教案

反比例函数的教学教案

时间:2022-10-08 07:32:08 教案 我要投稿
  • 相关推荐

反比例函数的教学教案

  [教学目标]

反比例函数的教学教案

  1.回顾反比例函数的概念.通过实际问题,进一步感受用反比例函数解决实际问题的过程与方法,体会反比例函数是分析、解决实际问题的一种有效的数学模型.

  2.归纳总结反比例函数的图象和性质,进一步体会形数结合的数学思想方法.

  [教学过程]

  1.回顾、梳理本章的知识:

  如同已经学过的有关方程、函数的内容一样,本章内容分为3块:

  (1)从生活到数学:从问题到反比例函数,即建构实际问题的数学模型;

  (2)数学研究:反比例函数的图象与性质;

  (3)用数学解决问题:反比例函数的应用.

  2.可以设计一组问题,重点归纳、范文参考网整理反比例函数的图象与性质,进一步感受形数结合的数学思想方法.例如:

  (1)由形到数——用待定系数法求反比例函数的关系式;由图象的位置或图象的部分确定函数的特征;

  (2)由数到形――根据反比例函数关系式或反比例函数的性质,确定图形的位置、趋势等;

  (3)形数结合——函数的图象与性质的综合应用

  2例如:如图,点P是反比例函数y?上的一点,PD垂直x轴于点D,则△x

  POD的面积为________

  3. 设计一个实际问题,让学生经历“问题情境一建立模型一求解一解释与应用”的基本过程.

  例如:为了预防“非典”

  ,某学校对教室采用药薰法进行消毒.已知药物

  范文写作燃烧时.室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例(如 图).现测得药物8min燃毕,此时室内空气中每立方米含药量为6mg.

  (1)写出药物燃烧前、后y与x的函数关系式;

  (2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室.那么从消毒开始,至少需要多少时间,学生方能进入教室?

  (3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不少于10min时,才能有效灭杀空气中的病菌,那么这次消毒是否有效?

【反比例函数的教学教案】相关文章:

反比例教案02-17

函数教学教案设计(通用9篇)10-26

《一次函数》数学教学教案10-09

《二次函数》教案10-13

函数奇偶性教案02-15

函数数学教案07-22

《一次函数》教学教案(通用11篇)06-24

一次函数的图象教案11-23

三角函数的应用数学教案10-09

if函数的使用方法08-30