教案

数学八年级上册教案

时间:2024-08-29 07:32:17 教案 我要投稿

数学八年级上册教案

  作为一名辛苦耕耘的教育工作者,时常需要用到教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案要怎么写呢?以下是小编精心整理的数学八年级上册教案,仅供参考,大家一起来看看吧。

数学八年级上册教案

数学八年级上册教案1

  一、教学目标:

  1、理解同底数幂的概念。

  2、掌握同底数幂的乘法的计算方法。

  3、应用同底数幂的乘法解决实际问题。

  二、教学重点和难点:

  1、理解同底数幂的概念。

  2、掌握同底数幂的乘法的计算方法。

  三、教学准备:

  1、教科书和练习册。

  2、讲义和习题。

  四、教学流程:

  1、引入。

  同学们,我们已经学习了幂的概念和计算方法,今天我们要学习的是同底数幂的乘法。

  2、讲解。

  同学们,同底数幂的乘法就是说,如果幂的底相同,那么可以将幂的指数相加,再用相同的底数作为底,得到的就是同底数幂的乘积。比如,2的3次方乘以2的4次方,可以用相同的底2,将幂的指数相加,得到2的7次方,也就是2的3次方和2的4次方的乘积。

  3、练习。

  请同学们计算以下同底数幂的乘积:

  (1)4的2次方乘以4的3次方。

  (2)10的4次方乘以10的7次方。

  (3)0.5的3次方乘以0.5的5次方。

  4、 总结。

  同学们,同底数幂的乘法就是将幂的指数相加,再用相同的.底数作为底,将幂的结果计算出来。掌握了同底数幂的乘法,可以更方便地计算幂的结果,也可以更好地解决实际问题。

  五、作业。

  1、完成课堂上的练习。

  2、完成课后习题。

  六、小结。

  通过本堂课的学习,同学们掌握了同底数幂的乘法的概念和计算方法,并且可以应用同底数幂的乘法解决实际问题。下一步,我们将学习同底数幂的除法,希望同学们继续努力。

数学八年级上册教案2

  一、全章要点

  1、勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2)

  2、勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

  3、勾股定理的证明 常见方法如下:

  方法一: , ,化简可证.

  方法二:

  四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

  四个直角三角形的面积与小正方形面积的和为

  大正方形面积为 所以

  方法三: , ,化简得证

  4、勾股数 记住常见的.勾股数可以提高解题速度,如 ; ; ; ;8,15,17;9,40,41等

  二、经典训练

  (一)选择题:

  1. 下列说法正确的是( )

  A.若 a、b、c是△ABC的三边,则a2+b2=c2;

  B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;

  C.若 a、b、c是Rt△ABC的三边, ,则a2+b2=c2;

  D.若 a、b、c是Rt△ABC的三边, ,则a2+b2=c2.

  2. △ABC的三条边长分别是 、 、 ,则下列各式成立的是( )

  A. B. C. D.

  3.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )

  A.121 B.120 C.90 D.不能确定

  4.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )

  A.42 B.32 C.42 或 32 D.37 或 33

  (二)填空题:

  5.斜边的边长为 ,一条直角边长为 的直角三角形的面积是 .

  6.假如有一个三角形是直角三角形,那么三边 、 、 之间应满足 ,其中 边是直角所对的边;如果一个三角形的三边 、 、 满足 ,那么这个三角形是 三角形,其中 边是 边, 边所对的角是 .

  7.一个三角形三边之比是 ,则按角分类它是 三角形.

  8. 若三角形的三个内角的比是 ,最短边长为 ,最长边长为 ,则这个三角形三个角度数分别是 ,另外一边的平方是 .

  9.如图,已知 中, , , ,以直角边 为直径作半圆,则这个半圆的面积是 .

  10. 一长方形的一边长为 ,面积为 ,那么它的一条对角线长是 .

  三、综合发展:

  11.如图,一个高 、宽 的大门,需要在对角线的顶点间加固一个木条,求木条的长.

  12.一个三角形三条边的长分别为 , , ,这个三角形最长边上的高是多少?

  13.如图,小李准备建一个蔬菜大棚,棚宽4m,高3m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.

  14.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?

  15.如图,长方体的长为15,宽为10,高为20,点 离点 的距离为5,一只蚂蚁如果要沿着长方体的表面从点 爬到点 ,需要爬行的最短距离是多少?

  16.中华人民共和国道路交通管理条例规定:小汽车在城街路上行驶速度不得超过 km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方 m处,过了2s后,测得小汽车与车速检测仪间距离为 m,这辆小汽车超速了吗?

数学八年级上册教案3

  教学目标

  1.等腰三角形的概念。

  2.等腰三角形的性质。

  3.等腰三角形的概念及性质的应用。

  教学重点:

  等腰三角形的概念及性质。 2.等腰三角形性质的应用。

  教学难点:

  等腰三角形三线合一的性质的理解及其应用。

  教学过程

  Ⅰ.提出问题,创设情境

  在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:

  ①三角形是轴对称图形吗?

  ②什么样的三角形是轴对称图形?

  有的三角形是轴对称图形,有的三角形不是。

  问题:那什么样的'三角形是轴对称图形?

  满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

  我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

  Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形。

  作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

  等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

  思考:

  1.等腰三角形是轴对称图形吗?请找出它的对称轴。

  2.等腰三角形的两底角有什么关系?

  3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

  4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

  结论:等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

  要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

  沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。

  由此可以得到等腰三角形的性质:

  1.等腰三角形的两个底角相等(简写成“等边对等角”).

  2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).

  由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程).

  如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

  所以△BAD≌△CAD(SSS).

  所以∠B=∠C.

  ]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

  所以△BAD≌△CAD.

  所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

  [例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

  求:△ABC各角的度数。

  分析:根据等边对等角的性质,我们可以得到

  ∠A=∠ABD,∠ABC=∠C=∠BDC,

  再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

  再由三角形内角和为180°,就可求出△ABC的三个内角。

  把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。

  解:因为AB=AC,BD=BC=AD,

  所以∠ABC=∠C=∠BDC.

  ∠A=∠ABD(等边对等角).

  设∠A=x,则∠BDC=∠A+∠ABD=2x,

  从而∠ABC=∠C=∠BDC=2x.

  于是在△ABC中,有

  ∠A+∠ABC+∠C=x+2x+2x=180°,

  解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.

  [师]下面我们通过练习来巩固这节课所学的知识。

  Ⅲ.随堂练习:1.课本P51练习1、2、3. 2.阅读课本P49~P51,然后小结。

  Ⅳ.课时小结

  这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用。等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。

  我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。

  Ⅴ.作业:课本P56习题12.3第1、2、3、4题。

  板书设计

  12.3.1.1等腰三角形

  一、设计方案作出一个等腰三角形

  二、等腰三角形性质:1.等边对等角2.三线合一

数学八年级上册教案4

  一、教学目标

  知识与技能

  1、了解立方根的概念,初步学会用根号表示一个数的立方根.

  2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.

  过程与方法

  1让学生体会一个数的立方根的惟一性.

  2培养学生用类比的思想求立方根的能力,体会立方与开立方运算的互逆性,渗透数学的转化思想。

  情感态度与价值观

  通过立方根符号的引入体会数学的简洁美。

  二、重点难点

  重点

  立方根的概念和求法。

  难点

  立方根与平方根的区别,立方根的求法

  三、学情分析

  前面已经学过了平方根的知识,由于平方根与立方根的学习有很多相似之处,所以在教学设计上,主要还是采取类比的思想,在全面回顾平方根的基础上,再来引导学生进行立方根知识的学习,让学生感觉到其实立方根知识并不难,可以与平方根知识对比着学,这样可以克服学生学习新知识的陌生心理。在学习方法上,提倡让学生在反思中学习,在概念的得出,归纳性质,解题之后都要进行适当的反思,在反思中看待与理解新知识和新问题,会更理性和全面,会有更大的进步。

  四、教学过程设计

  教学环节问题设计师生活动备注

  情境创设问题:要制作一种容积为27m3的正方体形状的包装箱,这种包装箱的`边长应该是多少?

  设这种包装箱的边长为xm,则=27这就是求一个数,使它的立方等于27.

  因为=27,所以x=3.即这种包装箱的边长应为3m

  归纳:

  立方根的概念:

  创设问题情境,引起学生学习的兴趣,经小组讨论后引出概念。

  通过具体问题得出立方根的概念

  探究一:

  根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点?

  因为(),所以0.125的立方根是()

  因为(),所以-8的立方根是()

  因为(),所以-0.125的立方根是()

  因为(),所以0的立方根是()

  一个正数有一个正的立方根

  0有一个立方根,是它本身

  一个负数有一个负的立方根

  任何数都有唯一的立方根

  【总结归纳】

  一个数的立方根,记作,读作:“三次根号”,其中叫被开方数,3叫根指数,不能省略,若省略表示平方。.

  探究二:

  因为所以=

  因为,所以=总结:

  利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即。

数学八年级上册教案5

  【学习目标】

  1.掌握等腰三角形的有关概念和性质,运用等腰三角形的性质解决问题。

  2. 通过学生之间的交流活动,培养学生主动与他人合作 交流的意识和良好的学习习惯。

  【学习重点】

  探索和掌握等腰三角形的性质及其应用。

  【学习难点】

  等腰三角形的性质的应用。

  【学习 过程】

  一、你知道吗?

  等腰三角形的.有关概念

  《等腰三角形应用》讲义

  课前预习

  1.SAS,SSS,ASA,AAS,HL

  2.这条线段的两个端点的距离相等

  3.这个角的两边的距离相等

  4.这样的点有4个

  ?知识点睛

  1.线段垂直平分线上的点到这条线段的两个端点的距离相等

  2.角平分线上的点到这个角的两边距离相等

  3.顶角的平分线 底边上的中线 底边上的高 三线合一

  《13.3等腰三角形》专项练习

  1、填空题

  2、如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,如此作下去。若OA=OB=1,则第 个等腰直角三角形的面积 。

数学八年级上册教案6

  一、知识点:

  1.坐标(x,y)与点的对应关系

  有序数对:有顺序的两个数x与y组成的数对,记作(x,y);

  注意:x、y的先后顺序对位置的影响。

  2.平面直角坐标系:

  (1)、构成坐标系的各种名称:四个象限和两条坐标轴

  (2)、各种特殊点的坐标特点:坐标轴上的点至少有一个坐标

  为0;X轴上的点的纵坐标为0,y轴上点的横坐标为0,原点

  的坐标为(0,0)。

  3.坐标(x,y)的几何意义

  平面直角坐标系是代数与几何联系的纽带,坐标(x,y)有某

  几何意义,如点A(-3,2)它到x轴、y轴、原点的距离分别是︱x︱

  =︱2︱=2,︱y︱=︱-3︱=3,OA = 。

  4.注意各象限内点的坐标的符号

  点P(x,y)在第一象限内,则x0,y0,反之亦然.

  点P(x,y)在第二象限内,则x0,y0,反之亦然.

  点P(x,y)在第三象限内,则x0,y0,反之亦然.

  点P(x,y)在第四象限内,则x0,y0,反之亦然.

  5.平行于坐标轴的直线的点的坐标特点:

  平行于x轴(或横轴)的直线上的点的这 纵 坐标相同;

  平行于y轴(或纵轴)的直线上的点的 横 坐标相同。

  6.各象限的角平分线上的点的坐标特点:

  第一、三象限角平分线上的点的横纵坐标 相同 ;

  第二、四象限角平分线上的点的横纵坐标 互为相反数 。

  7.与坐标轴、原点对称的点的坐标特点:

  关于x轴对称的点的横坐标 相同 ,纵坐标 互为相反数

  关于y轴对称的点的纵坐标 相同 ,横坐标 互为相反数

  关于原点对称的点的横坐标、纵坐标都 互为相反数

  8.特殊位置点的特殊坐标:

  坐标轴上点P(x,y) 连线平行于坐标轴的点 点P(x,y)在各象限的坐标特点

  X轴 Y轴 原点 平行X轴 平行Y轴 第一象限 第二象限 第三象限 第四象限

  (x,0) (0,y) (0,0) 纵坐标 相同

  横坐标 不同 横坐标 相同

  纵坐标 不同

  9.利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:

  (1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;

  (2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;

  (3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

  10.用坐标表示平移:见下图

  二、典型训练:

  1.位置的确定

  1、如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示.纵线用英文字母表示,这样,黑棋①的位置可记为(C,4),白棋②的位置可记为(E,3),则白棋⑨的'位置应记为 _____.

  2、如图所示的象棋盘上,若帅位于点(1,﹣3)上,相位于点(3,﹣3)上,则炮位于点( )

  A、(﹣1,1) B、(﹣l,2) C、(﹣2,0) D、(﹣2,2)

  2.平面直角坐标系内的点的特点: 一)确定字母取值范围:

  1、点A(m+3,m+1)在x轴上,则A点的坐标为( )

  A (0,-2) B、(2,0) C、(4,0) D、(0,-4)

  2、若点M(1, )在第四象限内,则 的取值范围是 .

  3、已知点P(x,y+1)在第二象限,则点Q(﹣x+2,2y+3)在第 象限.

  二)确定点的坐标:

  1、点 在第二象限内, 到 轴的距离是4,到 轴的距离是3,那么点 的坐标为( )

  A.(-4,3) B.(-3, -4) C.(-3, 4) D.(3, -4)

  2、若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为( )

  A、(3,3) B、(﹣3,3) C、(﹣3,﹣3) D、(3,﹣3)

  3、在x轴上与点(0,﹣2)距离是4个单位长度的点有 .

  4、若点(5﹣a,a﹣3)在第一、三象限角平分线上,则a= .

  三)确定对称点的坐标:

  1、P(﹣1,2)关于x轴对称的点是 ,关于y轴对称的点是 ,关于原点对称的点是 .

  2、已知点 关于 轴的对称点为 ,则 的值是( )

  A. B. C. D.

  3、在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标不变,

  得到点A,则点A和点A的关系是( )

  A、关于x轴对称 B、将点A向x轴负方向平移一个单位得点A

  C、关于原点对称 D、关于y轴对称

  3.与平移有关的问题

  1、通过平移把点A(2,﹣3)移到点A(4,﹣2),按同样的平移方式,点B(3,1)移到点B,则点B的坐标是 .

  2、如图,点A坐标为(-1,1),将此小船ABCD向左平移2个单位,再向上平移3个单位得ABCD.

  (1)画出平面直角坐标系;

  (2)画出平移后的小船ABCD,

  写出A,B,C,D各点的坐标.

  3、在平面直角坐标系中,□ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( )

  A.(3,7) B.(5,3) C.(7,3) D.(8,2)

  4.建立直角坐标系

  1、如图1是某市市区四个旅游景点示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,建立平面直角坐标系,用坐标表示下列景点的位置.①动物园 ,②烈士陵园 .

  2、如图,机器人从A点,沿着西南方向,行了4 个单位到达B点后,观察到原点O在它的南偏东60的方向上,则原来A的坐标为 (结果保留根号).

  3、如图,△AOB是边长为5的等边三角形,则A,B两点的坐标分别是A ,B .

  5.创新题: 一)规律探索型:

  1、如图2,已知Al(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、.则点A2015的坐标为________.

  二)阅读理解型:

  1、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,设坐标轴的单位长度为1cm,整点P从原点O出发,速度为1cm/s,且整点P作向上或向右运动(如图1所示.运动时间(s)与整点(个)的关系如下表:

  整点P从原点出发的时间(s) 可以得到整点P的坐标 可以得到整点P的个数

  1 (0,1)(1,0) 2

  2 (0,2)(1,1),(2,0) 3

  3 (0,3)(1,2)(2,1)(3,0) 4

  根据上表中的规律,回答下列问题:

  (1)当整点P从点O出发4s时,可以得到的整点的个数为________个.

  (2)当整点P从点O出发8s时,在直角坐标系中描出可以得到的所有整点,并顺次连结这些整点.

  (3)当整点P从点O出发____s时,可以得到整点(16,4)的位置.

  三、易错题:

  1、 已知点P(4,a)到横轴的距离是3,则点P的坐标是_____.

  2、 已知点P(m,n)到x轴的距离为3,到y轴的距离等于5,则点P的坐标是_____.

  3、 已知点P(m,2m-1)在x轴上,则P点的坐标是_______.

  4、如图,四边形ABCD各个顶点的坐标分别为 (2,8),(11,6),(14,0),(0,0)。

  (1)确定这个四边形的面积;

  (2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?

  四、提高题:

  1、在平面直角坐标系中,点(-2,4)所在的象限是( )

  A、第一象限 B、第二象限 C、第三象限 D、第四象限

  2、若a0,则点P(-a,2)应在 ( )

  A.第象限内 B.第二象限内 C.第三象限内 D.第四象限内

  3、已知 ,则点 在第______象限.

  4、若 +(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为______.

  5、点P(1,2)关于y轴对称点的坐标是 . 已知点A和点B(a,-b)关于y轴对称,求点A关于原点的对称点C的坐标___________.

  6、已知点 A(3a-1,2-b),B(2a-4,2b+5).

  若A与B关于x轴对称,则a=________,b=_______;若A与B关于y轴对称,则a=________,b=_______;

  若A与B关于原点对称,则a=________,b=_______.

  7、学生甲错将P点的横坐标与纵坐标的次序颠倒,写成(m,n),学生乙错将Q点的坐标写成它关于x轴对称点的坐标,写成(-n,-m),则P点和Q点的位置关系是_________.

  8、点P(x,y)在第四象限内,且|x|=2,|y| =5,P点关于原点的对称点的坐标是_______.

  9、以点(4,0)为圆心,以5为半径的圆与y轴交点的坐标为______.

  10、点P( , )到x轴的距离为________,到y轴的距离为_________。

  11、点P(m,-n)与两坐标轴的距离___________________________________________________。

  12、已知点P到x轴和y轴的距离分别为3和4,则P点坐标为__________________________.

  13、点P在第二象限,若该点到x轴的距离为,到y轴的距离为1,则点P的坐标是( )

  A.( 1, ) B.( ,1) C.( , ) D.(1, )

  14、点A(4,y)和点B(x, ),过A,B两点的直线平行x轴,且 ,则 ______, ______.

  15、已知等边三角形ABC的边长是4,以AB边所在的直线为x轴,AB边的中点为原点,建立直角坐标系,则顶点C的坐标为________________.

  16、通过平移把点A(2,-3)移到点A(4,-2),按同样的平移方式,点B(3,1)移到点B,则点B的坐标是_____________.

  17、如图11,若将△ABC绕点C顺时针旋转90后得到△ABC,则A点的对应点A的坐标是( )

  A.(-3,-2) B.(2,2) C.(3,0) D.(2,1)

  18、平面直角坐标系 内有一点A(a,b),若ab=0,则点A的位置在( ).

  A.原点 B. x轴上 C.y 轴上 D.坐标轴上

  19、已知等边△ABC的两个顶点坐标为A(-4,0)、B(2,0),则点C的坐标为______,△ABC的面积为______.

  20、(1)将下图中的各个点的纵坐标不变,横坐标都乘以-1,与原图案相比,所得图案有什么变化?

  (2)将下图中的各个点的横坐标不变,纵坐标都乘以-1,与原图案相比,所得图案有什么变化?

  (3)将下图中的各个点的横坐标都乘以-2,纵坐标都乘以-2,与原图案相比,所得图案有什么变化?

数学八年级上册教案7

  教学目标

  1.知识与技能

  领会运用完全平方公式进行因式分解的方法,发展推理能力.

  2.过程与方法

  经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.

  3.情感、态度与价值观

  培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.

  重、难点与关键

  1.重点:理解完全平方公式因式分解,并学会应用.

  2.难点:灵活地应用公式法进行因式分解.

  3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的

  教学方法

  采用“自主探究”教学方法,在教师适当指导下完成本节课内容.

  教学过程

  一、回顾交流,导入新知

  【问题牵引】

  1.分解因式:

  (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

  (3)x2-0.01y2.

  【知识迁移】

  2.计算下列各式:

  (1)(m-4n)2;(2)(m+4n)2;

  (3)(a+b)2;(4)(a-b)2.

  【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.

  3.分解因式:

  (1)m2-8mn+16n2(2)m2+8mn+16n2;

  (3)a2+2ab+b2;(4)a2-2ab+b2.

  【学生活动】从逆向思维的角度入手,很快得到下面答案:

  解:

  (1)m2-8mn+16n2=(m-4n)2;

  (2)m2+8mn+16n2=(m+4n)2;

  (3)a2+2ab+b2=(a+b)2;

  (4)a2-2ab+b2=(a-b)2.

  【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.

  二、范例学习,应用所学

  【例1】把下列各式分解因式:

  (1)-4a2b+12ab2-9b3;

  (2)8a-4a2-4;

  (3)(x+y)2-14(x+y)+49;(4)+n4.

  【例2】如果x2+axy+16y2是完全平方,求a的.值.

  【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.

  三、随堂练习,巩固深化

  课本P170练习第1、2题.

  【探研时空】

  1.已知x+y=7,xy=10,求下列各式的值.

  (1)x2+y2;(2)(x-y)2

  2.已知x+=-3,求x4+的值.

  四、课堂总结,发展潜能

  由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:

  a2-b2=(a+b)(a-b);

  a2±ab+b2=(a±b)2.

  在运用公式因式分解时,要注意:

  (1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解.

  五、布置作业,专题突破

数学八年级上册教案8

  教材分析

  平方差公式是在学习多项式乘法等知识的基础上,自然过渡到具有特殊形式的多项式的乘法,体现教材从一般到特殊的意图。教材为学生在教学活动中获得数学的思想方法、能力、素质提供了良好的契机。对它的学习和研究,不仅得到了特殊的多项式乘法的简便算法,而且为以后的因式分解,分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法,因此,平方差公式在教材中有承上启下的作用,是初中阶段一个重要的公式。

  学情分析

  学生是在学习积的乘方和多项式乘多项式后学习平方差公式的,但在进行积的乘方的运算时,底数是数与几个字母的积时往往把括号漏掉,在进行多项式乘法运算时常常会确定错某些次符号及漏项等问题。学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛的理解,当公式中a、b是式时,要把它括号在平方。

  教学目标

  1、知识与技能:经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行运算.

  2、过程与方法:在探索平方差公式的过程中,发展学生的.符号感和归纳能力、推理能力.在计算的过程中发现规律,掌握平方差公式的结构特征,并能用符号表达,从而体会数学语言的简洁美.

  3、情感、态度与价值观:激发学习数学的兴趣.鼓励学生自己探索,有意识地培养学生的合作意识与创新能力.

  教学重点和难点

  重点:平方差公式的推导和应用.

  难点:理解掌握平方差公式的结构特点以及灵活运用平方差公式解决实际问题.

数学八年级上册教案9

  【教学目标】

  1.了解分式概念.

  2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.

  【教学重难点】

  重点:理解分式有意义的条件,分式的值为零的条件.

  难点:能熟练地求出分式有意义的条件,分式的值为零的条件.

  【教学过程】

  一、课堂导入

  1.让学生填写[思考],学生自己依次填出:,,,.

  2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

  设江水的流速为x千米/时.

  轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.

  3.以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.

  [思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式才有意义.

  二、例题讲解

  例1:当x为何值时,分式有意义.

  【分析】已知分式有意义,就可以知道分式的'分母不为零,进一步解出字母x的取值范围.

  (补充)例2:当m为何值时,分式的值为0?

  (1);(2);(3).

  【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.

  三、随堂练习

  1.判断下列各式哪些是整式,哪些是分式?

  9x+4,,,,,

  2.当x取何值时,下列分式有意义?

  3.当x为何值时,分式的值为0?

  四、小结

  谈谈你的收获.

  五、布置作业

  课本128~129页练习.

数学八年级上册教案10

  教学目标

  一、教学知识点:

  1、旋转的定义

  2、旋转的基本性质

  二、能力训练要求:

  1.通过具体实例认识旋转,理解旋转的基本涵义。

  2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质

  三、情感与价值观要求

  1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识

  2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观

  教学重点:

  旋转的基本性质

  教学难点:

  探索旋转的基本性质

  教学方法:

  1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。

  2、采用多媒体课件辅助教学。

  教学过程:

  一。巧设情景问题,引入课题

  日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景)。

  (1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?

  1.在这些转动的现象中,它们都是绕着一个点转动的

  2.每个物体的转动都是向同一个方向转动

  3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变

  4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化。同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转。

  二。讲授新课

  在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate)。这个定点称为旋转中心,转动的角称为旋转角。注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度。在物体绕着一个定点转动时,它的形状和大小不变。因此,旋转具有不改变图形的大小和形状的特征。

  议一议:(课本67页)答:

  (1)旋转中心是O点,旋转角是∠AOD。旋转角还可以是∠BOE。

  (2)四边形AOBC绕O点旋转到四边形DOEF的位置。这时点A旋转到点D的位置,点B旋转到点E的位置。

  (3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的。同样,线段OB与OE是相等的。

  (4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的。

  (4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的。

  看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点。从刚才大家得出的结论中,能否总结出旋转的性质呢?

  答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的。

  因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的。

  由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度。任意一对对应点与旋转中心的连线所成的`角都是旋转角,旋转角彼此相等对应点到旋转中心的距离相等。

  [例1](课本68页例1)

  [师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出。

  解:(见课本68页)

  书上68页做一做

  三。课堂练习

  课本P69随堂练习

  1.解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°

  四。课时小结

  五。课后作业:课本P69习题3.4 1、2、3

  六。活动与探究

  1、分析图中的旋转现象过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律

  结果:旋转现象为:

  整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的

  整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的

  整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的

  2、图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?

  过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系

  结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的

  整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°前后的图形共同组成的

  整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的

数学八年级上册教案11

  分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。

  解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。

  (2)—3x≥0,x≤0,即x≤0时,是二次根式。

  (3),且x≠0,∴x>0,当x>0时,是二次根式。

  (4),即,故x—2≥0且x—2≠0,∴x>

  2。当x

  >2时,是二次根式。

  例4下列各式是二次根式,求式子中的字母所满足的'条件:

  分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

  解:(1)由2a+3≥0,得。

  (2)由,得3a—1>0,解得。

  (3)由于x取任何实数时都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。

  (4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。

数学八年级上册教案12

  一、创设情景,明确目标

  多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。

  二、自主学习,指向目标

  学习至此:请完成《学生用书》相应部分。

  三、合作探究,达成目标

  多边形的定义及有关概念

  活动一:阅读教材P19。

  展示点评:多边形是怎么组成的?常见的多边形有哪些?边数最少的多边形是几边形?什么是多边形的边、内角、外角?

  小组讨论:结合具体图形说出多边形的边、内角、外角?

  反思小结:多边形的定义及相关概念。

  针对训练:见《学生用书》相应部分

  多边形的对角线

  活动二:(1)十边形的对角线有35条。

  (2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。

  展示点评:结合图形说明什么是多边形的`对角线?三角形是否有对角线?从五边形的一个顶点出发可以引几条对角线?五边形有几条对角线?从n边形的一个顶点出发可以引几条对角线?n边形有多少条对角线?表达式中的(n—3)是什么意思?为什么要除以2?

  反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。

  小组讨论:如何灵活运用多边形对角线条数的规律解题?

  针对训练:见《学生用书》相应部分

  正多边形的有关概念

  活动二:阅读教材P20。

  展示点评:画图说明什么是凸多边形和凹多边形?正多边形要求的条件是什么?边数最少的正多边形是什么?

  小组讨论:判断一个多边形是否是正多边形的条件?

  反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。

  针对训练:见《学生用书》相应部分

  四、总结梳理,内化目标

  本节学习的数学知识是:

  1、多边形、多边形的外角,多边形的对角线。

  2、凸凹多边形的概念。

  五、达标检测,反思目标

  1、下列叙述正确的是(D)

  A、每条边都相等的多边形是正多边形

  B、如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凸多边形

  C、每个角都相等的多边形叫正多边形

  D、每条边、每个角都相等的多边形叫正多边形

  2、小学学过的下列图形中不可能是正多边形的是(D)

  A、三角形B。正方形C。四边形D。梯形

  3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。

  4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。

数学八年级上册教案13

  一、创设情景,明确目标

  多媒体展示:内角三兄弟之争

  在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?

  二、自主学习,指向目标

  学习至此:请完成《学生用书》相应部分.

  三、合作探究,达成目标

  三角形的内角和

  活动一:见教材P11“探究”.

  展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的'方法”吗?证明命题的步骤是什么?证明三角形的内角和定理.

  小组讨论:有没有不同的证明方法?

  反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程.三角形三个内角的和等于180°.

  针对训练:见《学生用书》相应部分

  三角形内角和定理的应用

  活动二:见教材P12例1

  展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?

  小组讨论:三角形的内角和在解题时,如何灵活应用?

  反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决.

  针对训练:见《学生用书》相应部分

  四、总结梳理,内化目标

  1.本节学习的数学知识是:三角形的内角和是180°.

  2.三角形内角和定理的证明思路是什么?

  3.数学思想是转化、数形结合.

  《三角形综合应用》精讲精练

  1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )

  A.1个 B.2个 C.3个 D.4个

  2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )

  A.5 B.6 C.7 D.10

  3.下列五种说法:①三角形的三个内角中至少有两个锐角;

  ②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有________(填序号).

  《11.2与三角形有关的角》同步测试

  4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?

  (2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状.为什么?

  (3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?

数学八年级上册教案14

  教学目标

  (一)教学知识点

  1.经历探索积的乘方的运算法则的过程,进一步体会幂的意义。

  2.理解积的乘方运算法则,能解决一些实际问题。

  (二)能力训练要求

  1.在探究积的乘方的运算法则的过程中,发展推理能力和有条理的表达能力。

  2.学习积的乘方的运算法则,提高解决问题的能力。

  (三)情感与价值观要求

  在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的`信心,感受数学的简洁美。

  教学重点

  积的乘方运算法则及其应用。

  教学难点

  幂的运算法则的灵活运用。

  教学方法

  自学─引导相结合的方法。

  同底数幂的乘法、幂的乘方、积的乘方成一个体系,研究方法类同,有前两节课做基础,本节课可放手让学生自学,教师引导学生总结,从而让学生真正理解幂的运算方法,能解决一些实际问题。

  教具准备

  投影片.

  教学过程

  Ⅰ.提出问题,创设情境

  [师]还是就上节课开课提出的问题:若已知一个正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?

  [生]它的体积应是V=(1.1×103)3cm3。

  [师]这个结果是幂的乘方形式吗?

  [生]不是,底数是1.1和103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理。

  [师]你分析得很有道理,积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,老师想请同学们自己探索,发现其中的奥秒。

  Ⅱ.导入新课

  老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳。

  出示投影片

  1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?

  (1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()

  (2)(ab)3=______=_______=a()b()

  (3)(ab)n=______=______=a()b()(n是正整数)

  2.把你发现的规律用文字语言表述,再用符号语言表达。

  3.解决前面提到的正方体体积计算问题。

  4.积的乘方的运算法则能否进行逆运算呢?请验证你的想法。

  5.完成课本P170例3。

数学八年级上册教案15

  教学目标:

  1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

  2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

  重点难点:

  重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

  难点:勾股定理的发现

  教学过程

  一、创设问题的情境,激发学生的学习热情,导入课题

  出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

  出示投影2(书中的P2图1—2)并回答:

  1、观察图

  1—2,正方形A中有_______个小方格,即A的面积为______个单位。

  正方形B中有_______个小方格,即A的面积为______个单位。

  正方形C中有_______个小方格,即A的面积为______个单位。

  2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:

  3、图

  1—2中,A,B,C之间的面积之间有什么关系?

  学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的'A。B,C的关系呢?

  二、做一做

  出示投影3(书中P3图1—4)提问:

  1、图

  1—3中,A,B,C之间有什么关系?

  2、图

  1—4中,A,B,C之间有什么关系?

  3、从图

  1—1,1—2,1—3,1|—4中你发现什么?

  学生讨论、交流形成共识后,教师总结:

  以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

  三、议一议

  1、图

  1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

  2、你能发现直角三角形三边长度之间的关系吗?

  在同学的交流基础上,老师板书:

  直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”

  也就是说:如果直角三角形的两直角边为a,b,斜边为c

  那么

  我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

  3、分别以

  5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

  四、想一想

  这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

  五、巩固练习

  1、错例辨析:

  △ABC的两边为3和4,求第三边

  解:由于三角形的两边为3、4

  所以它的第三边的c应满足=25

  即:c=5

  辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题

  △ ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

  (2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边

  综上所述这个题目条件不足,第三边无法求得。

  2、练习P

  7 §1.1 1

  六、作业

  课本P7 §1.1 2、3、4

【数学八年级上册教案】相关文章:

八年级上册数学教案10-16

八年级数学上册教案06-08

八年级上册数学优秀教案01-13

数学上册教案02-07

八年级数学上册《分式》的教案03-25

八年级数学教案初中八年级数学上册教案05-29

八年级数学上册全册教案03-26

简单的图案设计八年级上册数学教案03-25

八年级数学上册《认识直棱柱》的教案03-25