- 相关推荐
七年级数学平行线的性质教学设教案
教学目标:
(1)知识与技能:
探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。
(2)过程与方法:
在定理的学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。
(3)情感态度、价值观:
在课堂练习中,体验几何与实际生活的密切联系。
教学重点:
平行线的性质。
教学难点:
平行线的性质定理与判定定理的区别。
教学模式:
发现教学模式。
教学方法:
直观教学法、发现教学法、主体互动法。
教学手段:
计算机辅助教学。
教学过程:
教学环节
教师活动
学 生活 动
教 学 意 图
复习提 问
复习提问:
判定两直线平行的方法有哪些?怎样用符号语言表述?
思考、回答
了解学生的认知基础,让全体学生对前一节的内容进行回顾,并为新课的学习做准备。
进行新课进行新课
【大屏幕】请每位同学利用手中的条格纸,任意选取其中的两条线作l1、l2,再随意画一条直线l3与l1、l2相交,用量角器量得图中的八个角,并填表(见附录1)
随后同桌同学交换,再次测量、填表。
关注:
对于没有带量角器的学生,鼓励他们在无需测量的情况下,找出图中各角的度量关系。
画图、测量、填表
思考、动手尝试,方法可能多种多样
激发学生探究数学问题的兴趣,使学生获得较强的感性认识,便于探索两直线平行的性质定理。关注学生的实际操作,以及操作中的思考和学生学习数学的兴趣。
给学生留有充分的探索和交流的空间,鼓励学生利用多种方法探索,这对于发展学生的空间观念,理解平行线的性质是十分重要的。
【提问】能否将我们发现的结论给予较为准确的文字表述?
总结、表述
锻炼学生的归纳、表达能力,鼓励学生敢于发表自己的观点。
【大屏幕】平行线的性质:
定理1。两条平行线被第三条直线所截,同位角相等。简言之: 两直线平行,同位角相等。
定理2。两条平行线被第三条直线所截,内错角相等。简言之: 两直线平行,内错角相等。
定理3。两条平行线被第三条直线所截,同旁内角互补。简言之: 两直线平行,同旁内角互补。
【提问】讨论这些性质定理与前面所学的判定定理有什么不同?
理解、记忆、思考、讨论、回答
进行文字语言的规范。
避免出现概念的混淆,渗透“命题” 与“逆命题”的概念,突破本节课的难点避免出现概念的混淆,突破本节课的难点。
【提问】回忆平行线判定定理的符号语言的表述,参照附录1的图形,将上述性质定理怎样用符号语言表达出呢?
【大屏幕】符号语言:(不唯一)
性质定理1。∵l1∥l2
∴∠1=∠5 (两直线平行,同位角相等)
性质定理1。∵l1∥l2
∴∠3=∠5 (两直线平行,内错角相等)
性质定理1。∵l1∥l2
∴∠3+∠6=180o (两直线平行,同旁内角互补)
思考、一位同学板书。
观察、理解
为今后进一步学习推理打基础,并进行符号语言的规范。
【提问】我们能否使用平行线的性质定理1说出性质定理2、3成立的道理呢?
鼓励学生使用符号语言表述推导过程。
【大屏幕】规范定理的推导过程。
思考、尝试回答
观察
培养学生的逻辑思维能力以及严谨的治学态度。逐步锻炼学生的推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的信心。
例题示范
【大屏幕】例:如图是一块梯形铁片的残余部分,量得∠A=100o,∠B=115o,梯形另外两个角分别是多少度?
思考、尝试运用符号语言进行推理。
要求学生会用平行线的性质进行计算,只需算出所求的度数即可。初次计算格式不一定很完整。
趣味练习
【大屏幕】(见附录2)
思考、讨论、解释结论
寓教于乐,进一步让学生感受“认识来源于实践”。
巩固练习
【大屏幕】巩固练习(见附录3)
积极思考、展开讨论、踊跃回答
循序渐进提高难度、提高灵活运用定理的能力,感受解决有关平行问题的关键,突破难点,并进一步提高用符号语言进行推理的能力。
拓展思路
【大屏幕】探究题(见附录4)
【备注】如果时间不允许的话,该题可作为课后作业,并给予简单的提示。
猜测、讨论,寻找规律
使重点中学学生的思路进一步得以拓宽,初次接触辅助线的添加,使学生能力得以提高。
课堂小结
【提问】本节课我们学习了哪些定理?在表述这些定理时,应注意什么呢?
回顾、归纳
将本节课知识进行回顾。
布置
作业
【大屏幕】布置作业:教材P67的4、5;P68的6、7;P69的11、12
课后完成
课后能进一步巩固,鼓励学生去发现身边的数学问题。
【七年级数学平行线的性质教学设教案】相关文章:
平行线的性质的教案设计10-12
数学小数的意义和性质教案11-29
小数的意义和性质教学教案01-23
初中数学 平行线等分线段定理 教案12-28
《小数的性质》教案02-20
七年级数学教学教案11-30
高中数学 不等式的性质一 教案12-28
七年级下册数学教学教案12-03
减法的运算性质教案11-02