知点也可以画无数个圆,但其圆心分布在连接两点线段的垂直平分线上,经过不在同一直线上的三点可以确定一个圆。

  通过这节课,学生们深切感受到预习在学习中的重要作用,也通过自己的预习对所学知识有理更深入的理解,从而提高了课堂效率;同时,通过对这节课的反复推敲设计,我也深切感受到对教材研究的重要性。

圆和圆的位置关系教案3

  教学目标

  (一)教学知识点

  1.了解圆与圆之间的几种位置关系.

  2.了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.

  (二) 能力训练要求

  1.经历探索两个圆之间位置关系的过程,训练学生的探索能力.

  2.通过平移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力.

  (三)情感与价值观要求

  1.通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

  2.经历探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维.

  教学重点

  探索圆与圆之间的几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.

  教学难点

  探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程.

  教学方法

  教师讲解与学生合作交流探索法

  教具准备

  投 影片三张

  第一张:(记作3. 6A)

  第二张:(记作3.6B)

  第三张:(记作3.6C)

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交.它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权.下面我们就来进行有关探讨.

  Ⅱ.新课讲解

  一、想一想

  [师]大家思考一下,在现实生活中你见过两个圆的哪些位置关系呢?

  [生]如自行车的两个车轮间的位置关 系;车轮轮胎的两个边界圆间的位置关系;用一只手拿住大小两个圆环时两个圆环间的位置关系等.

  [师]很好,现实生活中我们见过的有关两个圆的位置很多.下面我们就来讨论这些位置关系分别是什么.

  二、探索圆和圆的位置关系

  在一张透明纸上作一个⊙O.再在另一张透明纸上作一个与⊙O1半径不等的⊙O2.把两张透明纸叠在一起,固定⊙O1,平移⊙O2,⊙O1与⊙O2有几种位置关系?

  [师]请大家先自己动手操作,总结出不同的位置关系,然后互相交流.

  [生]我总结出共有五种位置关系,如下图:

  [师]大家的归纳、总结能力很强,能说出五种位置关系中各自有什么特点吗?从公共点的个数和一个圆上的点在另一个圆的内部还是外 部来考虑.

  [生]如图:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;

  (2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;

  (3)相交:两个圆有两个公共点,一 个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;

  (4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;

  (5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.

  [师]总结得很出色,如果只从公共点的个数来考虑,上面的五种位置关系中有相同类型吗?

  [生]外离和内含都没有公共点;外切和内切都有一个公共点;相交有两个公共点.

  [师]因此只从公共点的个数来考虑,可分为相离、相切、相交三种.

  经过大家的讨论我们可知:

  投影片(24.3A)

  (1)如果从公共点的个数,和一个圆上的点在另一个圆的外部还是内部来考虑,两个圆的位置关系有五种:外离、外切、相交、内切、内含.

  (2)如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离 ,相切

  三、例题讲解

  投影片(24.3B)

  两个同样大小的肥皂 泡黏在一起,其剖面如图所示(点O,O'是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直 线,TP、NP分别为两圆的切线,求TPN的大小.

  分析:因为两个圆大小相同,所以 半径OP=O'P=OO',又TP、NP分别为两圆的切 线,所以PTOP,PNO'P,即OPT=O'PN=90,所以TPN等于36 0减去OPT+O'PN+OPO'即可.

  解 :∵OP=OO'=PO',

  △PO'O是一个等边三角形.

  OPO'=60.

  又∵TP与NP分别为两圆的切线,

  TPO =NPO'=90.

  TPN=360-290-60=120.

  四、想一想

  如图(1),⊙O1与⊙O2外切,这个图是 轴对称图形吗?如果是,它的对称轴是什么?切点与对称轴有什么位置关系?如果⊙O1与⊙O2内切呢?〔如图(2 )〕

  [师]我们知道圆是轴对称图形,对称轴是任一直径所在的`直线,两个圆是否也组成一 个轴对称图形呢?这就要看切点T是否在连接两个圆心的直线上,下面我们用反证法来证明.反证法的步骤有三 步:第一步是假设结论不成立;第二步是根据假设推出和已知条件或定理相矛盾的结论;第三步是证明假设错误,则原来的结论成立.

  证明:假设切点T不在O1O2上.

  因为圆是轴对称图形,所以T关于O1O2的对称点T'也是两圆的公共点,这与已知条件⊙O1和⊙O2相切矛盾,因此假设不成立.

  则T在O1O2上.

  由此可知图(1)是轴对称图形,对 称轴是两圆的连心线,切点与对称轴的位置关系是切点在对称轴上.

  在图(2)中应有同样的结论.

  通过上面的讨论,我们可以得出结论:两圆相内切或外切时,两圆的连心线一定经过切点,图(1)和图(2)都是轴对称图形,对称轴是它们的连心 线.

  五、议一议

  投影片(24.3C)

  设两圆的半径分别为R和r.

  (1)当两圆外切时,两圆圆心之间的距离(简称圆心距)d与R和r具有怎样的关系?反之当d与R和r满足这一关系时,这两个圆一定外切吗?

  (2)当两圆内切时(R>r),圆心距d与R和r具有怎样的关系?反之,当d与R和r满足这一关系时,这两个圆一定内切吗?

  [师]如图,请大家互相交流.

  [生]在图(1)中,两圆相外切,切点是A.因为切点A在连心线 O1O2上,所以O1O2=O1A+O2A=R+r,即d=R+r;反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.

  在图(2)中,⊙O1与⊙O2相内切,切点是 B.因为切点B在连心线O1O2上,所以 O1O2=O1B-O2B,即d=R-r;反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.

  [师]由此可知,当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切 d=R+r.

  当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内 切,即两圆相内切 d=R-r.

  Ⅲ.课堂练习

  随堂练习

  Ⅳ.课时小结

  本节课学习了如下内容:

  1.探索圆和圆的五种位置关系;

  2.讨论在两圆外切或内切情况下,图形的轴对称性及对称轴,以及切点和对称轴的位置关系;

  3. 探讨在两圆外切或内切时,圆心距d与R和r之间的关系.

  Ⅴ.课后作业 习题24.3

  Ⅵ.活动与探究

  已知图中各圆两两相切,⊙O的半径为2R,⊙O1、⊙O2的半径为R,求⊙O3的半径.

  分析:根据两圆相外切连心线的长为两半径之和,如果设⊙O 3的半径为r,则O1O3=O2O3=R+r,连接OO3就有OO3O1O2,所以OO2O3构成了直角三角形,利用勾股定理可求得⊙O3的半径r.

  解:连接O2O3、OO3,

  O2OO3=90,OO3=2R-r,

  O2O3=R+r,OO2=R.

  (R+r)2=(2R-r)2+R2.

  r= R.

  板书设计

  24.3 圆和圆的位置关系

  一、1.想一想

  2.探索圆和圆的位置关系

  3.例题讲解

  4.想一想

  5.议一议

  二、课堂练习

  三、课时小结

  四、课后作业

圆和圆的位置关系教案4

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  重点:两圆的位置关系和两圆相交、相切的性质.它们是本节的主要内容,是圆的重要概念性知识,也是今后研究圆与圆问题的基础知识.

  难点:两圆位置关系的判定与相交两圆的连心线垂直平分两圆的公共弦的性质的运用.由于两圆位置关系有5种类型,特别是相离有外离和内含,相切有外切和内切,学生容易遗漏;而在相交圆的性质应用中,学生容易把“相交两圆的公共弦垂直平分两圆的连心线.”看成是真命题.

  2、教法建议

  本节内容需要两个课时.第一课时主要研究;第二课时相交两圆的性质.

  (1)把课堂活动设计的重点放在如何调动学生的主体,让学生观察、分析、归纳概括,主动获得知识;

  (2)要重视圆的对称美的教学,组织学生欣赏,在激发学生的学习兴趣中,获得知识,提高能力;

  (3)在教学中,以分类思想为指导,以数形结合为方法,贯串整个教学过程.

  第一课时

  教学目标:

  1.掌握圆与圆的五种位置关系的定义、性质及判定方法;两圆连心线的性质;

  2.通过两圆的位置关系,培养学生的分类能力和数形结合能力;

  3.通过演示两圆的位置关系,培养学生用运动变化的观点来分析和发现问题的能力.

  教学重点:

  两圆的五种位置与两圆的半径、圆心距的数量之间的关系.

  教学难点:

  两圆位置关系及判定.

  (一)复习、引出问题

  1.复习:直线和圆有几种位置关系?各是怎样定义的?

  (教师主导,学生回忆、回答)直线和圆有三种位置关系,即直线和圆相离、相切、相交.各种位置关系是通过直线与圆的公共点的个数来定义的

  2.引出问题:平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢?

  (二)观察、分类,得出概念

  1、让学生观察、分析、比较,分别得出两圆:外离、外切、相交、内切、内含(包括同心圆)这五种位置关系,准确给出描述性定义:

  (1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(图(1))

  (2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图(2))

  (3)相交:两个圆有两个公共点,此时叫做这两个圆相交.(图(3))

  (4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图(4))

  (5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)).两圆同心是两圆内含的一个特例.(图(6))

  2、归纳:

  (1)两圆外离与内含时,两圆都无公共点.

  (2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一

  (3)两圆位置关系的五种情况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切).

  教师组织学生归纳,并进一步考虑:从两圆的公共点的个数考虑,无公共点则相离;有一个公共点则相切;有两个公共点则相交.除以上关系外,还有其它关系吗?可能不可能有三个公共点?

  结论:在同一平面内任意两圆只存在以上五种位置关系.

  (三)分析、研究

  1、相切两圆的性质.

  让学生观察连心线与切点的'关系,分析、研究,得到相切两圆的连心线的性质:

  如果两个圆相切,那么切点一定在连心线上.

  这个性质由圆的轴对称性得到,有兴趣的同学课下可以考虑如何对这一性质进行证明

  2、两圆位置关系的数量特征.

  设两圆半径分别为R和r.圆心距为d,组织学生研究两圆的五种位置关系,r和d之间有何数量关系.(图形略)

  两圆外切d=R+r;

  两圆内切d=R-r(R>r);

  两圆外离d>R+r;

  两圆内含dr);

  两圆相交R-r

  说明:注重“数形结合”思想的教学.

  (四)应用、练习

  例1:如图,⊙O的半径为5厘米,点P是⊙O外一点,OP=8厘米

  求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?

  (2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?

  解:(1)设⊙P与⊙O外切与点A,则

  PA=PO-OA

  ∴PA=3cm.

  (2)设⊙P与⊙O内切与点B,则

  PB=PO+OB

  ∴PB=13cm.

  例2:已知:如图,△ABC中,∠C=90°,AC=12,BC=8,以AC为直径作⊙O,以B为圆心,4为半径作.

  求证:⊙O与⊙B相外切.

  证明:连结BO,∵AC为⊙O的直径,AC=12,

  ∴⊙O的半径,且O是AC的中点

  ∴,∵∠C=90°且BC=8,

  ∴,

  ∵⊙O的半径,⊙B的半径,

  ∴BO=,∴⊙O与⊙B相外切.

  练习(P138)

  (五)小结

  知识:①两圆的五种位置关系:外离、外切、相交、内切、内含;

  ②以及这五种位置关系下圆心距和两圆半径的数量关系;

  ③两圆相切时切点在连心线上的性质.

  能力:观察、分析、分类、数形结合等能力.

  思想方法:分类思想、数形结合思想.

  (六)作业

  教材P151中习题A组2,3,4题.

  第二课时相交两圆的性质

  教学目标

  1、掌握相交两圆的性质定理;

  2、掌握相交两圆问题中常添的辅助线的作法;

  3、通过例题的分析,培养学生分析问题、解决问题的能力;

  4、结合相交两圆连心线性质教学向学生渗透几何图形的对称美.

  教学重点

  相交两圆的性质及应用.

  教学难点

  应用轴对称来证明相交两圆连心线的性质和准确添加辅助线.

  教学活动设计

  (一)图形的对称美

  相切两圆是以连心线为对称轴的对称图形.相交两圆具有什么性质呢?

  (二)观察、猜想、证明

  1、观察:同样相交两圆,也构成对称图形,它是以连心线为对称轴的轴对称图形.

  2、猜想:“相交两圆的连心线垂直平分公共弦”.

  3、证明:

  对A层学生让学生写出已知、求证、证明,教师组织;对B、C层在教师引导下完成.

  已知:⊙O1和⊙O2相交于A,B.

  求证:Q1O2是AB的垂直平分线.

  分析:要证明O1O2是AB的垂直平分线,只要证明O1O2上的点和线段AB两个端点的距离相等,于是想到连结O1A、O2A、O1B、O2B.

  证明:连结O1A、O1B、O2A、O2B,∵O1A=O1B,

  ∴O1点在AB的垂直平分线上.

  又∵O2A=O2B,∴点O2在AB的垂直平分线上.

  因此O1O2是AB的垂直平分线.

  也可考虑利用圆的轴对称性加以证明:

  ∵⊙Ol和⊙O2,是轴对称图形,∴直线O1O2是⊙Ol和⊙O2的对称轴.

  ∴⊙Ol和⊙O2的公共点A关于直线O1O2的对称点即在⊙Ol上又在⊙O2上.

  ∴A点关于直线O1O2的对称点只能是B点,

  ∴连心线O1O2是AB的垂直平分线.

  定理:相交两圆的连心线垂直平分公共弦.

  注意:相交两圆连心线垂直平分两圆的公共弦,而不是相交两圆的公共弦垂直平分两圆的连心线.

  (三)应用、反思

  例1、已知两个等圆⊙Ol和⊙O2相交于A,B两点,⊙Ol经O2。

  求∠OlAB的度数.

  分析:由所学定理可知,O1O2是AB的垂直平分线,

  又⊙O1与⊙O2是两个等圆,因此连结O1O2和AO2,AO1,△O1AO2构成等边三角形,同时可以推证⊙Ol和⊙O2构成的图形不仅是以O1O2为对称轴的轴对称图形,同时还是以AB为对称轴的轴对称图形.从而可由

  ∠OlAO2=60°,推得∠OlAB=30°.

  解:⊙O1经过O2,⊙O1与⊙O2是两个等圆

  ∴OlA=O1O2=AO2

  ∴∠O1AO2=60°,

  又AB⊥O1O2

  ∴∠OlAB=30°.

  例2、已知,如图,A是⊙Ol、⊙O2的一个交点,点P是O1O2的中点。过点A的直线MN垂直于PA,交⊙Ol、⊙O2于M、N。

  求证:AM=AN.

  证明:过点Ol、O2分别作OlC⊥MN、O2D⊥MN,垂足为C、D,则OlC∥PA∥O2D,且AC=AM,AD=AN.

  ∵OlP=O2P,∴AD=AM,∴AM=AN.

  例3、已知:如图,⊙Ol与⊙O2相交于A、B两点,C为⊙Ol上一点,AC交⊙O2于D,过B作直线EF交⊙Ol、⊙O2于E、F.

  求证:EC∥DF

  证明:连结AB

  ∵在⊙O2中∠F=∠CAB,

  在⊙Ol中∠CAB=∠E,

  ∴∠F=∠E,∴EC∥DF.

  反思:在解有关相交两圆的问题时,常作出连心线、公共弦,或连结交点与圆心,从而把两圆半径,公共弦长的一半,圆心距集中到一个三角形中,运用三角形有关知识来解,或者结合相交弦定理,圆周角定理综合分析求解.

  (四)小结

  知识:相交两圆的性质:相交两圆的连心线垂直平分公共弦.该定理可以作为证明两线垂直或证明线段相等的依据.

  能力与方法:①在解决两圆相交的问题中常常需要作出两圆的公共弦作为辅助线,使两圆中的角或线段建立联系,为证题创造条件,起到了“桥梁”作用;②圆的对称性的应用.

  (五)作业教材P152习题A组7、8、9题;B组1题.

  探究活动

  问题1:已知AB是⊙O的直径,点O1、O2、…、On在线段AB上,分别以O1、O2、…、On为圆心作圆,使⊙O1与⊙O内切,⊙O2与⊙O1外切,⊙O3与⊙O2外切,…,⊙On与⊙On-1外切且与⊙O内切.设⊙O的周长等于C,⊙O1、⊙O2、…、⊙On的周长分别为C1、C2、…、Cn.

  (1)当n=2时,判断Cl+C2与C的大小关系;

  (2)当n=3时,判断Cl+C2+C3与C的大小关系;

  (3)当n取大于3的任一自然数时,Cl十C2十…十Cn与C的大小关系怎样?证明你的结论.

  提示:假设⊙O、⊙O1、⊙O2、…、⊙On的半径分别为r、rl、r2、…、rn,通过周长计算,比较可得(1)Cl+C2=C;(2)Cl+C2+C3=C;(3)Cl十C2十…十Cn=C.

  问题2:有八个同等大小的圆形,其中七个有阴影的圆形都固定不动,第八个圆形,紧贴另外七个无滑动地滚动,当它绕完这些固定不动的圆形一周,本身将旋转了多少转?

  提示:1、实验:用硬币作初步实验;结果硬币一共转了4转.

  2、分析:当你把动圆无滑动地沿着圆周长的直线上滚动时,这个动圆是转转,但是,这个动圆是沿着弧线滚动,那么方才的说法就不正确了.在我们这个题目中,那动圆绕着相当于它的圆周长的的弧线旋转的时候,一共走过的不是转;而是转,因此,它绕过六个这样的弧形的时,就转了转。

【圆和圆的位置关系教案】相关文章:

圆和圆的位置关系教案03-21

圆和圆的位置关系 教案12-28

《直线和圆的位置关系》教学方案10-08

直线和圆的位置关系公开课教案10-05

圆与圆位置关系中常见辅助线的作法10-26

初二数学上册第八章圆和圆的位置关系教案09-26

数学《直线和圆的位置关系》教学方案设计10-07

两圆的位置关系数学教案10-07

圆的面积教案02-28