- 相关推荐
初二数学教学教案二次根式
一、教学目标
1.了解二次根式的意义;
2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3. 掌握二次根式的性质 和 ,并能灵活应用;
4.通过二次根式的计算培养学生的逻辑思维能力;
5. 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美.
二、教学重点和难点
重点:(1)二次根的意义;(2)二次根式中字母的取值范围.
难点:确定二次根式中字母的取值范围.
三、教学方法
启发式、讲练结合.
四、教学过程
(一)复习提问
1.什么叫平方根、算术平方根?
2.说出下列各式的意义,并计算:
通过练习使学生进一步理解平方根、算术平方根的概念.
观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中 ,
表示的是算术平方根.
(二)引入新课
我们已遇到的这样的式子是我们这节课研究的内容,引出:
新课:二次根式
定义: 式子 叫做二次根式.
对于 请同学们讨论论应注意的问题,引导学生总结:
(1)式子 只有在条件a0时才叫二次根式, 是二次根式吗? 呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.
(2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的外在形态.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.
例1 当a为实数时,下列各式中哪些是二次根式?
分析: , , , 、 、 、 四个是二次根式. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a-10时,a+10又如当0
例2 x是怎样的实数时,式子 在实数范围有意义?
解:略.
说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义.
例3 当字母取何值时,下列各式为二次根式:
(1) (2) (3) (4)
分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式.
解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时, 是二次根式.
(2)-3x0,x0,即x0时, 是二次根式.
(3) ,且x0,x0,当x0时, 是二次根式.
(4) ,即 ,故x-20且x-20, x2.当x2时, 是二次根式.
例4 下列各式是二次根式,求式子中的字母所满足的条件:
(1) ; (2) ; (3) ; (4)
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即: 只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.
解:(1)由2a+30,得 .
(2)由 ,得3a-10,解得 .
(3)由于x取任何实数时都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范围是全体实数.
(4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.
(三)小结(引导学生做出本节课学习内容小结)
1.式子 叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.
2.式子中,被开方数(式)必须大于等于零.
(四)练习和作业
练习:
1.判断下列各式是否是二次根式
分析:(2) 中, , 是二次根式;(5)是二次根式. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义.
2.a是怎样的实数时,下列各式在实数范围内有意义?
五、作业
教材P.172习题11.1;A组1;B组1.
六、板书设计
【初二数学教学教案二次根式】相关文章:
二次根式教案11-10
《二次根式》教学教案(精选6篇)07-21
二次根式教案优秀06-26
二次根式教案合集五篇04-08
二次根式教案模板7篇10-30
关于二次根式教案3篇10-20
【热门】二次根式教案三篇10-24
有关二次根式教案三篇10-25
二次根式教案范文十篇04-17
二次根式教案锦集10篇04-14