大学极限知识点总结
在我们平凡的学生生涯里,是不是听到知识点,就立刻清醒了?知识点在教育实践中,是指对某一个知识的泛称。相信很多人都在为知识点发愁,下面是小编收集整理的大学极限知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
重要题型及点拨
1、求数列极限
求数列极限可以归纳为以下三种形式。
抽象数列求极限
这类题一般以选择题的形式出现, 因此可以通过举反例来排除。 此外,也可以按照定义、基本性质及运算法则直接验证。
求具体数列的极限,可以参考以下几种方法:
a、利用单调有界必收敛准则求数列极限。
首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程, 从而得到数列的极限值。
b、利用函数极限求数列极限
如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。
求项和或项积数列的极限,主要有以下几种方法:
a、利用特殊级数求和法
如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。
b、利用幂级数求和法
若可以找到这个级数所对应的`幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。
c、利用定积分定义求极限
若数列每一项都可以提出一个因子,剩余的项可用一个通项表示, 则可以考虑用定积分定义求解数列极限。
d、利用夹逼定理求极限
若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。
e、求项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。
【大学极限知识点总结】相关文章:
考研求极限的方法总结11-13
数列求极限的方法总结10-16
求数列极限的方法总结10-14
函数求极限的方法总结10-14
大学概率知识点总结10-19
大学会计知识点总结10-26
大学思修知识点总结10-19
大学物理2知识点总结10-26
挑战自我极限演讲稿10-25